Up-Embeddability of Graphs with New Degree-Sum of Independent Vertices

Shengxiang LÜ^{1,*}, Yanpei LIU²

1. Department of Mathematics, Hunan University of Science and Technology, Hunan 411201, P. R. China;

2. Department of Mathematics, Beijing Jiaotong University, Beijing 100044, P. R. China

Abstract Let G be a $k(k \leq 3)$ -edge connected simple graph with minimal degree ≥ 3 , girth $g, r = \lfloor \frac{g-1}{2} \rfloor$. For any independent set $\{a_1, a_2, \ldots, a_{6/(4-k)}\}$ of G, if

$$\sum_{i=1}^{5/(4-k)} d_G(a_i) > \frac{(4-k)\nu(G) - 6(g-2r - \lfloor \frac{k}{3} \rfloor)}{(4-k)(2^r-1)(g-2r)} + \frac{6}{(4-k)}(g-2r-1),$$

then G is up-embeddable.

Keywords up-embeddability; maximum genus; independent set.

MR(2010) Subject Classification 05C10

1. Introduction

Graphs considered here are all connected, finite and undirected. Terminologies and notations not defined in this paper will generally conform to [1].

Let G = (V(G), E(G)) be a graph, where V(G), E(G) are the set of vertices and edges. The cardinality of the vertex set of G is denoted by $\nu(G)$. A set $S \subseteq V(G)$ is called an independent set of G if all vertices in S are not adjacent in G. The degree $d_G(v)$ of a vertex $v \in V(G)$ is the number of edges of G incident with v.

The distance $d_G(u, v)$ between two vertices u and v is the length of the shortest (u, v)-path of G. $d_G(xy, v) = \min \{ d_G(x, v), d_G(y, v) \}$ is the distance between the edge xy and vertex v. Clearly,

$$d_G(uv, u) = d_G(uv, v) = d_G(u, u) = 0.$$

For a vertex or an edge x of G, we call $N_G^{(i)}(x) = \{v | d_G(x, v) = i, v \in V(G)\}$ the *i*-neighbor set of x in G. The girth of G is the length of a shortest cycle in G.

The maximum genus, $\gamma_M(G)$ of a graph G is the largest integer n such that there exists a cellular embedding of G on the orientable surface with genus n. By Euler Formula, we know that

$$\gamma_M(G) \le \lfloor \frac{\beta(G)}{2} \rfloor,$$

Received December 11, 2010; Accepted September 1, 2011

Supported by the Scientific Research Fund of Hunan Provincial Education Department (Grant No. 11C0541). * Corresponding author

E-mail address: lsxx23@yahoo.com.cn (Shengxiang $L\ddot{U}$)

where $\beta(G) = |E(G)| - |V(G)| + 1$ is the Betti number of G. If $\gamma_M(G) = \lfloor \frac{\beta(G)}{2} \rfloor$, then G is called up-embeddable.

For a spanning tree T of G, $\xi(G, T)$ denotes the number of components of $G \setminus E(T)$ with odd number of edges. $\xi(G) = \min_T \xi(G, T)$ is the Betti deficiency number of G, where the minimum is taken over all spanning trees of G.

Theorem 1.1 ([6, 10]) Let G be a graph. Then

(i) $\gamma_M(G) = \frac{\beta(G) - \xi(G)}{2};$

(ii) G is up-embeddable if and only if $\xi(G) \leq 1$.

For an edge set $A \subseteq E(G)$, $c(G \setminus A)$ denotes the number of components of $G \setminus A$, $b(G \setminus A)$ denotes the number of components of $G \setminus A$ with odd Betti number. In 1981, Nebesky [8] obtained the following combinatorial expression of $\xi(G)$.

