Up-Embeddability of Graphs with New Degree-Sum of Independent Vertices

Shengxiang LÜ ${ }^{1, *}$, Yanpei LIU ${ }^{2}$
1. Department of Mathematics, Hunan University of Science and Technology, Hunan 411201, P. R. China;
2. Department of Mathematics, Beijing Jiaotong University, Beijing 100044, P. R. China

Abstract Let G be a $k(k \leq 3)$-edge connected simple graph with minimal degree ≥ 3, girth $g, r=\left\lfloor\frac{g-1}{2}\right\rfloor$. For any independent set $\left\{a_{1}, a_{2}, \ldots, a_{6 /(4-k)}\right\}$ of G, if

$$
\sum_{i=1}^{6 /(4-k)} d_{G}\left(a_{i}\right)>\frac{(4-k) \nu(G)-6\left(g-2 r-\left\lfloor\frac{k}{3}\right\rfloor\right)}{(4-k)\left(2^{r}-1\right)(g-2 r)}+\frac{6}{(4-k)}(g-2 r-1)
$$

then G is up-embeddable.
Keywords up-embeddability; maximum genus; independent set.
MR(2010) Subject Classification 05C10

1. Introduction

Graphs considered here are all connected, finite and undirected. Terminologies and notations not defined in this paper will generally conform to [1].

Let $G=(V(G), E(G))$ be a graph, where $V(G), E(G)$ are the set of vertices and edges. The cardinality of the vertex set of G is denoted by $\nu(G)$. A set $S \subseteq V(G)$ is called an independent set of G if all vertices in S are not adjacent in G. The degree $d_{G}(v)$ of a vertex $v \in V(G)$ is the number of edges of G incident with v.

The distance $d_{G}(u, v)$ between two vertices u and v is the length of the shortest (u, v)-path of $G . d_{G}(x y, v)=\min \left\{d_{G}(x, v), d_{G}(y, v)\right\}$ is the distance between the edge $x y$ and vertex v. Clearly,

$$
d_{G}(u v, u)=d_{G}(u v, v)=d_{G}(u, u)=0 .
$$

For a vertex or an edge x of G, we call $N_{G}^{(i)}(x)=\left\{v \mid d_{G}(x, v)=i, v \in V(G)\right\}$ the i-neighbor set of x in G. The girth of G is the length of a shortest cycle in G.

The maximum genus, $\gamma_{M}(G)$ of a graph G is the largest integer n such that there exists a cellular embedding of G on the orientable surface with genus n. By Euler Formula, we know that

$$
\gamma_{M}(G) \leq\left\lfloor\frac{\beta(G)}{2}\right\rfloor,
$$

Received December 11, 2010; Accepted September 1, 2011
Supported by the Scientific Research Fund of Hunan Provincial Education Department (Grant No. 11C0541).

* Corresponding author

E-mail address: lsxx23@yahoo.com.cn (Shengxiang LÜ)
where $\beta(G)=|E(G)|-|V(G)|+1$ is the Betti number of G. If $\gamma_{M}(G)=\left\lfloor\frac{\beta(G)}{2}\right\rfloor$, then G is called up-embeddable.

For a spanning tree T of $G, \xi(G, T)$ denotes the number of components of $G \backslash E(T)$ with odd number of edges. $\xi(G)=\min _{T} \xi(G, T)$ is the Betti deficiency number of G, where the minimum is taken over all spanning trees of G.

Theorem 1.1 ([6, 10]) Let G be a graph. Then
(i) $\gamma_{M}(G)=\frac{\beta(G)-\xi(G)}{2}$;
(ii) G is up-embeddable if and only if $\xi(G) \leq 1$.

For an edge set $A \subseteq E(G), c(G \backslash A)$ denotes the number of components of $G \backslash A, b(G \backslash A)$ denotes the number of components of $G \backslash A$ with odd Betti number. In 1981, Nebesky [8] obtained the following combinatorial expression of $\xi(G)$.

