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1. Introduction

Due to the development of the theory of fractional calculus and its applications, such as in

the fields of physics, Bode’s analysis of feedback amplifiers, aerodynamics and polymer archeology

etc, many work on fractional calculus, fractional order differential equations have appeared [1–

7]. Recently, there have been many papers dealing with the solutions or positive solutions of

boundary value problems for nonlinear fractional differential equations (see [8–21] and references

along this line). However we notice that most of these papers concerned with the boundary value

problems with Dirichlet-type boundary condition. For examples, Su [17] obtained the existence

of solution for boundary value problem of a coupled system of nonlinear fractional differential

equation

Dα
0+u(t) = f(t, v(t), Dpv(t)), Dβ

0+v(t) = f(t, u(t), Dqu(t)), 0 ≤ t ≤ 1,

u(0) = 0 = u(1), v(0) = 0 = v(1),

where 1 < α, β < 2, p, q > 0, α − p ≤ 1, β − q ≤ 1, f, g : [0, 1] × R × R → R and Dα
0+ is

the Sturm-Liouville fractional order derivative. By means of lower and upper solution method

and fixed-point theorems, some existence results of solutions are established. Bai [18], Jiang [19]

considered respectively the existence of positive solution for problem

Dα
0+u(t) + f(t, u(t)) = 0, u(0) = 0, u(1) = 0, 0 < α ≤ 2
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by using the fixed point theorems on cones. As to the problem with complex nonlinearity,

there are also some papers dealing with the Dirichlet-type boundary value problem of fractional

order differential equations. Based on the Leray-Schauder Continuation Principle, Kosmatov

[20] obtained the existence of solution for singular problem

Dα
0+u(t) = f(t, u(t), u′(t)), u(0) = u(1) = 0, 0 < α ≤ 2.

Agarwal et al. [21] established the existence of positive solution of singular problem with Dirichlet-

type boundary condition

Dα
0+u(t) = f(t, u(t), Dµu(t)), u(0) = u(1) = 0,

where 1 < α < 2, 0 ≤ µ ≤ α−1 and f satisfies the Caratheodory conditions on [0, 1]× [0, ∞)×R

and f(t, x, y) is singular at x = 0. The existence results were established by using regularization

and sequential techniques.

However, few contributions exist, as far as we know, concerning positive solution to Robin-

type boundary value problem of fractional differential equation. The goal of this paper is to fill

the gap.

In this paper, we consider the existence of positive solutions for following Robin-type bound-

ary value problem of differential equation involving the Riemann-Liouville fractional order deriva-

tive

Dα
0+u(t) = f(t, u(t)), t ∈ (0, 1), u(0) = 0, u′(1) = 0 (1.1)

where 1 < α < 2 and f : C([0, 1] × R,R+). We discuss some properties of the associated

Green’s function for problem (1.1). By using these properties of Green’s function and fixed point

theorems on cones, we establish the existence and multiplicity of positive solutions for problem

(1.1).

2. Preliminary results

Definition 2.1 The fractional integral of order α > 0 of a function u(t) : (0,∞) → R is given

by

Iα
0+u(t) =

1

Γ(α)

∫ t

0

(t− s)α−1u(s)ds

provided the right side is point-wise defined on (0,∞).

Definition 2.2 The fractional derivative of order α > 0 of a continuous function u(t) : (0,∞) →

R is given by

Dα
0+u(t) =

1

Γ(n− α)
(

d

dt
)n

∫ t

0

u(s)

(t− s)α−n+1
ds

where n = [α] + 1, provided that the right side is point-wise defined on (0,∞).

Lemma 2.1 Let α > 0. If we assume u ∈ L(0, 1), then the fractional differential equation

Dα
0+u(t) = 0 has solution

u(t) = C1t
α−1 + C2t

α−2 + · · · + CN t
α−N
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for some Ci ∈ R, i = 1, 2, . . . , N , where N is the smallest integer greater than or equal to α.

