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Abstract In this paper, a new method for geometrically continuous interpolation in spheres

is proposed. The method is entirely based on the spherical Bézier curves defined by the

generalized de Casteljau algorithm. Firstly we compute the tangent directions and curvature

vectors at the endpoints of a spherical Bézier curve. Then, based on the above results, we

design a piecewise spherical Bézier curve with G
1 and G

2 continuity. In order to get the

optimal piecewise curve according to two different criteria, we also give a constructive method

to determine the shape parameters of the curve. According to the method, any given spherical

points can be directly interpolated in the sphere. Experimental results also demonstrate that

the method performs well both in uniform speed and magnitude of covariant acceleration.
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1. Introduction

The research about interpolation in sphere is very basic and useful for computer graphics

(CG), computer aided geometric design (CAGD) and other application fields. For example, in

robot kinematics and computer animation, the orientation of a rigid motion can be represented

by a curve in the unit quaternion space which is identified with the 3-dimensional unit sphere

S3. Furthermore, for the application in motion design, we need the interplant to have smaller

variations in speed and magnitude of acceleration. The above demands can be easily achieved

in (m + 1)-dimensional Euclidean space Em+1. However, when the research is restricted to

m-dimensional unit sphere Sm ⊂ Em+1, it becomes much more difficult.

The interpolation curves in Sm are usually constructed in two different ways. One is to

interpolate in the ambient space Em+1 and then obtain the desired spherical curves by a certain

method. Most of the previous results are based on this idea, but it can cause large variations

in the speed and magnitude of acceleration of the interpolation curves. Parker and Denham [1]

interpolated in the ambient space Em+1 and then normalized to produce a curve in Sm. Using

the generalized stereographic projection, Dietz et al. [2, 3] constructed the spherical rational

curves for interpolation in S2. However, the method cannot be generalized to Sm with m ≥ 3.

Further work [4] produced C1 interpolation curves in S2, but fell down in a similar way. Gfrerrer
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[5] considered rational Lagrange interpolation in Sm. Wang and Qin [6] studied the existence and

computation of spherical rational quartic curves for C1 interpolation. The two methods are both

based on algebraic manipulation, instead of stereographic projection. With the idea of functional

spline [7], Hartmann [8] developed a method for G2 interpolation in S2. The construction needs

an appropriate surface/surface intersection algorithm to display the interpolation curve, which

is a complex implementation process. A significant improvement was made in [9]. But the

interpolation curve is expressed in an implicit form. An even more easily-implemented approach,

introduced by [10], involves interpolating in the ambient space E3 with Bézier spline curve of

degree 3 and then projecting the curve onto the smooth surface with ruled surface. The projected

curve is of G1 continuity. Wang et al. [11] presented a new method for up to G2 interpolation

in S2. The resulting interpolation curve is the intersection of the sphere and the composite

conical surface patch. The method provides users with some degree of freedom for interactive

control, but still involves surface intersection. Based on normal projection, Wang et al. [12, 13]

developed a new method to construct geometrically continuous curves on freeform surface in the

form of differential equations. The method overcomes the drawbacks in [8, 11], but the analytical

solutions of the equations may not exist.

The other way is to directly construct interpolation curves in Sm. Based on quaternion,

[14, 15] constructed spline curves in S3. However, the methods cannot be generalized to Sm for

m 6= 3 in an obvious way, since the constructions rely on the group structure of S3. Shoemake

[16] produced the spherical generalizations of de Casteljau’s algorithm [17, 18] and then defined

spherical Bézier curves. He also gave a method for constructing C1 spherical Bézier splines

for interpolation. Noakes [19] extended the above construction to curves of arbitrary degree in

Sm and then introduced two methods for the automatic construction of the control points for

generalized Bézier quadratic splines, resulting in spherical splines which are optimal. Working in

this amount of generality, Popiel and Noakes [20] solved the problem of interpolation in spheres

by constructing C2 spherical Bézier splines. The method performs well in terms of uniformity of

speed and magnitude of (covariant) acceleration. But the construction imposes a strict restriction

on the choice of the interpolation points. Sequin et al. [21] presented a blending scheme between

circular arcs to produce circle splines that have G2 continuity. The method is also usable in

spheres. But the circle splines have rather complicated transcendental functions.