Theorem 1.2 ([8]) Let G be a graph. Then

$$
\xi(G)=\max _{A \subseteq E(G)}\{c(G \backslash A)+b(G \backslash A)-|A|-1\}
$$

Let $A \subseteq E(G), F_{1}, F_{2}, \ldots, F_{l}$ be l different components of $G \backslash A . E\left(F_{1}, F_{2}, \ldots, F_{l}\right)$ denotes the set of edges whose end vertices are in two different components F_{i} and $F_{j}(1 \leq i<j \leq l)$. For an induced subgraph F of $G, E(F, G)$ denotes the set of edges with one end vertex in F and another not in F. If vertex $v \in V(F)$ is the end vertex of $i(i \geq 1)$ edges of $E(F, G)$, then v is called an i-touching vertex or touching vertex of F.

Theorem 1.3 ([3]) Let G be a graph. If G is not up-embeddable, i.e., $\xi(G) \geq 2$, then there exists an edge set $A \subseteq E(G)$ satisfying the following properties:
(i) $c(G \backslash A)=b(G \backslash A) \geq 2$;
(ii) For any component F of $G \backslash A, F$ is an induced subgraph of G;
(iii) For any l distinct components $F_{i_{1}}, \ldots, F_{i_{l}}$ of $G \backslash A,\left|E\left(F_{i_{1}}, \ldots, F_{i_{l}}\right)\right| \leq 2 l-3$;
(iv) $\xi(G)=2 c(G \backslash A)-|A|-1$.

The study on maximum genus of graphs was inaugurated by Nordhaus, Stewart and White [9]. From then on, various classes of graphs have been proved up-embeddable. A formerly known result [10] stated that every 4-edge connected graph is up-embeddable. But, there exists $k(k \leq 3)$-edge connected graphs [5] which are not up-embeddable. Based on this, what kind of restrictions, under which a graph is up-embeddable, are studied extensively. In [4], Huang and Liu first began to consider the up-embeddability of simple graphs via degree-sum of nonadjacent vertices. Later, Chen and Liu [2] extended Huang and Liu's results. In this paper, we obtain the following result which improves the results in paper $[2,4]$.

Theorem 1.4 Let G be a $k(k \leq 3)$-edge connected simple graph with minimal degree ≥ 3, girth $g, r=\left\lfloor\frac{g-1}{2}\right\rfloor$. For any independent set $\left\{a_{1}, a_{2}, \ldots, a_{6 /(4-k)}\right\}$ of G, if

$$
\sum_{i=1}^{6 /(4-k)} d_{G}\left(a_{i}\right)>\frac{(4-k) \nu(G)-6\left(g-2 r-\left\lfloor\frac{k}{3}\right\rfloor\right)}{(4-k)\left(2^{r}-1\right)(g-2 r)}+\frac{6}{(4-k)}(g-2 r-1)
$$

then G is up-embeddable.

To see the lower bound presented in Theorem 1.4 is best possible, let us consider the following infinite family of graphs. Let H be the complete graphs $K_{4 t}$ or complete bipartite graphs $K_{2 t, 2 t}$, $t \geq 2$. The graph G is obtained by replacing each vertices of $K_{3,3}$ with H, then connecting the edges of $K_{3,3}$ to different vertices of H such that G is 3-edge connected and the girth of G is equal to the girth of H. It is not difficult to find an independent set $\left\{a_{1}, a_{2}, \ldots, a_{6}\right\}$ of G such that $\sum_{i=1}^{6} d_{G}\left(a_{i}\right)=\frac{\nu(G)-6(g-2 r-1)}{\left(2^{r}-1\right)(g-2 r)}+6(g-2 r-1)$. On the other hand, it is easy to check that $\xi(G)=2$.

