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Abstract In this paper, we study the multiple positive solutions of integral boundary value

problems for a class of p-Laplacian differential equations involving the Caputo fractional

derivative. Using a fixed point theorem due to Avery and Peterson, we obtain the exis-

tence of at least three positive decreasing solutions of the nonlocal boundary value problems.

We give an example to illustrate our results.
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1. Introduction

In this paper, we are concerned with the multiple positive decreasing solutions of integral

boundary value problems for a class of p-Laplacian differential equations involving the Caputo

fractional derivative










(ϕp(
CDαx(t)))′ + ϕp(λ)f(t, x(t), x′(t)) = 0, t ∈ (0, 1),

x(1) =
∫ 1

0
g(t)x(t)dt,

x(k)(0) = 0, k = 1, 2, 3, . . . , [α]

(1.1)

where ϕp is the p-Laplacian operator, i.e., ϕp(s) = |s|p−2s, p > 1, and ϕq = ϕ−1
p , 1

p
+ 1

q
= 1;

CDα is the standard Caputo derivative; 2 ≤ n− 1 = [α] < α < n ∈ N, 0 < λ ∈ R are constants;

f and g are given functions. By means of a fixed point theorem due to Avery and Peterson, we

obtain some new results on the existence of multiple positive decreasing solutions.

The equation with the p-Laplacian operator arises in the models of different physical, natural

phenomena, non-Newtonian mechanics, nonlinear elasticity and glaciology, and so on. During

the past decades, wide attention has been paid to the study of the boundary value problems

with the p-Laplacian operator, and there exist many papers devoted to the existence of positive

solutions on this topic (see [1]–[5] and the references therein). In [1], Jin and Lu studied the
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existence for the third-order multi-point boundary value problem with the p-Laplacian operator
{

(ϕp(x
′′(t)))′ = f(t, x(t), x′(t), x′′(t)), t ∈ (0, 1),

x(0) = 0, x′(1) =
∑m−2

i=1 aix
′(ξi), x

′′(0) = 0.

In [2], authors considered the existence of multiple positive solutions for second-order im-

pulsive differential equations with the p-Laplacian and integral boundary conditions










−(ϕp(u
′))′ = f(t, u(t)), t 6= tk, t ∈ (0, 1),

−∆u |t=tk
= Ik(u(tk)), k = 1, 2, . . . , n,

u′(0) = 0, u(1) =
∫ 1

0
g(t)u(t)dt.

Recently, many authors are interested in studying the existence of solutions of boundary

value problems for fractional differential equation (see [6]–[12] and the references therein). In

[12], Jiang and Yuan considered the existence and multiplicity of solutions of boundary value

problem for nonlinear fractional differential equation
{

Dα
0+u(t) + f(t, u(t)) = 0, t ∈ (0, 1),

u(0) = u(1) = 0,

where 1 < α < 2 is a real number and Dα
0+ is the standard Riemann-Liouville derivative.

In [7], we studied the existence of multiple solutions for the boundary value problems






















CDqx(t) = f(t, x(t), x′(t)), t ∈ (0, 1),

g0(x(0), x′(0)) = 0,

g1(x(1), x′(1)) = 0,

x(k)(0) = 0, k = 2, 3, . . . , [q].

However, there are few results on the existence of multiple positive solutions of the integral

boundary value problems for the p-Laplacian operator with fractional derivatives. In this paper,

we focus on the multiple positive solutions of nonlocal boundary value problems for the p-

Laplacian equation involving fractional differential equations with integral boundary conditions.

By applying a theorem due to Avery and Peterson, we obtain a new result on the existence of

at least three distinct positive decreasing solutions under the certain conditions.

2. Preliminaries

For the sake of clarity, we list the necessary definitions from fractional calculus theory here.

These definitions can be found in the recent literature.

Definition 2.1 ([6]) Let α > 0, for a function y : (0,+∞) → R. The fractional integral of order

α of y is defined by

Iαy(t) =
1

Γ(α)

∫ t

0

(t− s)α−1y(s)ds,

provided the integral exists. The Caputo derivative of a function y : (0,+∞) → R is given by

CDαy(t) =
1

Γ(n− α)

∫ t

0

y(n)(s)

(t− s)α+1−n
ds,
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provided the right side is pointwise defined on (0, +∞), where n = [α] + 1, and [α] denotes the

integer part of the real number α. Γ denotes the Gamma function:

Γ(α) =

∫ +∞

0

e−ttα−1dt.