In this paper, we consider how to construct a spherical interpolation curve with G2 continu-

ity. In addition, it is important that the resulting interpolation curve exhibits uniform variations

in speed and magnitude of acceleration. The idea of our method follows [20], but overcomes the

drawbacks of the restriction on the choice of the interpolation points.

The rest of the paper is organized as follows. In Section 2, we review the definition and

the properties of spherical Bézier curves in Sm. In Section 3 we compute the initial and final

tangent directions and curvature vectors of a spherical Bézier curve of arbitrary degree, and then

discuss how to piece the spherical Bézier curve segments together with G1 and G2 continuity.

In Section 4 we give a method for determining the shape parameters. The method, involving

constrained optimization problems, is easy to implement. Some examples are given in Section 5
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to demonstrate the advantages of our research. Finally, in Section 6, we make the conclusion.

2. Preliminary knowledge

We use the spherical Bézier curves, which have been introduced in [20], to solve the problem

of G2 interpolation in Sm. For the convenience of the readers, we now review the definition and

the main properties of the curves. Most of the notations are adopted from [20].

Denote the Euclidean inner product by 〈·, ·〉. Given two distinct points p, q ∈ Sm with

d(p, q) < π, where d(·, ·) := cos−1〈·, ·〉, there exists a unique minimizing geodesic t 7→ ς(t, p, q),

t ∈ [0, 1], joining p to q, and it is well known that

ς(t, p, q) =
sin((1 − t)θ)

sin θ
p +

sin(tθ)

sin θ
q, where θ := d(p, q). (1)

It is easy to verify that

Lemma 1 ([20]) Given two distinct points p, q ∈ S with θ = d(p, q) < π, then for all t ∈ [0, 1],

(i) 〈ς(t, p, q), ς̇(t, p, q)〉 = 0;

(ii) ‖ς̇(t, p, q)‖ = θ;

(iii) 〈ς̇(0, p, q), q〉 = θ sin θ, 〈ς̇(1, p, q), p〉 = −θ sin θ;

(iv) 〈ς̇(0, p, q), ς̇(1, p, q)〉 = θ2 cos θ.

For any integer n ≥ 1, denote a sequence of points x0, x1, . . . , xn ∈ Sm by x. Set

Cn := {x : d(xj , xj+1) < π for all j = 0, . . . , n − 1}.

Motivated by [16, 22, 23], Popiel and Noakes [20] defined generalized Bézier curves in Sm as

follows. Given x ∈ Cn, a spherical Bézier curve t 7→ βn(t; x), for t ∈ [0, 1], of degree n with

control points x0, . . . , xn takes the form

βn(t; x) := βn(t, x0, . . . , xn),

where

βk(t, xj , . . . , xj+k) :=

{
xj , if k = 0,

ς(t, βk−1(t, xj , . . . , xj+k−1), βk−1(t, xj+1, . . . , xj+k)), if k ≥ 1,

for all k = 0, . . . , n, all j = 0, . . . , n − k and all t ∈ [0, 1]. The curve t 7→ βn(t; x) is C∞. The

following properties of the spherical Bézier curves given by [20] are similar to the classical results.

Theorem 1 ([20]) A spherical Bézier curve t 7→ βn(t; x) satisfies

(i) βn(0; x) = x0;

(ii) βn(1; x) = xn;

(iii) β̇n(0; x) = nβ̇1(0, x0, x1);

(iv) β̇n(1; x) = nβ̇1(1, xn−1, xn).

For r, m ≥ 1, let z0, z1, . . . , zr be r + 1 distinct points on the unit sphere Sm. The general

problem of this paper is to construct a geometrically continuous curve in Sm to interpolate the

given points z0, z1, . . . , zr.
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3. Interpolation in spheres

Theorem 1(i) and (ii) imply that the C∞ spherical Bézier curve interpolates its first and

last control points. So the problem proposed at the end of Section 2 can be solved by using a

piecewise spherical Bézier curve. The next key point is to stitch two neighboring spherical Bézier

curves together with geometric continuity. Set

C̃n := {x ∈ Cn : θj(x) 6= 0 for j = 0, n − 1},

where θj(x) := d(xj , xj+1), for all j = 0, . . . , n− 1. In order to guarantee the curve to be regular

nearby the endpoints, from now on, we only concern on the spherical Bézier curve βn(t; x) with

control points x ∈ C̃n.