2. Characterizations of given subgraphs

In the following, we will obtain some properties on the given induced subgraphs.
Lemma 2.1 Let G be a simple graph with minimal degree ≥ 3, girth $g, r=\left\lfloor\frac{g-1}{2}\right\rfloor$. H is a connected induced subgraph of $G, \beta(H) \geq 1$. If $\{u, v\} \subseteq V(H)$ contains all the touching vertices of H, then,
(i) When $g=2 r+2$, there exists an edge $a b \in E(H)$ such that $\min \left\{d_{H}(a b, u), d_{H}(a b, v)\right\} \geq$ $r ;$
(ii) When $g=2 r+1$, there exists a vertex $a \in V(H)$ such that $\min \left\{d_{H}(a, u), d_{H}(a, v)\right\} \geq r$.

Proof See the proof of Proposition 1 in the paper [7].
Lemma 2.2 Let G be a simple graph with minimal degree ≥ 3, girth $g, r=\left\lfloor\frac{g-1}{2}\right\rfloor$. H is a connected induced subgraph of $G, \beta(H) \geq 1$. If H has exactly three 1-touching vertices u, v, w, then,
(i) When $g=2 r+2$, there exists an edge $a b \in E(H)$ such that

$$
\min \left\{d_{H}(a b, u), d_{H}(a b, v)\right\} \geq r-1, \min \left\{\max \left\{d_{H}(a b, u), d_{H}(a b, v)\right\}, d_{H}(a b, w)\right\} \geq r
$$

(ii) When $g=2 r+1$, there exists a vertex $a \in V(H)$ such that

$$
\min \left\{d_{H}(a, u), d_{H}(a, v)\right\} \geq r-1, \min \left\{\max \left\{d_{H}(a, u), d_{H}(a, v)\right\}, d_{H}(a, w)\right\} \geq r
$$

Proof See the proof of Proposition 2 in the paper [7].
Lemma 2.3 Let G be a simple graph with minimal degree ≥ 3, girth g, $r=\left\lfloor\frac{g-1}{2}\right\rfloor$. H is a connected induced subgraph of $G, \beta(H) \geq 1$. If $|E(H, G)| \leq 2$, then there exists a vertex $a \in V(H)$ such that

$$
d_{G}(a)=d_{H}(a) \leq \frac{\nu(H)-g+2 r}{\left(2^{r}-1\right)(g-2 r)}+(g-2 r-1)
$$

Proof Clearly, H has at most two touching vertices, assume that $\{u, v\} \subseteq V(H)$ contains all the touching vertices of H.

Case $1 g=2 r+1$. By Lemma 2.1, there exists a vertex $a \in V(H)$ such that

$$
\min \left\{d_{H}(a, u), d_{H}(a, v)\right\} \geq r
$$

Clearly, a is not the touching vertex of H, so $d_{G}(a)=d_{H}(a)$.

As the girth of G is g, for any $x, y \in N_{H}^{(i)}(a), x \neq y, 0 \leq i \leq r-1$, we have

$$
x y \notin E(H),\left(N_{H}^{(i+1)}(a) \cap N_{H}^{(1)}(x)\right) \cap\left(N_{H}^{(i+1)}(a) \cap N_{H}^{(1)}(y)\right)=\emptyset .
$$

Or else, the girth of H will be less than g. Hence,

$$
\left|N_{H}^{(0)}(a)\right|=1,\left|N_{H}^{(i)}(a)\right| \geq d_{H}(a) \cdot 2^{i-1}, \quad 1 \leq i \leq r .
$$

So, we get

$$
\nu(H) \geq\left|\bigcup_{i=0}^{r} N_{H}^{(i)}(a)\right|=\sum_{i=0}^{r}\left|N_{H}^{(i)}(a)\right| \geq 1+\sum_{i=1}^{r} d_{H}(a) \cdot 2^{i-1}=1+d_{H}(a)\left(2^{r}-1\right) .
$$

Combining $g=2 r+1$, by simple calculation, we have

$$
d_{G}(a)=d_{H}(a) \leq \frac{\nu(H)-1}{2^{r}-1}=\frac{\nu(H)-g+2 r}{\left(2^{r}-1\right)(g-2 r)}+(g-2 r-1) .
$$