Theorem 1.2 ([8]) Let G be a graph. Then

$$\xi(G) = \max_{A \subseteq E(G)} \{ c(G \backslash A) + b(G \backslash A) - |A| - 1 \}.$$

Let $A \subseteq E(G)$, F_1, F_2, \ldots, F_l be l different components of $G \setminus A$. $E(F_1, F_2, \ldots, F_l)$ denotes the set of edges whose end vertices are in two different components F_i and F_j $(1 \le i < j \le l)$. For an induced subgraph F of G, E(F, G) denotes the set of edges with one end vertex in F and another not in F. If vertex $v \in V(F)$ is the end vertex of i $(i \ge 1)$ edges of E(F, G), then v is called an *i*-touching vertex or touching vertex of F.

Theorem 1.3 ([3]) Let G be a graph. If G is not up-embeddable, i.e., $\xi(G) \ge 2$, then there exists an edge set $A \subseteq E(G)$ satisfying the following properties:

- (i) $c(G \setminus A) = b(G \setminus A) \ge 2;$
- (ii) For any component F of $G \setminus A$, F is an induced subgraph of G;
- (iii) For any l distinct components F_{i_1}, \ldots, F_{i_l} of $G \setminus A$, $|E(F_{i_1}, \ldots, F_{i_l})| \leq 2l 3$;
- (iv) $\xi(G) = 2c(G \setminus A) |A| 1.$

The study on maximum genus of graphs was inaugurated by Nordhaus, Stewart and White [9]. From then on, various classes of graphs have been proved up-embeddable. A formerly known result [10] stated that every 4-edge connected graph is up-embeddable. But, there exists $k \ (k \leq 3)$ -edge connected graphs [5] which are not up-embeddable. Based on this, what kind of restrictions, under which a graph is up-embeddable, are studied extensively. In [4], Huang and Liu first began to consider the up-embeddability of simple graphs via degree-sum of nonadjacent vertices. Later, Chen and Liu [2] extended Huang and Liu's results. In this paper, we obtain the following result which improves the results in paper [2, 4].

Theorem 1.4 Let G be a k $(k \leq 3)$ -edge connected simple graph with minimal degree ≥ 3 , girth $g, r = \lfloor \frac{g-1}{2} \rfloor$. For any independent set $\{a_1, a_2, \ldots, a_{6/(4-k)}\}$ of G, if

$$\sum_{i=1}^{6/(4-k)} d_G(a_i) > \frac{(4-k)\nu(G) - 6(g-2r - \lfloor\frac{k}{3}\rfloor)}{(4-k)(2^r - 1)(g-2r)} + \frac{6}{(4-k)}(g-2r-1)g(g-2r) + \frac{6}{(4-k)}(g-2r-1)g(g-2r-1)g(g-2r) + \frac{6}{(4-k)}(g-2r-1)g(g-2r$$

then G is up-embeddable.

To see the lower bound presented in Theorem 1.4 is best possible, let us consider the following infinite family of graphs. Let H be the complete graphs K_{4t} or complete bipartite graphs $K_{2t,2t}$, $t \ge 2$. The graph G is obtained by replacing each vertices of $K_{3,3}$ with H, then connecting the edges of $K_{3,3}$ to different vertices of H such that G is 3-edge connected and the girth of G is equal to the girth of H. It is not difficult to find an independent set $\{a_1, a_2, \ldots, a_6\}$ of G such that $\sum_{i=1}^{6} d_G(a_i) = \frac{\nu(G) - 6(g - 2r - 1)}{(2^r - 1)(g - 2r)} + 6(g - 2r - 1)$. On the other hand, it is easy to check that $\xi(G) = 2$.

2. Characterizations of given subgraphs

In the following, we will obtain some properties on the given induced subgraphs.

Lemma 2.1 Let G be a simple graph with minimal degree ≥ 3 , girth $g, r = \lfloor \frac{g-1}{2} \rfloor$. H is a connected induced subgraph of G, $\beta(H) \geq 1$. If $\{u, v\} \subseteq V(H)$ contains all the touching vertices of H, then,

(i) When g = 2r + 2, there exists an edge $ab \in E(H)$ such that $\min\{d_H(ab, u), d_H(ab, v)\} \ge r$;

(ii) When g = 2r + 1, there exists a vertex $a \in V(H)$ such that $\min\{d_H(a, u), d_H(a, v)\} \ge r$.