3.1. G1 Interpolation in spheres

Two parameterizations meet with G1 continuity if and only if they have a common tangent

direction [24]. We now adopt this fact to construct G1 piecewise spherical Bézier curves. The

following properties are easily verified.

Theorem 2 Let βn(t; x) be a spherical Bézier curve. Then the initial and final tangent directions

of the curve are β̇1(0, x0, x1)/θ0(x) and β̇1(1, xn−1, xn)/θn−1(x), respectively.

Let i be an integer such that 1 ≤ i ≤ r − 1. For n ≥ 2, take xi, xi+1 ∈ C̃n such that

xi+1
0 = xi

n. (2)

Let βn(t; xi) and βn(t; xi+1) be two spherical Bézier curves with control points xi and xi+1,

respectively. Then by Theorem 1(i) and (ii), we know that these two curves meet with C0 at xi
n.

Furthermore, to achieve G1 continuity, by Theorem 2, we need

β̇1(1, xi
n−1, x

i
n)

θn−1(xi)
=

β̇1(0, xi+1
0 , xi+1

1 )

θ0(xi+1)
.

Simplification and rearrangement yield

xi+1
1 = cos τ i

1x
i
n +

sin τ i
1

θn−1(xi)
β̇1(1, xi

n−1, x
i
n), where τ i

1 ∈ (0, π). (3)

In fact, the shape parameter τ i
1 gives the length of tangent vector β̇1(0, xi+1

0 , xi+1
1 ). More geo-

metrically, condition (3) means that xi+1
1 lies in the open semicircle with boundary points xi

n

and −xi
n and inner point −xi

n−1. Therefore, we have the following result.

Theorem 3 Spherical Bézier curves βn(t; xi) and βn(t; xi+1) meet with G1 continuity at βn(1; xi)

if and only if we choose the control points satisfying (2) and (3).

In addition, the given points zi−1, zi and zi+1 are interpolated by setting

xk
0 := zk−1 and xk

n := zk, where k = i, i + 1. (4)

3.2. G2 Interpolation in spheres
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It has been shown that two parameterizations meet with G2 continuity if and only if they

have common tangent direction and curvature vector [24]. We use this fact to piece two spherical

Bézier curves together with G2 continuity. Given x ∈ C̃n, for brevity, we write

λ(x) := 〈x0, β̇1(0, x1, x2)〉,

µ(x) := 〈xn, β̇1(1, xn−2, xn−1)〉,

r0(x) := β̇1(0, x1, x2) + λ(x)/(θ0(x) sin θ0(x))β̇1(1, x0, x1),

rn(x) := −β̇1(1, xn−2, xn−1) + µ(x)/(θn−1(x) sin θn−1(x))β̇1(0, xn−1, xn).

Then by Lemma 1, we have

〈rn(x), xn−1〉 = 0, 〈rn(x), xn〉 = 0, (5)

‖rn(x)‖2 = θn−2(x)2 −
µ2(x)

sin2 θn−1(x)
.

Define s : [0, 1] × C̃n → R by

s(t; x) =

∫ t

0

‖β̇n(u; x)‖du. (6)

Then s(t; x) is the arc length of βn(u; x) from 0 to t.

Lemma 2 Given x ∈ C̃n, then

(i) ṡ(0; x) = nθ0(x);

(ii) ṡ(1; x) = nθn−1(x);

(iii) s̈(0; x) = −n(n − 1)(θ0(x) + λ(x)/ sin θ0(x));

(iv) s̈(1; x) = n(n − 1)(θn−1(x) − µ(x)/ sin θn−1(x)).

Proof Part (i) and (ii) can be easily verified by Theorem 1(iii), (iv) and Lemma 1(ii). Differ-

entiating (6) twice with respect to t gives

s̈(t; x) = 〈β̇n(t; x), β̈n(t; x)〉/‖β̇n(t; x)‖.

To prove (iii), we express β̇n(0; x) and β̈n(0; x) by Theorem 1 (iii) and Theorem 2(i) of [20]

respectively, and then compute 〈β̇n(0; x), β̈n(0; x)〉. The resulting expression for s̈(0; x) can be

simplified to the stated form by Lemma 1. We omit the details. The proof of (iv) is completed

similarly. �

We now give the endpoints curvature vectors of a spherical Bézier curve.