Case $2 g=2 r+2$. By Lemma 2.1, there exists an edge $a b \in E(H)$ such that

$$
\min \left\{d_{H}(a b, u), d_{H}(a b, v)\right\} \geq r
$$

As the girth of G is g, for any $x, y \in N_{H}^{(i)}(a b), x \neq y, 0 \leq i \leq r-1$, we have

$$
x y \notin E(H), \quad\left(N_{H}^{(i+1)}(a b) \cap N_{H}^{(1)}(x)\right) \cap\left(N_{H}^{(i+1)}(a b) \cap N_{H}^{(1)}(y)\right)=\emptyset .
$$

Or else, the girth of H will be less than g. Hence,

$$
\left|N_{H}^{(0)}(a b)\right|=2,\left|N_{H}^{(i)}(a b)\right| \geq\left(d_{H}(a)+d_{H}(b)-2\right) \cdot 2^{i-1}, \quad 1 \leq i \leq r .
$$

Without loss of generality, let

$$
d_{H}(a)=\min \left\{d_{H}(a), d_{H}(b)\right\} .
$$

So, we obtain

$$
\nu(H) \geq \sum_{i=0}^{r}\left|N_{H}^{(i)}(a b)\right| \geq 2+\left(d_{H}(a)+d_{H}(b)-2\right)\left(2^{r}-1\right) \geq 2+\left(2 d_{H}(a)-2\right)\left(2^{r}-1\right) .
$$

As a is not the touching vertex of H, combining $g=2 r+2$, we have

$$
d_{G}(a)=d_{H}(a) \leq \frac{\nu(H)-2}{2\left(2^{r}-1\right)}+1=\frac{\nu(H)-g+2 r}{\left(2^{r}-1\right)(g-2 r)}+(g-2 r-1) .
$$

Lemma 2.4 Let G be a simple graph with minimal degree ≥ 3, girth $g \geq 4, r=\left\lfloor\frac{g-1}{2}\right\rfloor . H$ is a connected induced subgraph of $G, \beta(H) \geq 1$. If $|E(H, G)|=3$, then there exists a vertex $a \in V(H)$ such that

$$
d_{G}(a)=d_{H}(a) \leq \frac{\nu(H)-g+2 r+1}{\left(2^{r}-1\right)(g-2 r)}+(g-2 r-1) .
$$

Proof First, when H has at most two touching vertices, from the proof of Lemma 2.3, this result holds.

Second, assume that H has exactly three 1 -touching vertices u, v, w.
Case $1 g=2 r+1 \geq 5$. By Lemma 2.2, there exists a vertex $a \in V(H)$ such that

$$
\min \left\{d_{H}(a, u), d_{H}(a, v)\right\} \geq r-1, \min \left\{\max \left\{d_{H}(a, u), d_{H}(a, v)\right\}, d_{H}(a, w)\right\} \geq r .
$$

Similarly, we have

$$
\left|N_{H}^{(r)}(a)\right| \geq d_{H}(a) \cdot 2^{r-1}-1,\left|N_{H}^{(i)}(a)\right| \geq d_{H}(a) \cdot 2^{i-1}, \quad 1 \leq i \leq r-1
$$

Hence,

$$
\nu(H) \geq \sum_{i=0}^{r}\left|N_{H}^{(i)}(a)\right| \geq 1+\sum_{i=1}^{r} d_{H}(a) \cdot 2^{i-1}-1=d_{H}(a)\left(2^{r}-1\right)
$$

As a is not the touching vertex of H, combining $g=2 r+1$, we obtain

$$
d_{G}(a)=d_{H}(a) \leq \frac{\nu(H)}{2^{r}-1}=\frac{\nu(H)-g+2 r+1}{\left(2^{r}-1\right)(g-2 r)}+(g-2 r-1)
$$

Case $2 g=2 r+2$. By Lemma 2.2, there exists an edge $a b \in E(H)$ such that

$$
\min \left\{d_{H}(a b, u), d_{H}(a b, v)\right\} \geq r-1, \min \left\{\max \left\{d_{H}(a b, u), d_{H}(a b, v)\right\}, d_{H}(a b, w)\right\} \geq r
$$