Lemma 2.2 Assume that u ∈ L(0, 1) with a fractional derivative of order α > 0 that belongs

to L(0, 1). Then

Iα
0+D

α
0+u(t) = u(t) + C1t

α−1 + C2t
α−2 + · · · + CN t

α−N ,

for some Ci ∈ R, i = 1, 2, . . . , N .

Lemma 2.3 ([22]) Let E be a Banach space and K ⊂ E be a cone. Assume Ω1,Ω2 are open

bounded subsets of E with 0 ∈ Ω1 ⊂ Ω1 ⊂ Ω2, and let

A : K ∩ (Ω2 \ Ω1) → K

be a completely continuous operator such that

‖Au‖ ≤ ‖u‖, u ∈ K ∩ ∂Ω1, and ‖Au‖ ≥ ‖u‖, u ∈ K ∩ ∂Ω2 or

‖Au‖ ≥ ‖u‖, u ∈ K ∩ ∂Ω1, and ‖Au‖ ≤ ‖u‖, u ∈ K ∩ ∂Ω2,

then A has a fixed point in K ∩ (Ω2 \ Ω1).

Let 0 < a < b be given and let ψ be a nonnegative continuous concave functional on the

cone C. Define the convex sets Cr and C(ψ , a, b) by

Cr = {x ∈ C| ‖x‖ < r}, C(ψ , a, b) = {x ∈ C| a ≤ ψ(x), ‖x‖ ≤ b}.

Lemma 2.4 ([23]) Let T : Cr → Cr be a completely continuous operator and ψ be a nonnegative

continuous concave functional on C such that ψ(x) ≤ ‖x‖ for x ∈ Cr. Suppose that there exist

0 < a < b < d ≤ c such that

(S1) {x ∈ C(ψ, b, d)| ψ(x) > b} 6= Ø and ψ(Tx) > b for x ∈ C(ψ, b, d);

(S2) ‖Tx‖ < a for ‖x‖ ≤ a and

(S3) ψ(Tx) > b for x ∈ C(ψ, b, c) with ‖Tx‖ ≥ d.

Then T has at least three fixed points x1, x2 and x3 such that

‖x1‖ < a, b < ψ(x2), ‖x3‖ > a, ψ(x3) < b.

3. Main results

Let E = C[0, 1] be a Banach space endowed with the norm

‖u‖ = max
0≤t≤1

|u(t)|, u ∈ E.

Define the cone P ⊂ E by P = {u ∈ E | u(t) ≥ 0}.

Lemma 3.1 Given y(t) ∈ C[0, 1]. Then problem

Dα
0+u(t) + y(t) = 0, u(0) = 0, u′(1) = 0, 1 < α < 2, (3.1)

is equivalent to

u(t) =

∫ 1

0

G(t, s)y(s)ds,
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where

G(t, s) =
1

Γ(α)







−(t− s)α−1 + tα−1(1 − s)α−2, t ≥ s,

tα−1(1 − s)α−2, t ≤ s.

Proof By Lemmas 2.1 and 2.2, we see that problem (3.1) is equivalent to

u(t) = −

∫ t

0

(t− s)α−1

Γ(α)
y(s)ds+ C1t

α−1 + C2t
α−2.

The boundary condition u(0) = 0 implies that C2 = 0. In view of the boundary condition

u′(1) = 0, we get

C1 =
1

Γ(α)

∫ 1

0

(1 − s)α−2y(s)ds.

Thus

u(t) = −
1

Γ(α)

∫ t

0

(t− s)α−1y(s)ds+
tα−1

Γ(α)

∫ 1

0

(1 − s)α−2y(s)ds =

∫ 1

0

G(t, s)y(s)ds.

Lemma 3.2 The function G(t, s) satisfies the following conditions:

(1) 0 ≤ G(t, s) ≤ G(s, s), t, s ∈ (0, 1);

(2) There exists a positive function γ(s) ∈ C(0, 1) such that

min
1/4≤t≤3/4

G(t, s) ≥ γ(s)G(s, s), 0 < s < 1.