Theorem 4 Let βn(t; x) be a spherical Bézier curve. Then the initial and final curvature vectors

of the curve are

(n − 1)/(nθ0(x) sin θ0(x))r0(x) − x0

and

(n − 1)/(nθn−1(x) sin θn−1(x))rn(x) − xn,

respectively.
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Proof The second derivative of βn(t; x) with respect to arc length is given by

γ̈n(s; x) =
β̈n(t; x) − γ̇n(s; x)s̈(t; x)

ṡ(t; x)2
,

where γn(s; x) is the arc-length parametrization of βn(t; x). Then by Theorem 2 and Lemma

2(i), (iii),

γ̈n(0; x) = (β̈n(0; x) − β̇1(0, x0, x1)/θ0(x)n(1 − n)(θ0(x) + λ(x)/ sin θ0(x)))/(nθ0(x))
2
.

Since βn(t; x) is a curve in Sm, 〈βn, βn〉 = 1. So 〈β̈n, βn〉 = −〈β̇n, β̇n〉, and then

β̈n(t; x) = D/du|u=tβ̇n(u; x) − 〈β̇n(t; x), β̇n(t; x)〉βn(t; x),

where D/du|u=tβ̇n(u; x) is the covariant acceleration of βn at u = t. So by Corollary 1(i) of [20],

Theorem 1(iii) and Lemma 1(ii), the expression of γ̈n(0; x) can be simplified to the following

form:

γ̈n(0; x) = (n − 1)/(nθ0(x) sin θ0(x))r0(x) − x0.

The second derivative of γn(s; x) at s1 := s(1; x) can be derived in similar fashion:

γ̈n(s1; x) = (n − 1)/(nθn−1(x) sin θn−1(x))rn(x) − xn.

Note that γ̈n(0; x) and γ̈n(s1; x) are curvature vectors of βn(t; x) at endpoints, which complete

the proof. �

For each p ∈ Em+1, define, for all q ∈ Em+1,

Ip(q) := 2〈q, p〉p − q. (7)

Then Ip(q) is a reflection of q about the one-dimensional subspace spanned by p. For n ≥ 3, take

xi, xi+1 ∈ C̃n. Set

x̃i
n−1 := Ixi

n
(xi+1

1 )

and

x̃i := (xi
1, . . . , x

i
n−2, x̃

i
n−1, x

i
n).

We have the following results.

Lemma 3 If (2) is satisfied then

(i) β̇1(1, xi+1
0 , xi+1

1 ) = β̇1(0, x̃i
n−1, x

i
n) − 2θ0(x

i+1)sin θ0(x
i+1)xi

n;

(ii) β̇1(0, xi+1
1 , xi+1

2 ) = 2λ(xi+1)xi
n − β̇1(0, x̃i

n−1, Ixi
n
(xi+1

2 ));

(iii) λ(xi+1) = 〈β̇1(0, x̃i
n−1, I(xi+1

2 )), xi
n〉.

Proof Part (i) follows from (1) and (2) since

xi+1
1 = 2 cos θ0(x

i+1)xi
n − x̃i

n−1.

The following calculation proves (ii):

Ixi
n
(β̇1(0, xi+1

1 , xi+1
2 )) = β̇1(0, x̃i

n−1, Ixi
n
(xi+1

2 )) = 2λ(xi+1)xi
n − β̇1(0, xi+1

1 , xi+1
2 ).

Part (iii) is proved by (ii) and (2). �
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Once xi+1
0 and xi+1

1 have been constrained subject to G1 continuity, the control point xi+1
2

can be defined by

β̇1(0, x̃i
n−1, Ixi

n
(xi+1

2 )) = −
θ0(x

i+1)sin θ0(x
i+1)

θn−1(xi)sin θn−1(xi)
rn(xi) + τ i

2β̇1(0, x̃i
n−1, x

i
n) (8)

with constrain condition

‖−
θ0(x

i+1)sin θ0(x
i+1)

θn−1(xi)sin θn−1(xi)
rn(xi) + τ i

2β̇1(0, x̃i
n−1, x

i
n)‖ < π, (9)

to guarantee G2 continuity for a given shape parameter τ i
2 ∈ R. The above inequality can be

satisfied by choosing τ i
1 and τ i

2 properly. Then by (1) and (8),

xi+1
2 =

{
Ixi

n
(x̃i

n−1), if σi = 0,

Ixi
n
(sin ‖σi‖/‖σi‖σi + cos ‖σi‖x̃i

n−1), if σi 6= 0,
(10)

where σi denotes the right-hand side of (8).