Subcase $2.1 g=2 r+2 \geq 6$. Clearly, a, b are not the touching vertex of H. Without loss of generality, let

$$
d_{G}(a) \leq d_{G}(b)
$$

Similarly, we have

$$
\begin{gathered}
\left|N_{H}^{(r)}(a b)\right| \geq\left(d_{H}(a)+d_{H}(b)-2\right) \cdot 2^{r-1}-1 \geq\left(2 d_{G}(a)-2\right) \cdot 2^{r-1}-1, \\
\left|N_{H}^{(i)}(a b)\right| \geq\left(d_{H}(a)+d_{H}(b)-2\right) \cdot 2^{i-1} \geq\left(2 d_{G}(a)-2\right) \cdot 2^{i-1}, \quad 1 \leq i \leq r-1 .
\end{gathered}
$$

Hence,

$$
\nu(H) \geq \sum_{i=0}^{r}\left|N_{H}^{(i)}(a b)\right| \geq 2+\sum_{i=1}^{r}\left(2 d_{G}(a)-2\right) \cdot 2^{i-1}-1=\left(2 d_{G}(a)-2\right)\left(2^{r}-1\right)+1
$$

As $g=2 r+2$, then

$$
d_{G}(a)=d_{H}(a) \leq \frac{\nu(H)-1}{2\left(2^{r}-1\right)}+1=\frac{\nu(H)-g+2 r+1}{\left(2^{r}-1\right)(g-2 r)}+(g-2 r-1)
$$

Subcase $2.2 g=2 r+2=4$. Clearly, we can assume that a is not the touching vertex of H.
First, if $d_{G}(a)>d_{G}(b)$, then $d_{G}(a) \geq 4$. Hence, there exists a vertex $a^{\prime} \in N_{H}^{(1)}(a) \backslash\{u, v, w\}$ such that

$$
\min \left\{d_{H}\left(a a^{\prime}, u\right), d_{H}\left(a a^{\prime}, v\right), d_{H}\left(a a^{\prime}, w\right)\right\} \geq 1
$$

Now, without loss of generality, assume that $d_{G}\left(a^{\prime}\right)=\min \left\{d_{G}\left(a^{\prime}\right), d_{G}(a)\right\}$. So, we have

$$
\left|N_{H}^{(1)}\left(a a^{\prime}\right)\right|=d_{H}\left(a^{\prime}\right)+d_{H}(a)-2=d_{G}\left(a^{\prime}\right)+d_{G}(a)-2 \geq 2 d_{G}\left(a^{\prime}\right)-2
$$

Hence,

$$
\nu(H) \geq\left|N_{H}^{(0)}\left(a a^{\prime}\right)\right|+\left|N_{H}^{(1)}\left(a a^{\prime}\right)\right| \geq 2 d_{G}\left(a^{\prime}\right)
$$

As $g=2 r+2=4$, we have

$$
d_{G}\left(a^{\prime}\right)=d_{H}\left(a^{\prime}\right) \leq \frac{\nu(H)}{2} \leq \frac{\nu(H)-g+2 r+1}{\left(2^{r}-1\right)(g-2 r)}+(g-2 r-1)
$$

Secondly, if $d_{G}(a) \leq d_{G}(b)$, as u, v, w are 1-touching vertices of H, we have

$$
\left|N_{H}^{(1)}(a b)\right|=d_{H}(a)+d_{H}(b)-2 \geq d_{G}(a)+d_{G}(b)-3 \geq 2 d_{G}(a)-3
$$

Hence, we have

$$
\nu(H) \geq\left|N_{H}^{(0)}(a b)\right|+\left|N_{H}^{(1)}(a b)\right| \geq 2 d_{G}(a)-1
$$

As $g=2 r+2=4$, it follows

$$
d_{G}(a)=d_{H}(a) \leq \frac{\nu(H)+1}{2}=\frac{\nu(H)-g+2 r+1}{\left(2^{r}-1\right)(g-2 r)}+(g-2 r-1)
$$