Proof See the proof of Proposition 1 in the paper [7]. \Box

Lemma 2.2 Let G be a simple graph with minimal degree ≥ 3 , girth $g, r = \lfloor \frac{g-1}{2} \rfloor$. H is a connected induced subgraph of G, $\beta(H) \geq 1$. If H has exactly three 1-touching vertices u, v, w, then,

(i) When g = 2r + 2, there exists an edge $ab \in E(H)$ such that

 $\min\{d_H(ab, u), d_H(ab, v)\} \ge r - 1, \ \min\{\max\{d_H(ab, u), d_H(ab, v)\}, \ d_H(ab, w)\} \ge r;$

(ii) When g = 2r + 1, there exists a vertex $a \in V(H)$ such that

$$\min\{d_H(a, u), d_H(a, v)\} \ge r - 1, \ \min\{\max\{d_H(a, u), d_H(a, v)\}, \ d_H(a, w)\} \ge r.$$

Proof See the proof of Proposition 2 in the paper [7]. \Box

Lemma 2.3 Let G be a simple graph with minimal degree ≥ 3 , girth $g, r = \lfloor \frac{g-1}{2} \rfloor$. H is a connected induced subgraph of G, $\beta(H) \geq 1$. If $|E(H,G)| \leq 2$, then there exists a vertex $a \in V(H)$ such that

$$d_G(a) = d_H(a) \le \frac{\nu(H) - g + 2r}{(2^r - 1)(g - 2r)} + (g - 2r - 1).$$

Proof Clearly, H has at most two touching vertices, assume that $\{u, v\} \subseteq V(H)$ contains all the touching vertices of H.

Case 1 g = 2r + 1. By Lemma 2.1, there exists a vertex $a \in V(H)$ such that

$$\min\{d_H(a, u), d_H(a, v)\} \ge r.$$

Clearly, a is not the touching vertex of H, so $d_G(a) = d_H(a)$.

As the girth of G is g, for any $x, y \in N_H^{(i)}(a), x \neq y, 0 \le i \le r-1$, we have

$$xy \notin E(H), (N_H^{(i+1)}(a) \cap N_H^{(1)}(x)) \cap (N_H^{(i+1)}(a) \cap N_H^{(1)}(y)) = \emptyset.$$

Or else, the girth of H will be less than g. Hence,

$$|N_H^{(0)}(a)| = 1, \ |N_H^{(i)}(a)| \ge d_H(a) \cdot 2^{i-1}, \ 1 \le i \le r.$$

So, we get

$$\nu(H) \ge |\bigcup_{i=0}^{r} N_{H}^{(i)}(a)| = \sum_{i=0}^{r} |N_{H}^{(i)}(a)| \ge 1 + \sum_{i=1}^{r} d_{H}(a) \cdot 2^{i-1} = 1 + d_{H}(a)(2^{r} - 1).$$

Combining g = 2r + 1, by simple calculation, we have

$$d_G(a) = d_H(a) \le \frac{\nu(H) - 1}{2^r - 1} = \frac{\nu(H) - g + 2r}{(2^r - 1)(g - 2r)} + (g - 2r - 1)$$

Case 2 g = 2r + 2. By Lemma 2.1, there exists an edge $ab \in E(H)$ such that

 $\min\{d_H(ab, u), d_H(ab, v)\} \ge r.$

As the girth of G is g, for any $x, y \in N_H^{(i)}(ab), x \neq y, 0 \le i \le r-1$, we have

$$xy \notin E(H), \ (N_H^{(i+1)}(ab) \cap N_H^{(1)}(x)) \cap (N_H^{(i+1)}(ab) \cap N_H^{(1)}(y)) = \emptyset.$$

Or else, the girth of H will be less than g. Hence,

$$|N_H^{(0)}(ab)| = 2, \ |N_H^{(i)}(ab)| \ge (d_H(a) + d_H(b) - 2) \cdot 2^{i-1}, \ 1 \le i \le r.$$