Throughout the paper, we suppose that the following condition holds.

(H) g ∈ L[0, 1] is a nonnegative function and 0 <
∫ 1

0
g(t)dt < 1.

Lemma 2.1 Suppose that (H) holds and h ∈ C[0, 1]. Then the boundary value problems










(ϕp(
CDαx(t)))′ + ϕp(λ)h(t) = 0, t ∈ (0, 1),

x(1) =
∫ 1

0 g(t)x(t)dt,

x(k)(0) = 0, k = 1, 2, 3, . . . , [α]

(2.1)

is equivalent to integral equation

x(t) =
λ

(1 −
∫ 1

0
g(s)ds)Γ(α)

(
∫ 1

0

g(s)
(

∫ 1

0

(1 − τ)α−1ϕq(

∫ τ

0

h(r)dr)dτ−

∫ s

0

(s− τ)α−1ϕq(

∫ τ

0

h(r)dr)dτ
)

ds

)

+

λ

Γ(α)

(
∫ 1

0

(1 − τ)α−1ϕq(

∫ τ

0

h(s)ds)dτ −

∫ t

0

(t− τ)α−1ϕq(

∫ τ

0

h(s)ds)dτ

)

. (2.2)

That is, each solution of (2.1) is also a solution of (2.2) and vice versa.

Proof It is easy to see that the definition of the Caputo derivative implies that CDαx(0) = 0.

By (2.1), we have

ϕp

(

CDαx (t)
)

= −ϕp(λ)

∫ t

0

h(s)ds,

and

CDαx(t) = −λϕq(

∫ t

0

h(s)ds).

Then

x(t) = x(0) + x′(0)t+
x′′(0)

2!
t2 + · · · +

x(n−1)(0)

(n− 1)!
tn−1 − Iαλϕq(

∫ t

0

h(s)ds)

= x(0) −
λ

Γ(α)

∫ t

0

(t− τ)α−1ϕq(

∫ τ

0

h(s)ds)dτ. (2.3)

From the boundary condition x(1) =
∫ 1

0 g(t)x(t)dt of (2.1), we can obtain that

x(0) =

∫ 1

0

g(t)x(t)dt +
λ

Γ(α)

∫ 1

0

(1 − τ)α−1ϕq(

∫ τ

0

h(s)ds)dτ.

Hence,

x(t) =

∫ 1

0

g(s)x(s)ds+
λ

Γ(α)

(
∫ 1

0

(1−τ)α−1ϕq(

∫ τ

0

h(s)ds)dτ−

∫ t

0

(t−τ)α−1ϕq(

∫ τ

0

h(s)ds)dτ

)

.

(2.4)
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By (2.4), it is easy to see that
∫ 1

0

g(t)x(t)dt =
λ

(1 −
∫ 1

0 g(s)ds)Γ(α)

(
∫ 1

0

g(s)
(

∫ 1

0

(1 − τ)α−1ϕq(

∫ τ

0

h(r)dr)dτ−

∫ s

0

(s− τ)α−1ϕq(

∫ τ

0

h(r)dr)dτ
)

ds

)

. (2.5)

Substituting (2.5) into (2.4), we can get (2.2).

On the other hand, it is easy to verify that each solution of (2.2) is also a solution of (2.1). �

Denote

M =
1 −

∫ 1

0 tg(t)dt

1 −
∫ 1

0
g(t)dt

and N =

∫ 1

0 (1 − t)g(t)dt

1 −
∫ 1

0
tg(t)dt

.

Obviously, M > 1, 0 < N < 1 if (H) holds.

Lemma 2.2 Suppose that (H) holds and h ∈ C[0, 1], h(t) ≥ 0, t ∈ [0, 1]. Then

(1) The solutions of the boundary value problems (2.1) are nonnegative, decreasing and

concave on [0, 1];

(2) The solution x of the boundary value problems (2.1) satisfies

max
t∈[0,1]

|x(t)| ≤M max
t∈[0,1]

|x′(t)|,

and

min
t∈[0,1]

x(t) = x(1) ≥ N max
t∈[0,1]

x(t) = Nx(0).