3. The proof of Theorem 1.4

Proof of Theorem 1.4 Suppose that graph G is not up-embeddable. There exists an edge set $A \subseteq E(G)$ satisfying the properties (1)-(4) of Theorem 1.3. Define $C(G \backslash A)$ to be the set of components of $G \backslash A$, and

$$
\begin{aligned}
B_{4} & =\{F| | E(F, G) \mid \geq 4, F \in C(G \backslash A)\}, \\
B_{i} & =\{F| | E(F, G) \mid=i, F \in C(G \backslash A)\}, \quad i=1,2,3
\end{aligned}
$$

Obviously,

$$
\begin{equation*}
c(G \backslash A)=\left|B_{1}\right|+\left|B_{2}\right|+\left|B_{3}\right|+\left|B_{4}\right| . \tag{1}
\end{equation*}
$$

For each edge $e \in A$, the end vertices of e must belong to two distinct components of $G \backslash A$, because any component $F \in C(G \backslash A)$ is an induced subgraph of G, which means that there exist just two components $F_{1}, F_{2} \in C(G \backslash A)$ such that $e \in E\left(F_{1}, G\right)$ and $e \in E\left(F_{2}, G\right)$. On the other hand, each edge $e \in E(F, G)$ must belong to A. Thus

$$
A=\cup_{F \in C(G \backslash A)}|E(F, G)|
$$

and

$$
\begin{equation*}
|A|=\frac{1}{2} \sum_{F \in C(G \backslash A)}|E(F, G)| \geq 2\left|B_{4}\right|+\frac{3}{2}\left|B_{3}\right|+\left|B_{2}\right|+\frac{1}{2}\left|B_{1}\right| \tag{2}
\end{equation*}
$$

Combining Theorem 1.3, Equations (1) and (2), we have

$$
\begin{aligned}
\xi(G) & =2 c(G \backslash A)-|A|-1 \\
& \leq 2\left(\left|B_{4}\right|+\left|B_{3}\right|+\left|B_{2}\right|+\left|B_{1}\right|\right)-\left(2\left|B_{4}\right|+\frac{3}{2}\left|B_{3}\right|+\left|B_{2}\right|+\frac{1}{2}\left|B_{1}\right|\right)-1 \\
& =\frac{1}{2}\left|B_{3}\right|+\left|B_{2}\right|+\frac{3}{2}\left|B_{1}\right|-1
\end{aligned}
$$

As G is not up-embeddable, i.e., $\xi(G) \geq 2$, we have

$$
\begin{equation*}
\frac{1}{2}\left|B_{3}\right|+\left|B_{2}\right|+\frac{3}{2}\left|B_{1}\right| \geq 3 \tag{3}
\end{equation*}
$$

Since $\left|B_{i}\right|=0$ for $i<k$, simple calculation gives

$$
\begin{equation*}
\left|B_{3}\right|+\left|B_{2}\right|+\left|B_{1}\right| \geq \frac{6}{4-k} \tag{4}
\end{equation*}
$$

Without loss of generality, let

$$
\left|E\left(F_{i}, G\right)\right| \leq 3, \quad F_{i} \in C(G \backslash A), \quad 1 \leq i \leq 6 /(4-k)
$$

When $g=3$ and $k=3,6 /(4-k)=6$. First, assume that each vertex in $F_{i}(1 \leq i \leq 6)$ is a touching vertex of F_{i}. Since $\left|E\left(F_{i}, G\right)\right|=3, V\left(F_{i}\right)$ contains exactly three 1-touching vertices, denoted by $\left\{x_{i}, y_{i}, z_{i}\right\}$. Furthermore, suppose $\left\{x_{6} z_{5}, y_{6} z_{4}, z_{6} x_{3}\right\}=E\left(F_{6}, G\right)$. As the vertex z_{3} connects at most one vertex in $V\left(F_{1}\right) \cup V\left(F_{2}\right)$, there are at least 2 vertices in F_{1} and F_{2}, denoted by $\left\{z_{1}, y_{1}\right\}$ and $\left\{z_{2}, y_{2}\right\}$, respectively, which are not adjacent with z_{3}. But, as $\left|E\left(F_{1}, F_{2}\right)\right| \leq 1$, we can assume that z_{1} and z_{2} are not adjacent. Now, the vertices set $\left\{z_{1}, z_{2}, \ldots, z_{6}\right\}$ is clearly an independent set of G. Secondly, if there exists one vertex u_{i} in some $F_{i}(1 \leq i \leq 6)$ which is not the touching vertex of F_{i}, then by replacing z_{i} with u_{i}, we also obtain an independent set of G with 6 vertices. For $k=1,2$, by similar discussions, there exist vertices $a_{i} \in V\left(F_{i}\right)(1 \leq i \leq 6 /(4-k))$, where a_{i} is at most a 1-touching vertex of F_{i}, such that $\left\{a_{1}, a_{2}, \ldots, a_{6 /(4-k)}\right\}$ is an independent set of G.