Proof (1) It is obvious that G(t, s) ≥ 0 for t ≤ s. For t ≥ s,

Γ(α)G(t, s) = −(t− s)α−1 + tα−1(1 − s)α−2 = tα−1[(1 − s)α−2 − (1 −
s

t
)α−1] > 0.

For given s ∈ (0, 1), G(t, s) is decreasing with respect to t for s ≤ t and increasing with respect

to t for t ≤ s. Thus one can easily check that G(t, s) ≤ G(s, s), t, s ∈ (0, 1).

(2) Setting

g1(t, s) =
−(t− s)α−1 + tα−1(1 − s)α−2

Γ(α)
, g2(t, s) =

tα−1(1 − s)α−2

Γ(α)
,

one has

min
1/4≤t≤3/4

G(t, s) =



























g1(
3

4
, s), 0 < s ≤

1

4
,

min{g1(
3

4
, s), g2(

1

4
, s)},

1

4
≤ s ≤

3

4
,

g2(
1

4
, s),

3

4
≤ s < 1.

Setting 1

4
< r < 3

4
to be the unique solution of the equation

−(
3

4
− s)α−1 + (

3

4
)α−1(1 − s)α−2 = (

1

4
)α−1(1 − s)α−2,

we have

min
1/4≤t≤3/4

G(t, s) =































−(
3

4
− s)α−1 + (

3

4
)α−1(1 − s)α−2

Γ(α)
, 0 < s ≤ r,

(
1

4
)α−1(1 − s)α−2

Γ(α)
, r ≤ s < 1.
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Considering the monotonicity of G(t, s), we have

max
0≤t≤1

G(t, s) = G(s, s) =
sα−1(1 − s)α−2

Γ(α)
.

Thus, setting

γ(s) =























−(
3

4
− s)α−1 + (

3

4
)α−1(1 − s)α−2

sα−1(1 − s)α−2
, 0 < s ≤ r,

(
1

4s
)α−1, r ≤ s < 1

yields

min
1/4≤t≤3/4

G(t, s) ≥ γ(s)G(s, s), 0 < s < 1. �

Define the operator T : P → E,

Tu(t) =

∫ 1

0

G(t, s)f(s, u(s))ds.

It is obvious that boundary value problem (1.1) is equivalent to the operator equation u = Tu.

That is, a fixed point of operator T on cone P is the positive solution of problem (1.1).

Theorem 3.1 The operator T : P → P is completely continuous.

Proof It is obvious that the operator T : P → P is continuous. Let Ω ⊂ P be bounded. That

is, there exists a positive constant M1 > 0 such that ‖u‖ ≤ M1 for all u ∈ Ω. Then there exists

constant M2 > 0 such that |f(t, u)| ≤M2, t ∈ [0, 1], u ∈ Ω. Then

Tu(t) =

∫ 1

0

G(t, s)f(s, u(s))ds ≤M2

∫ 1

0

G(s, s)ds.

Thus, T is uniformly bounded on the bounded subset of E. On the other hand, for each u ∈

Ω, t1, t2 ∈ [0, 1], t1 < t2, one has

|Tu(t1) − Tu(t2)| =
∣

∣

∣

∫ 1

0

(G(t1, s) −G(t2, s))f(s, u(s))ds
∣

∣

∣

≤

∫ 1

0

|G(t1, s) −G(t2, s)||f(s, u(s))|ds

≤M1

∫ 1

0

|G(t1, s) −G(t2, s)|ds

≤M1

∫ 1

0

(1 − s)α−2ds|tα−1

1 − tα−1

2 |.

This ensures that T is of equi-continuity on the bounded subset of P . Then an application of

Ascoli-Arezela Theorem ensures that T : P → P is completely continuous.