Proof (1) Let x be a solution of boundary value problems (2.1). It follows from (2.3) that

x′(t) = −
λ

Γ(α− 1)

∫ t

0

(t− τ)α−2ϕq(

∫ τ

0

h(s)ds)dτ ≤ 0,

and

x′′(t) = −
λ

Γ(α− 2)

∫ t

0

(t− τ)α−3ϕq(

∫ τ

0

h(s)ds)dτ ≤ 0.

This implies that x(t) is decreasing and concave on [0,1], and

min
t∈[0,1]

x(t) =x(1) =
λ

(1 −
∫ 1

0 g(s)ds)Γ(α)

∫ 1

0

g(s)
(

∫ 1

0

(1 − τ)α−1ϕq(

∫ τ

0

h(r)dr)dτ−

∫ s

0

(s− τ)α−1ϕq(

∫ τ

0

h(r)dr)dτ
)

ds ≥ 0.

Therefore, x(t) ≥ 0 for t ∈ [0, 1].

(2) It follows from (1)

max
t∈[0,1]

|x(t)| = x(0), max
t∈[0,1]

|x′(t)| = −x′(1),

and

x(t) ≥ tx(1) + (1 − t)x(0).

Since x(1) =
∫ 1

0
g(t)x(t)dt, g(t) ≥ 0, t ∈ [0, 1], 0 <

∫ 1

0
g(t)dt < 1, we have

x(0) ≤
1 −

∫ 1

0 tg(t)dt
∫ 1

0
(1 − t)g(t)dt

x(1). (2.6)
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On the other hand, x(1) − x(t) ≥ (1 − t)x′(1), it is easy to get

x(1) ≤

∫ 1

0
(1 − t)g(t)dt

1 −
∫ 1

0 g(t)dt
(−x′(1)). (2.7)

Substituting (2.7) into (2.6), we have

x(0) ≤
1 −

∫ 1

0
tg(t)dt

1 −
∫ 1

0 g(t)dt
(−x′(1)) = M(−x′(1)).

That is maxt∈[0,1] |x(t)| ≤M maxt∈[0,1] |x
′(t)|, and x(1) ≥ Nx(0) from (2.6). �

Definition 2.2 Let E be a Banach space and P ⊂ E be a cone. A continuous map γ is called

a concave (resp., convex) functional on P if and only if

γ(tx+ (1 − t)y) ≥ tγ(x) + (1 − t)γ(y)

(γ(tx+ (1 − t)y) ≤ tγ(x) + (1 − t)γ(y)),

for all x, y ∈ P and 0 < t < 1.

Let β and ρ be nonnegative continuous convex functionals on a cone P , ω be a nonnegative

continuous concave functional on a cone P , and ψ be a nonnegative continuous functional on a

cone P . Then for positive real numbers a, b, c and d, we define the following convex sets

P (β; d) = {x ∈ P | β(x) < d}, P (β; d) = {x ∈ P | β(x) ≤ d};

P (β, ω; b, d) = {x ∈ P | β(x) ≤ d, ω(x) ≥ b};

P (β, ρ, ω; b, c, d) = {x ∈ P | β(x) ≤ d, ρ(x) ≤ c, ω(x) ≥ b};

R(β, ψ; a, d) = {x ∈ P | β(x) ≤ d, ψ(x) ≥ a}.

Lemma 2.3 (Avery-Peterson fixed point theorem [13]) Let P be a cone in a real Banach

space E. Let β and ρ be nonnegative continuous convex functionals on P , ω be a nonnegative

continuous concave functional on P , and ψ be a nonnegative continuous functional on P satisfying

ψ(kx) ≤ kψ(x) for 0 < k < 1, such that for some positive numbers M and d, ω(x) ≤ ψ(x) and

||x|| ≤Mβ(x), for all x ∈ P (β, d).

Suppose T : P (β; d) → P (β; d) is completely continuous and there exist positive numbers

a, b and c with a < b, such that

(A1) {x ∈ P (β, ρ, ω; b, c, d)|ω(x) > b} 6= φ, and ω(Tx) > b for all x ∈ P (β, ρ, ω; b, c, d);

(A2) ω(Tx) > b, for all x ∈ P (β, ω; b, d) with ρ(Tx) > c;

(A3) θ 6∈ R(β, ψ; a, d) and ψ(Tx) < a for x ∈ R(β, ψ; a, d) with ψ(x) = a.