Hence, for $k \leq 3$ and $g=2 r+1=3$, there exists vertex $a_{i} \in F_{i}(1 \leq i \leq 6 /(4-k))$ such that $\left\{a_{1}, a_{2}, \ldots, a_{6 /(4-k)}\right\}$ is an independent set of G, and

$$
\begin{equation*}
d_{G}\left(a_{i}\right) \leq d_{F_{i}}\left(a_{i}\right)+1 \leq \nu\left(F_{i}\right)=\frac{\nu\left(F_{i}\right)-g+2 r+1}{\left(2^{r}-1\right)(g-2 r)}+(g-2 r-1), \quad 1 \leq i \leq 6 /(4-k) \tag{5}
\end{equation*}
$$

Case $1 c(G \backslash A)=6 /(4-k)$. First, when $k \leq 2,6 /(4-k)=k+1$. By Theorem 1.3, it is easy to know that

$$
\left|E\left(F_{i}, G\right)\right| \leq 2, \quad 1 \leq i \leq k+1
$$

So, by Lemma 2.3, there exist vertices $a_{i} \in F_{i}(1 \leq i \leq k+1)$ such that $\left\{a_{1}, \ldots, a_{k+1}\right\}$ is an independent set of G, and

$$
d_{G}\left(a_{i}\right) \leq \frac{\nu\left(F_{i}\right)-(g-2 r)}{\left(2^{r}-1\right)(g-2 r)}+(g-2 r-1), \quad 1 \leq i \leq k+1
$$

Hence, we have

$$
\begin{aligned}
\sum_{i=1}^{k+1} d_{G}\left(a_{i}\right) & \leq \frac{\sum_{i=1}^{k+1} \nu\left(F_{i}\right)-(k+1)(g-2 r)}{\left(2^{r}-1\right)(g-2 r)}+(k+1)(g-2 r-1) \\
& =\frac{\nu(G)-(k+1)(g-2 r)}{\left(2^{r}-1\right)(g-2 r)}+(k+1)(g-2 r-1)
\end{aligned}
$$

But, this contradicts the condition.
Secondly, when $k=3,6 /(4-k)=6$. Combining equation (5) and Lemma 2.4, there exist vertices $a_{i} \in F_{i}(1 \leq i \leq 6)$ such that $\left\{a_{1}, a_{2}, \ldots, a_{6}\right\}$ is an independent set of G, and

$$
d_{G}\left(a_{i}\right) \leq \frac{\nu\left(F_{i}\right)-(g-2 r-1)}{\left(2^{r}-1\right)(g-2 r)}+(g-2 r-1), \quad 1 \leq i \leq 6 .
$$

Hence, we have

$$
\begin{aligned}
\sum_{i=1}^{6} d_{G}\left(a_{i}\right) & \leq \frac{\sum_{i=1}^{6} \nu\left(F_{i}\right)-6(g-2 r-1)}{\left(2^{r}-1\right)(g-2 r)}+6(g-2 r-1) \\
& =\frac{\nu(G)-6(g-2 r-1)}{\left(2^{r}-1\right)(g-2 r)}+6(g-2 r-1)
\end{aligned}
$$

But, this also contradicts the condition.