Without loss of generality, let

$$d_H(a) = \min\{d_H(a), d_H(b)\}.$$

So, we obtain

$$\nu(H) \ge \sum_{i=0}^{r} |N_H^{(i)}(ab)| \ge 2 + (d_H(a) + d_H(b) - 2)(2^r - 1) \ge 2 + (2d_H(a) - 2)(2^r - 1).$$

As a is not the touching vertex of H, combining g = 2r + 2, we have

$$d_G(a) = d_H(a) \le \frac{\nu(H) - 2}{2(2^r - 1)} + 1 = \frac{\nu(H) - g + 2r}{(2^r - 1)(g - 2r)} + (g - 2r - 1). \quad \Box$$

Lemma 2.4 Let G be a simple graph with minimal degree ≥ 3 , girth $g \geq 4$, $r = \lfloor \frac{g-1}{2} \rfloor$. H is a connected induced subgraph of G, $\beta(H) \geq 1$. If |E(H,G)| = 3, then there exists a vertex $a \in V(H)$ such that

$$d_G(a) = d_H(a) \le \frac{\nu(H) - g + 2r + 1}{(2^r - 1)(g - 2r)} + (g - 2r - 1).$$

Proof First, when H has at most two touching vertices, from the proof of Lemma 2.3, this result holds.

Second, assume that H has exactly three 1-touching vertices u, v, w.

Case 1 $g = 2r + 1 \ge 5$. By Lemma 2.2, there exists a vertex $a \in V(H)$ such that

$$\min\{d_H(a, u), d_H(a, v)\} \ge r - 1, \ \min\{\max\{d_H(a, u), d_H(a, v)\}, \ d_H(a, w)\} \ge r.$$

Similarly, we have

$$|N_H^{(r)}(a)| \ge d_H(a) \cdot 2^{r-1} - 1, \ |N_H^{(i)}(a)| \ge d_H(a) \cdot 2^{i-1}, \ 1 \le i \le r-1.$$

Hence,

$$\nu(H) \ge \sum_{i=0}^{r} |N_H^{(i)}(a)| \ge 1 + \sum_{i=1}^{r} d_H(a) \cdot 2^{i-1} - 1 = d_H(a)(2^r - 1).$$

As a is not the touching vertex of H, combining g = 2r + 1, we obtain

$$d_G(a) = d_H(a) \le \frac{\nu(H)}{2^r - 1} = \frac{\nu(H) - g + 2r + 1}{(2^r - 1)(g - 2r)} + (g - 2r - 1).$$

Case 2 g = 2r + 2. By Lemma 2.2, there exists an edge $ab \in E(H)$ such that

 $\min\{d_H(ab, u), d_H(ab, v)\} \ge r - 1, \ \min\{\max\{d_H(ab, u), d_H(ab, v)\}, d_H(ab, w)\} \ge r.$

Subcase 2.1 $g = 2r + 2 \ge 6$. Clearly, a, b are not the touching vertex of H. Without loss of generality, let

$$d_G(a) \le d_G(b).$$

Similarly, we have

/ \

$$|N_H^{(r)}(ab)| \ge (d_H(a) + d_H(b) - 2) \cdot 2^{r-1} - 1 \ge (2d_G(a) - 2) \cdot 2^{r-1} - 1,$$

$$|N_H^{(i)}(ab)| \ge (d_H(a) + d_H(b) - 2) \cdot 2^{i-1} \ge (2d_G(a) - 2) \cdot 2^{i-1}, \quad 1 \le i \le r - 1.$$

Hence,

$$\nu(H) \ge \sum_{i=0}^{r} |N_H^{(i)}(ab)| \ge 2 + \sum_{i=1}^{r} (2d_G(a) - 2) \cdot 2^{i-1} - 1 = (2d_G(a) - 2)(2^r - 1) + 1.$$

As g = 2r + 2, then

$$d_G(a) = d_H(a) \le \frac{\nu(H) - 1}{2(2^r - 1)} + 1 = \frac{\nu(H) - g + 2r + 1}{(2^r - 1)(g - 2r)} + (g - 2r - 1).$$

Subcase 2.2 g = 2r + 2 = 4. Clearly, we can assume that a is not the touching vertex of H.