Then T has at least three fixed points x1, x2, x3 ∈ P (β; d), such that β(xi) < d, i = 1, 2, 3;

ω(x1) > b; ψ(x2) > a, with ω(x2) < b; and ψ(x3) < a.

3. Main results and their proof

Let E = C1[0, 1], ‖ x ‖= max
{

maxt∈[0,1] | x(t) |, maxt∈[0,1] | x
′(t) |

}

, and

P =
{

x ∈ E | x(t) ≥ 0, t ∈ [0, 1], min
t∈[0,1]

x(t) ≥ N max
t∈[0,1]

x(t), max
t∈[0,1]

x(t) ≤M max
t∈[0,1]

|x′(t)|,
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x is decreasing and concave on [0, 1]
}

.

Then (E, ‖ · ‖) is a Banach space and P is a cone in E.

Denote

r1 =
Γ(α+ q − 1)

λΓ(q)
, r2 =

Γ(α+ q)

λNΓ(q)
and r3 =

Γ(α+ q)(1 −
∫ 1

0 g(t)dt)

λΓ(q)
.

Then r1, r2, r3 > 0, and it is easy to see that r1d > r2b for N
α+q−1d > b.

Theorem 3.1 Suppose (H) holds and f ∈ C([0, 1]× R × R,R), there exist constants a, b, c and

d with 0 < a < b < Nc ≤ N
α+q−1d < d, such that

(C1) 0 ≤ f(t, u, v) ≤ ϕp(r1d), for any (t, u, v) ∈ [0, 1]× [0,Md] × [−d, 0];

(C2) f(t, u, v) > ϕp(r2b), for any (t, u, v) ∈ [0, 1]× [b, c] × [−d, 0];

(C3) 0 ≤ f(t, u, v) < ϕp(r3a), for any (t, u, v) ∈ [0, 1] × [Na, a] × [−d, 0].

Then the boundary value problem (1.1) has at least three positive decreasing solutions x1, x2,

x3 ∈ P (β; d) such that

max
t∈[0,1]

|x′i(t)| < d, i = 1, 2, 3; min
t∈[0,1]

|x1(t)| > b;

max
t∈[0,1]

x2(t) > a with min
t∈[0,1]

x2(t) < b; and max
t∈[0,1]

x3(t) < a.

Proof Define nonnegative continuous convex functionals β, ρ, nonnegative continuous functional

ψ, and nonnegative continuous concave functional ω on the cone P by

β(x) = max
t∈[0,1]

|x′(t)|, ρ(x) = ψ(x) = max
t∈[0,1]

|x(t)|, and ω(x) = min
t∈[0,1]

|x(t)|,

respectively. Obviously, ψ(kx) = kψ(x) for any k ∈ (0, 1) and x ∈ P , and

‖x‖ = max{ max
t∈[0,1]

|x(t)|, max
t∈[0,1]

|x′(t)|} = max{ρ(x), β(x)} ≤Mβ(x), for x ∈ P.

Define the operator T : P → E by

(Tx)(t)

=
λ

Γ(α)

(
∫ 1

0

(1 − τ)α−1ϕq(

∫ τ

0

f(s, x(s), x′(s))ds)dτ−

∫ t

0

(t− s)α−1ϕq(

∫ τ

0

f(s, x(s), x′(s))ds)dτ

)

+

λ

(1 −
∫ 1

0
g(s)ds)Γ(α)

∫ 1

0

g(s)
(

∫ 1

0

(1 − τ)α−1ϕq(

∫ τ

0

f(r, x(r), x′(r))dr)dτ−

∫ s

0

(s− τ)α−1ϕq(

∫ τ

0

f(r, x(r), x′(r))dr)dτ
)

ds. (3.1)

It is clear that the fixed points of the operator T are the solutions of the boundary value

problems (1.1).

Since x ∈ P (β; d) implies that x(t) ≥ 0 and

ρ(x) = max
t∈[0,1]

|x(t)| ≤M max
t∈[0,1]

|x′(t)| = β(x) ≤Mβ(x) ≤Md,
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by condition (C1), we have 0 ≤ f(t, x(t), x′(t)) ≤ ϕp(r1d). It follows from Lemma 2.2 that

β(Tx) = −(Tx)′(1) =
λ

Γ(α− 1)

∫ 1

0

(1 − τ)α−2ϕq(

∫ τ

0

f(s, x(s), x′(s))ds)dτ

≤
λr1d

Γ(α− 1)

∫ 1

0

(1 − τ)α−2τq−1dτ =
λΓ(q)

Γ(α+ q − 1)
r1d = d.