Case $2 c(G \backslash A)>6 /(4-k)$. Combining equation (5) and Lemma 2.4, there exist vertices $a_{i} \in F_{i}(1 \leq i \leq 6 /(4-k))$ such that $\left\{a_{1}, a_{2}, \ldots, a_{6 /(4-k)}\right\}$ is an independent set of G, and

$$
d_{G}\left(a_{i}\right) \leq \frac{\nu\left(F_{i}\right)-(g-2 r-1)}{\left(2^{r}-1\right)(g-2 r)}+(g-2 r-1), \quad 1 \leq i \leq 6 /(4-k) .
$$

As $c(G \backslash A)>6 /(4-k)$ and the order of each component of $G \backslash A$ is at least 3, we have

$$
\sum_{i=1}^{6 /(4-k)} \nu\left(F_{i}\right) \leq \nu(G)-3
$$

Thus,

$$
\begin{aligned}
\sum_{i=1}^{6 /(4-k)} d_{G}\left(a_{i}\right) & \leq \sum_{i=1}^{6 /(4-k)} \frac{\nu\left(F_{i}\right)-(g-2 r-1)}{\left(2^{r}-1\right)(g-2 r)}+\frac{6(g-2 r-1)}{4-k} \\
& =\frac{\sum_{i=1}^{6 /(4-k)} \nu\left(F_{i}\right)-\frac{6}{4-k}(g-2 r-1)}{\left(2^{r}-1\right)(g-2 r)}+\frac{6(g-2 r-1)}{4-k} \\
& \leq \frac{(\nu(G)-3)-\frac{6}{4-k}(g-2 r-1)}{\left(2^{r}-1\right)(g-2 r)}+\frac{6(g-2 r-1)}{4-k} .
\end{aligned}
$$

But, this also contradicts the condition. Hence, G is up-embeddable. This completes the proof.
Corollary 3.1 Let G be a $k(k \leq 3)$-edge connected simple graph with girth $g, r=\left\lfloor\frac{q-1}{2}\right\rfloor$. If minimal degree $\delta(G) \geq 3$ and

$$
\delta(G)>\frac{(4-k) \nu(G)-6\left(g-2 r-\left\lfloor\frac{k}{3}\right\rfloor\right)}{6\left(2^{r}-1\right)(g-2 r)}+(g-2 r-1),
$$

then G is up-embeddable.
Acknowledgments The authors thank the referees for the constructive suggestions which make the paper more readable.

References

[1] J. A. BONDY, U. S. R. MURTY. Graph Theory with Applications. North Holland Press, New York, 1982.
[2] Yichao CHEN, Yanpei LIU. Up-embeddability of a graph by order and girth. Graphs Combin., 2007, 23(5): 521-527.
[3] Yuanqiu HUANG, Yanpei LIU. An improvement of a theorem on the maximum genus for graphs. Math. Appl. (Wuhan), 1998, 11(2): 109-112. (in Chinese)
[4] Yuanqiu HUANG, Yanpei LIU. The degree-sum of nonadjacent vertices and up-embeddability of graphs. Chinese Ann. Math. Ser. A, 1998, 19(5): 651-656. (in Chinese)
[5] M. JUNGERMAN. A characterization of upper-embeddable graphs. Trans. Amer. Math. Soc., 1978, 241: 401-406.
[6] Yanpei LIU. Embeddability in Graphs. Kluwer Press, Boston, 1995.
[7] Shengxiang LÜ, Yanpei LIU. Up-embeddability of graphs with small order. Appl. Math. Lett., 2010, 23(3): 267-271.
[8] L. NEBESKY. A new characterization of the maximum genus of a graph. Czechoslovak Math. J., 1981, 31(106): 604-613.
[9] E. A. NORDHAUS, B. M. STEWART, A. T. WHITE. On the maximum genus of a graph. J. Combinatorial Theory Ser. B, 1971, 11: 258-267.
[10] N. H. XUONG. How to determine the maximum genus of a graph. J. Combin. Theory Ser. B, 1979, 26(2): 217-225.