Theorem 5 Spherical Bézier curves βn(t; xi) and βn(t; xi+1) meet with G2 continuity at βn(1; xi)

if and only if we choose the control points satisfying (2), (3) and (8).

Proof Set ∆ := γ̈n(s1; x
i) − γ̈n(0; xi+1). Then by Lemma 3,

∆ =
n − 1

nθn−1(xi)sin θn−1(xi)
rn(xi) −

n − 1

nθ0(xi+1)sin θ0(xi+1)
v, (11)

where

v = −β̇1(0, x̃i
n−1, I(xi+1

2 )) +
〈β̇1(0, x̃i

n−1, I(xi+1
2 )), xi

n〉

θ0(xi+1)sin θ0(xi+1)
β̇1(0, x̃i

n−1, x
i
n).

Suppose (2), (3) and (8) hold. Take the inner product of (8) with xi
n, and then by (5),

〈β̇1(0, x̃i
n−1, I(xi+1

2 )), xi
n〉 = τ i

2θ0(x
i+1)sin θ0(x

i+1). (12)

So by (8) and (12),

v =
θ0(x

i+1)sin θ0(x
i+1)

θn−1(xi)sin θn−1(xi)
rn(xi).

Therefore ∆ = 0.

Conversely, if βn(t; xi) and βn(t; xi+1) meet with G2 continuity at βn(1; xi) (namely ∆ = 0),

then, in particular, (2) and (3) hold. So by (11)

β̇1(0, x̃i
n−1, I(xi+1

2 )) = −
θ0(x

i+1)sin θ0(x
i+1)

θn−1(xi)sin θn−1(xi)
rn(xi) +

〈β̇1(0, x̃i
n−1, I(xi+1

2 )), xi
n〉

θ0(xi+1)sin θ0(xi+1)
β̇1(0, x̃i

n−1, x
i
n).

Therefore (8) is satisfied. �

Similarly, the given points zi−1, zi and zi+1 are interpolated if (4) is satisfied.

4. Shape parameters

Let βn(t; xi) and βn(t; xi+1) be two spherical Bézier cubic (namely with n = 3) curves meet-

ing with G2 continuity at βn(1; xi). Suppose that the initial velocity and covariant acceleration

of βn(t; xi) are given, then the remaining control points xi+1
1 and xi+1

2 are uniquely determined
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by the shape parameters τ i
1 and τ i

2. We now give a method for choosing τ i
1 and τ i

2 in an optimal

way, such that the resulting piecewise curve performs well in terms of uniformity of speed and

magnitude of covariant acceleration.

Define, for all 1 ≤ i ≤ r − 1 and all τ i
1 ∈ (0, π),

E1(τ
i
1) := (‖β̇n(0; xi+1)‖ − ‖β̇n(0; xi)‖)2 + (‖β̇n(0; xi+1)‖ − ‖β̇n(1; xi)‖)2.

Then E1(τ
i
1) is the sum of squares of differences between the initial speed of the (i + 1)-th curve

segment and the initial (final) speed of the i-th curve segment. By Theorem 1(iii), (iv) and

Lemma 1(ii),

E1(τ
i
1) = 2n2(τ i

1)
2 − 2n2(θ0(x

i) + θn−1(x
i))τ i

1 + n2(θ0(x
i)2 + θn−1(x

i)2).

In the absence of any other conditions additional to τ i
1, it is easy to verify that E1 achieves its

minimum at

τ i
1 = (θ0(x

i) + θn−1(x
i))/2.

However, by Lemma 1(ii), (3), (5) and (7),

‖β̇1(0, x̃i
n−1, Ixi

n
(xi+1

2 ))‖
2

=
θ0(x

i+1)
2
sin2 θ0(x

i+1)

θn−1(xi)
2
sin2 θn−1(xi)

‖rn(xi)‖2 + (τ i
2)

2θ0(x
i+1)

2
. (13)

To have (9) satisfied, we need

τ i
1sin τ i

1

θn−1(xi)sin θn−1(xi)
‖rn(xi)‖ ≤ π − ε,

where ε > 0 is sufficiently small. Therefore, τ i
1 can be determined by the following constrained

optimization problem

minτ i

1
E1(τ

i
1)

s.t. τ i
1sin τ i

1‖rn(xi)‖/(θn−1(x
i)sin θn−1(x

i)) ≤ π − ε,

ε ≤ τ i
1 ≤ π − ε.