First, if $d_G(a) > d_G(b)$, then $d_G(a) \ge 4$. Hence, there exists a vertex $a' \in N_H^{(1)}(a) \setminus \{u, v, w\}$ such that

$$\min\{d_H(aa', u), d_H(aa', v), d_H(aa', w)\} \ge 1.$$

Now, without loss of generality, assume that $d_G(a') = \min\{d_G(a'), d_G(a)\}$. So, we have

$$|N_H^{(1)}(aa')| = d_H(a') + d_H(a) - 2 = d_G(a') + d_G(a) - 2 \ge 2d_G(a') - 2.$$

Hence,

$$\nu(H) \ge |N_H^{(0)}(aa')| + |N_H^{(1)}(aa')| \ge 2d_G(a').$$

As g = 2r + 2 = 4, we have

$$d_G(a') = d_H(a') \le \frac{\nu(H)}{2} \le \frac{\nu(H) - g + 2r + 1}{(2^r - 1)(g - 2r)} + (g - 2r - 1).$$

Secondly, if $d_G(a) \leq d_G(b)$, as u, v, w are 1-touching vertices of H, we have

$$|N_H^{(1)}(ab)| = d_H(a) + d_H(b) - 2 \ge d_G(a) + d_G(b) - 3 \ge 2d_G(a) - 3$$

Hence, we have

$$\nu(H) \ge |N_H^{(0)}(ab)| + |N_H^{(1)}(ab)| \ge 2d_G(a) - 1$$

As g = 2r + 2 = 4, it follows

$$d_G(a) = d_H(a) \le \frac{\nu(H) + 1}{2} = \frac{\nu(H) - g + 2r + 1}{(2^r - 1)(g - 2r)} + (g - 2r - 1). \quad \Box$$

3. The proof of Theorem 1.4

Proof of Theorem 1.4 Suppose that graph G is not up-embeddable. There exists an edge set $A \subseteq E(G)$ satisfying the properties (1)–(4) of Theorem 1.3. Define $C(G \setminus A)$ to be the set of components of $G \setminus A$, and

$$B_4 = \{F \mid |E(F,G)| \ge 4, F \in C(G \setminus A)\},\$$

$$B_i = \{F \mid |E(F,G)| = i, F \in C(G \setminus A)\},\ i = 1, 2, 3.$$

Obviously,

$$c(G \setminus A) = |B_1| + |B_2| + |B_3| + |B_4|.$$
(1)

For each edge $e \in A$, the end vertices of e must belong to two distinct components of $G \setminus A$, because any component $F \in C(G \setminus A)$ is an induced subgraph of G, which means that there exist just two components $F_1, F_2 \in C(G \setminus A)$ such that $e \in E(F_1, G)$ and $e \in E(F_2, G)$. On the other hand, each edge $e \in E(F, G)$ must belong to A. Thus

$$A = \bigcup_{F \in C(G \setminus A)} |E(F,G)|$$

and

$$|A| = \frac{1}{2} \sum_{F \in C(G \setminus A)} |E(F,G)| \ge 2|B_4| + \frac{3}{2}|B_3| + |B_2| + \frac{1}{2}|B_1|.$$
(2)

Combining Theorem 1.3, Equations (1) and (2), we have

$$\begin{split} \xi(G) &= 2c(G \setminus A) - |A| - 1\\ &\leq 2(|B_4| + |B_3| + |B_2| + |B_1|) - (2|B_4| + \frac{3}{2}|B_3| + |B_2| + \frac{1}{2}|B_1|) - 1\\ &= \frac{1}{2}|B_3| + |B_2| + \frac{3}{2}|B_1| - 1. \end{split}$$

As G is not up-embeddable, i.e., $\xi(G) \ge 2$, we have

$$\frac{1}{2}|B_3| + |B_2| + \frac{3}{2}|B_1| \ge 3.$$
(3)

Since $|B_i| = 0$ for i < k, simple calculation gives

$$|B_3| + |B_2| + |B_1| \ge \frac{6}{4-k}.$$
(4)