Therefore, T : P (β; d) → P (β; d). By Lemma 2.2 and (3.1), it is easy to see that T is a completely

continuous operator.

Let x0 = b+c
2 . Then ρ(x0) = x0 = b+c

2 ≤ c, β(x0) = 0 ≤ d, and ω(x0) = x0 = b+c
2 > b, so

x0 ∈ {x ∈ P (β, ρ, ω; b, c, d)|ω(x) > b} 6= φ.

For x ∈ P (β, ρ, ω; b, c, d), it follows from condition (C2) that f(t, x(t), x′(t)) > ϕp(r2b). By

Lemma 2.2 and (3.1), we can get

ω(Tx) = min
t∈[0,1]

|(Tx)(t)| = (Tx)(1) ≥ N(Tx)(0)

=
Nλ

(1 −
∫ 1

0 g(s)ds)Γ(α)

(
∫ 1

0

(1 − τ)α−1ϕq(

∫ τ

0

f(r, x(r), x′(r))dr)dτ−

∫ 1

0

g(s)
(

∫ s

0

(s− τ)α−1ϕq(

∫ τ

0

f(r, x(r), x′(r))dr)dτ
)

ds

)

≥
Nλ

(1 −
∫ 1

0 g(s)ds)Γ(α)

(
∫ 1

0

(1 − τ)α−1ϕq(

∫ τ

0

f(r, x(r), x′(r))dr)dτ−

∫ 1

0

g(s)
(

∫ 1

0

(1 − τ)α−1ϕq(

∫ τ

0

f(r, x(r), x′(r))dr)dτ
)

ds

)

=
Nλ

Γ(α)

∫ 1

0

(1 − τ)α−1ϕq(

∫ τ

0

f(r, x(r), x′(r))dr)dτ

>
λr2Nb

Γ(α)

∫ 1

0

(1 − τ)α−1τq−1dτ

=
λr2Nb

Γ(α)
·
Γ(α)Γ(q)

Γ(α+ q)
= b.

Thus, condition (A1) in Avery-Peterson theorem is satisfied.

For x ∈ P (β, ω; b, d) with ρ(Tx) > c, we get

ρ(Tx) = max
t∈[0,1]

|(Tx)(t)| = (Tx)(0) > c.

Then

ω(Tx) = min
t∈[0,1]

|(Tx)(t)| = (Tx)(1) ≥ N(Tx)(0) > Nc > b.

Consequently, condition (A2) in Avery- Peterson theorem is satisfied.

It is clear that θ = 0 6∈ R(β, ψ; a, d).

For x ∈ R(β, ψ; a, d) with ψ(x) = a, we have

β(x) = max
t∈[0,1]

|x′(t)| ≤ d and max
t∈[0,1]

x(t) = a.
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It is easy to see

min
t∈[0,1]

x(t) ≥ N max
t∈[0,1]

x(t) = Na,

for x ∈ P . By condition (C3), we have

ψ(Tx) = max
t∈[0,1]

|(Tx)(t)| = (Tx)(0)

=
λ

(1 −
∫ 1

0
g(s)ds)Γ(α)

(
∫ 1

0

(1 − τ)α−1ϕq(

∫ τ

0

f(r, x(r), x′(r))dr)dτ−

∫ 1

0

g(s)
(

∫ s

0

(s− τ)α−1ϕq(

∫ τ

0

f(r, x(r), x′(r))dr)dτ
)

ds

)

≤
λ

(1 −
∫ 1

0 g(s)ds)Γ(α)

(
∫ 1

0

(1 − τ)α−1ϕq(

∫ τ

0

f(r, x(r), x′(r))dr)dτ

)

≤
r3aλ

(1 −
∫ 1

0
g(s)ds)Γ(α)

∫ 1

0

(1 − τ)α−1τq−1dτ

=
r3aλ

(1 −
∫ 1

0 g(s)ds)Γ(α)
·
Γ(α)Γ(q)

Γ(α+ q)
= a.

So, condition (A3) in Avery-Peterson theorem holds.