(14)

Furthermore, define E2 : R → [0, +∞) by

E2(τ
i
2) = ‖D/dt|t=0β̇n(t; xi+1)‖

2
.

Then E2(τ
i
2) is the square of magnitude of initial covariant acceleration of the (i + 1)-th curve

segment. By Corollary 1(i) of [20] and Lemma 1,

E2(τ
i
2) =

n2(n − 1)2

sin2 θ0(xi+1)
((‖β̇1(0, xi+1

1 , xi+1
2 )‖

2
+ sin2 θ0(x

i+1))θ0(x
i+1)

2
+

2θ0(x
i+1)sin θ0(x

i+1)λ(xi+1) +
(
1 −

θ0(x
i+1)

2

sin2 θ0(xi+1)

)
λ2(xi+1)).

Lemma 4 If (2), (3) and (8) are satisfied, then

(i) λ(xi+1) = τ i
2θ0(x

i+1)sin θ0(x
i+1);

(ii) ‖β̇1(0, xi+1
1 , xi+1

2 )‖2 = θ0(x
i+1)

2
sin2 θ0(x

i+1)

θn−1(xi)2sin2 θn−1(xi)
‖rn(xi)‖2 + (τ i

2)
2θ0(x

i+1)
2
.

Proof Part (i) follows from Lemma 3(iii) and (5) since

θn−1(x̃
i) = θ0(x

i+1).
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Lemma 3(ii) and (iii) give

‖β̇1(0, xi+1
1 , xi+1

2 )‖2 = ‖β̇1(0, x̃i
n−1, Ixi

n
(xi+1

2 ))‖
2
.

Then Part (ii) is proved by (13). �

Computing ‖E2(τ
i
2)‖

2 by Lemma 4, we have

‖E2(τ
i
2)‖

2 = n2(n − 1)2θ0(x
i+1)

2
((τ i

2)
2 + 2τ i

2 + 1 +
θ0(x

i+1)
2

θn−1(xi)
2
sin2 θn−1(xi)

‖rn(xi)‖2).

As noted in Section 3, xi+1
2 is well defined by (8) if (9) holds. Then by (13), τ i

2 can be determined

by the following constrained optimization problem

minτ i

2
E2(τ

i
2)

s.t. θ0(x
i+1)

2
sin2 θ0(x

i+1)

θn−1(xi)2sin2 θn−1(xi)
‖rn(xi)‖2 + (τ i

2)
2θ0(x

i+1)
2
≤ π2 − ε.

(15)

Constrained optimization problem (14) and (15) can be solved by the method of Lagrange mul-

tiplier.

5. Examples

First of all, we describe how to solve the interpolation problem mentioned at the end of

Section 2 by using a piecewise spherical Bézier cubic curve. The algorithm can be stated as

follows:

1) Set x1
0 := z0 and xi

3 := zi for i = 1, . . . , r;

2) Define x1
1 and x1

2 by the given initial velocity and covariant acceleration [20];

3) For i = 1, determine τ i
1 by the constrained optimization problem (14);

4) Define xi+1
1 by (3);

5) Determine τ i
2 by the constrained optimization problem (15);

6) Define xi+1
2 by (10);

7) Replace i by i + 1 and return to Step 3).

We now interpolate the given points by using a G2 piecewise spherical Bézier cubic curve

and compare it with other constructions.

Example 1 Consider the interpolation points given in [20]

z0 = (1.0000000, 0.0000000, 0.0000000),

z1 = (−0.995244, 0.0497622, 0.0837469),

z2 = (0.9909890, 0.0990989, 0.0901104),

z3 = (−0.988840, 0.1483260, 0.0139545),

z4 = (0.9778890, 0.1955920,−0.0740123).

The control points and shape parameters defined by the algorithm above are shown in Table 1.

The resulting G2 piecewise spherical Bézier cubic curve constructed by the presented method

is shown in Figure 1. Figure 2 shows the C2 piecewise spherical Bézier cubic curve which is

obtained by the method in [20]. Figure 3 shows the G2 piecewise spherical curve constructed by
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the method in [13]. The interpolation points zi are labeled by i in the figures. The three curves

are distinct in appearance. Obviously, our curve performs better than the other two in uniform

speed and magnitude of covariant acceleration.