Theorem 3.2 Assume that there exist two positive constants r2 > r1 > 0 such that

(A1) f(t, u) ≤Mr2, (t, u) ∈ [0, 1] × [0, r2];
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(A2) f(t, u) ≥ Nr1, (t, u) ∈ [0, 1] × [0, r1]

where

M =
(

∫ 1

0

G(s, s)ds
)−1

, N =
(

∫ 3

4

1

4

γ(s)G(s, s)ds
)−1

.

Then problem (1.1) has at least one positive solution u such that r1 ≤ ‖u‖ ≤ r2.

Proof Let Ω1 = {u ∈ P |‖u‖ ≤ r1}. For u ∈ ∂Ω1 and assumption (A2), we have

0 ≤ u(t) ≤ r1, and f(t, u) ≥ Nr1, t ∈ [0, 1].

Then for t ∈ [1
4
, 3

4
], we have that

Tu(t) =

∫ 1

0

G(t, s)f(s, u(s))ds ≥

∫ 3/4

1/4

γ(s)G(s, s)f(s, u(s))ds ≥ r1.

Thus ‖Tu‖ ≥ ‖u‖, u ∈ ∂Ω1.

Let Ω2 = {u ∈ P |‖u‖ ≤ r2}. For u ∈ ∂Ω2 and assumption (A1), we get that

0 ≤ u(t) ≤ r2, and f(t, u) ≤Mr2, t ∈ [0, 1].

Then for t ∈ [0, 1],

Tu(t) =

∫ 1

0

G(t, s)f(s, u(s))ds ≤Mr2

∫ 1

0

G(s, s)ds ≤ r2.

Thus ‖Tu‖ ≤ ‖u‖, u ∈ ∂Ω2. An application of Lemma 2.3 ensures the existence of at least one

positive solution u(t) of problem (1.1).

Theorem 3.3 Suppose f(t, u) is continuous and there exist constants 0 < a < b < c such that

(A3) f(t, u) < Ma, for (t, u) ∈ [0, 1] × [0, a];

(A4) f(t, u) ≥ Nb, for (t, u) ∈ [1/4, 3/4]× [b, c];

(A5) f(t, u) ≤Mc, for (t, u) ∈ [0, 1] × [0, c],

then problem (1.1) has at least three positive solutions u1, u2, u3 with

max
0≤t≤1

|u1| ≤ a, b < min
1/4≤t≤3/4

|u2| < max
0≤t≤1

|u2| ≤ c, a < max
0≤t≤1

|u3| ≤ c, min
1/4≤t≤3/4

|u3| < b.

Proof Define the nonnegative continuous concave functional θ on the cone P by

θ(u) = min
1/4≤t≤3/4

|u(t)|.

If u ∈ P c, then ‖u‖ ≤ c. Then by condition (A5), we have

|T (u)(t)| = |

∫ 1

0

G(t, s)f(s, u(s))ds| ≤Mc

∫ 1

0

G(s, s)ds = c,

which yields that T : P c → P c. In the same way, we get that

‖Tu‖ < a, for u ≤ a.

The fact that constant function u ∈ {u ∈ P (θ, b, c)|θ(u) > b} ensures that {u ∈ P (θ, b, c)|θ(u) >

b} 6= Ø.

And for u ∈ P (θ, b, c), we have

f(t, u(t)) ≥ Nb, t ∈ [1/4, 3/4].
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Then

θ(Tu) = min
1/4≤t≤3/4

|

∫ 1

0

G(t, s)f(s, u(s))ds| > Nb

∫ 3/4

1/4

γ(s)G(s, s)ds = b,

which yields that θ(Tu) > b, for u ∈ P (θ, b, c). Then an application of Lemma 2.4 ensures that

problem (1.1) has at least three positive solutions with

max
0≤t≤1

|u1| ≤ a, b < min
1/4≤t≤3/4

|u2| < max
0≤t≤1

|u2| ≤ c, a < max
0≤t≤1

|u3| ≤ c, min
1/4≤t≤3/4

|u3| < b.
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