By Avery-Peterson theorem, the operator T has at least three fixed points x1, x2, x3 ∈

P (β, d) and

β(xi) < d, i = 1, 2, 3; ω(x1) > b; ψ(x2) > a, with ω(x2) < b; and ψ(x3) < a.

Thus, the boundary value problem (1.1) has at least three positive decreasing solutions x1, x2,

x3 ∈ P (β; d) such that

max
t∈[0,1]

|x′i(t)| < d, i = 1, 2, 3; min
t∈[0,1]

|x1(t)| > b;

max
t∈[0,1]

x2(t) > a, with min
t∈[0,1]

x2(t) < b; and max
t∈[0,1]

x3(t) < a. �

4. Illustration

In this section, we give an example to demonstrate the application of Theorem 3.1 in Section

3.

Example 4.1 Let p = 5
2 . We consider the following boundary value problems















(ϕp(
CD3.5x(t)))′ + ϕp(

2
3 )

(

5000
(

π+2x4(arctan(2.5+x)3
)

100+x5 + sin2(tx′(t))
)

= 0, t ∈ (0, 1),

x(1) =
∫ 1

0 e
−tx(t)dt,

x(k)(0) = 0, k = 1, 2, 3.

(4.1)

Conclusion The boundary value problem (4.1) has at least three positive decreasing solutions

x1, x2, x3, such that

max
t∈[0,1]

|x′i(t)| < 30, i = 1, 2, 3; min
t∈[0,1]

|x1(t)| > 2;
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max
t∈[0,1]

x2(t) > 1, with min
t∈[0,1]

x2(t) < 2; and max
t∈[0,1]

x3(t) < 1.

Proof Let f(t, u, v) =
5000

(

π+2u4(arctan(2.5+u)3
)

100+u5 + sin2(tv), g(t) = e−t, λ = 2
3 , α = 7

2 .

Obviously, α > 2, g ∈ L[0, 1] is a nonnegative function, and 0 <
∫ 1

0 g(t)dt =
∫ 1

0 e
−tdt =

1 − 1
e
< 1. Then (H) holds,

M =
1 −

∫ 1

0 tg(t)dt

1 −
∫ 1

0
g(t)dt

= 2 and N =

∫ 1

0 (1 − t)g(t)dt

1 −
∫ 1

0
tg(t)dt

=
1

2
,

r1 =
Γ(α+ q − 1)

λΓ(q)
=

3Γ(25
6 )

2Γ(5
3 )

= 12.3391, r2 =
Γ(α+ q)

λNΓ(q)
=

3Γ(31
6 )

Γ(5
3 )

= 102.826, and

r3 =
Γ(α+ q)(1 −

∫ 1

0 g(t)dt)

λΓ(q)
=

6 + 3eΓ(31
6 )

2Γ(5
3 )

= 52.636.

Take a = 1, b = 2, c = 5, d = 30, then 0 < a = 1 < b = 2 < Nc = 2.5 ≤ N
α+q−1d = 3.6 <

d = 30

It is easy to see that f ∈ C([0, 1] × R × R,R). Furthermore,

0 ≤ f(t, u, v) ≤ 6700 < ϕp(r1d) = 7122.09, for any (t, u, v) ∈ [0, 1] × [0,Md] × [−d, 0] =

[0, 1]× [0, 60]× [−30, 0], thus condition (C1) holds;

f(t, u, v) ≥ 3110 > ϕp(r2b) = 2949.16, for any (t, u, v) ∈ [0, 1] × [b, c] × [−d, 0] = [0, 1] ×

[2, 5]× [−30, 0], thus condition (C2) holds;

0 ≤ f(t, u, v) ≤ 372 < ϕp(r3a) = 381.872, for any (t, u, v) ∈ [0, 1] × [Na, a] × [−d, 0] =

[0, 1]× [12 , 1] × [−30, 0], thus condition (C3) holds.

The conditions of Theorem 3.1 are all satisfied. So by Theorem 3.1, the boundary value

problems (4.1) has at least three distinct solutions x1, x2, x3, and moreover,

max
t∈[0,1]

|x′i(t)| < d = 30, i = 1, 2, 3; min
t∈[0,1]

|x1(t)| > b = 2;

max
t∈[0,1]

x2(t) > a = 1, with min
t∈[0,1]

x2(t) < b = 2; and max
t∈[0,1]

x3(t) < a = 1. �
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