We now consider another example involving the data in which the construction in [20] is

unavailable, but our method does work.

Example 2 Consider the interpolation points z0, . . . , z4 given in Example 1, but suppose that

the other two control points of the first curve segment β3(t; x
1) are

x1
1 = (0.9567641, 0.1485841, 0.2500584),

x1
2 = (0.7726255, 0.3243098, 0.5457945).

Noting that the inequality (16) of [20] does not hold for the above control points, and the C2

piecewise curve interpolating the desired data cannot be constructed by [20]. Using our presented

algorithm, we can still construct a G2 piecewise spherical Bézier cubic curve to interpolate the

given points. Table 2 shows the control points and the shape parameters. Figure 4 shows the

resulting curve constructed by the presented method. Figure 5 shows the G2 piecewise spherical

curve constructed by the method in [13]. The interpolation points zi are labeled by i in the

figures. Obviously, our curve still performs better than the one in [13].

i 1 2 3 4

xi

0
(1,0,0) (-0.9952,0.0498,0.0837) (0.9910,0.0991,0.0901) (-0.9888,0.1483,0.0140)

xi

1
(0.4769,0.0686,0.8763) (-0.4538,-0.0491,-0.8898) (0.3816,0.1845,0.9057) (-0.6115,-0.0695,-0.7882)

xi

2
(-0.1823,0.0837,0.9797) (0.6559,-0.0707,-0.7515) (-0.6407,0.2417,0.7287) (0.2873,-0.1564,-0.9450)

xi

3
(-0.9952,0.0498,0.0837) (0.9910,0.0991,0.0901) (-0.9888,0.1483,0.0140) (0.9779,0.1956,-0.0740)

τ i

1
1.1867 1.0723 0.9480

τ i

2
-1.0000 -1.0000 -1.0000

Table 1 Control points and shape parameters of spherical Bézier curve segments

i 1 2 3 4

xi

0
(1.0000,0,0) (-0.9952,0.0498,0.0837) (0.9910,0.0991,0.0901) (-0.9888,0.1483,0.0140)

xi

1
(0.9568,0.1486,0.2501) (-0.3360,-0.4811,-0.8097) (0.4067,0.5162,0.7538) (-0.6622,-0.3807,-0.6454)

xi

2
(0.7726,0.3243,0.5458) (0.8321,-0.2833,-0.4768) (-0.5709,0.5358,0.6221) (0.2106,-0.5812,-0.7861)

xi

3
(-0.9952,0.0498,0.0837) (0.9910,0.0991,0.0901) (-0.9888,0.1483,0.0140) (0.9779,0.1956,-0.0740)

τ i

1
1.3257 1.0215 0.9405

τ i

2
-1.0000 -1.0000 -1.0000

Table 2 Control points and shape parameters of spherical Bézier curve segments
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Figure 1 Our result: G
2 piecewise spherical Bézier curve

Figure 2 C
2 piecewise spherical Bézier curve constructed by the method in [20]

Figure 3 G
2 piecewise spherical curve constructed by the method in [13]
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Figure 4 Our result: G
2 piecewise spherical Bézier curve

Figure 5 G
2 piecewise spherical curve constructed by the method in [13]

6. Conclusion

As we know, the use of parametric continuity disallows many parameterizations which may

generate geometrically smooth curves. The nth-geometric continuity or Gn, a relaxed form of

Cn continuity, is an intrinsic property of the curve. It is independent of parameterizations and

thus has widespread application in CAGD. Therefore, it is necessary and exigent to construct

spherical interpolation curves which are geometrically continuous. In this paper, geometrically

continuous interpolation in spheres is developed. The basic idea is to construct spherical Bézier

curves to interpolate every two adjacent points and then piece the curves together with G1 and

G2 continuity. The construction introduces two degrees of freedom, called shape parameters, for

every curve segment. We also give two criteria for choosing the shape parameters. The criteria

are natural performance measurements and the involving constrained optimization problems can

be solved by the method of Lagrange multiplier. Further research should be focused on higher

order geometrically continuous interpolation in spheres.



Geometrically continuous interpolation in spheres 391

References

[1] R. PARKER, C. DENHAM. Interpolation of unit vectors. Geophys. J. Roy. Astronom. Soc., 1979, 58(3):

685–687.
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