Without loss of generality, let

$$|E(F_i, G)| \le 3, \ F_i \in C(G \setminus A), \ 1 \le i \le 6/(4-k).$$

When g = 3 and k = 3, 6/(4 - k) = 6. First, assume that each vertex in F_i $(1 \le i \le 6)$ is a touching vertex of F_i . Since $|E(F_i, G)| = 3$, $V(F_i)$ contains exactly three 1-touching vertices, denoted by $\{x_i, y_i, z_i\}$. Furthermore, suppose $\{x_6z_5, y_6z_4, z_6x_3\} = E(F_6, G)$. As the vertex z_3 connects at most one vertex in $V(F_1) \cup V(F_2)$, there are at least 2 vertices in F_1 and F_2 , denoted by $\{z_1, y_1\}$ and $\{z_2, y_2\}$, respectively, which are not adjacent with z_3 . But, as $|E(F_1, F_2)| \le 1$, we can assume that z_1 and z_2 are not adjacent. Now, the vertices set $\{z_1, z_2, \ldots, z_6\}$ is clearly an independent set of G. Secondly, if there exists one vertex u_i in some F_i $(1 \le i \le 6)$ which is not the touching vertex of F_i , then by replacing z_i with u_i , we also obtain an independent set of G with 6 vertices. For k = 1, 2, by similar discussions, there exist vertices $a_i \in V(F_i)$ $(1 \le i \le 6/(4-k))$, where a_i is at most a 1-touching vertex of F_i , such that $\{a_1, a_2, \ldots, a_{6/(4-k)}\}$ is an independent set of G.

Hence, for $k \leq 3$ and g = 2r + 1 = 3, there exists vertex $a_i \in F_i$ $(1 \leq i \leq 6/(4-k))$ such that $\{a_1, a_2, \ldots, a_{6/(4-k)}\}$ is an independent set of G, and

$$d_G(a_i) \le d_{F_i}(a_i) + 1 \le \nu(F_i) = \frac{\nu(F_i) - g + 2r + 1}{(2^r - 1)(g - 2r)} + (g - 2r - 1), \quad 1 \le i \le 6/(4 - k).$$
(5)

Case 1 $c(G \setminus A) = 6/(4-k)$. First, when $k \le 2$, 6/(4-k) = k+1. By Theorem 1.3, it is easy to know that

$$|E(F_i, G)| \le 2, \ 1 \le i \le k+1$$

So, by Lemma 2.3, there exist vertices $a_i \in F_i$ $(1 \le i \le k+1)$ such that $\{a_1, \ldots, a_{k+1}\}$ is an independent set of G, and

$$d_G(a_i) \le \frac{\nu(F_i) - (g - 2r)}{(2^r - 1)(g - 2r)} + (g - 2r - 1), \quad 1 \le i \le k + 1.$$

Hence, we have

$$\sum_{i=1}^{k+1} d_G(a_i) \le \frac{\sum_{i=1}^{k+1} \nu(F_i) - (k+1)(g-2r)}{(2^r - 1)(g-2r)} + (k+1)(g-2r-1)$$
$$= \frac{\nu(G) - (k+1)(g-2r)}{(2^r - 1)(g-2r)} + (k+1)(g-2r-1).$$

But, this contradicts the condition.

Secondly, when k = 3, 6/(4 - k) = 6. Combining equation (5) and Lemma 2.4, there exist vertices $a_i \in F_i$ $(1 \le i \le 6)$ such that $\{a_1, a_2, \ldots, a_6\}$ is an independent set of G, and

$$d_G(a_i) \le \frac{\nu(F_i) - (g - 2r - 1)}{(2^r - 1)(g - 2r)} + (g - 2r - 1), \quad 1 \le i \le 6.$$

Hence, we have

$$\sum_{i=1}^{6} d_G(a_i) \le \frac{\sum_{i=1}^{6} \nu(F_i) - 6(g - 2r - 1)}{(2^r - 1)(g - 2r)} + 6(g - 2r - 1)$$
$$= \frac{\nu(G) - 6(g - 2r - 1)}{(2^r - 1)(g - 2r)} + 6(g - 2r - 1).$$

But, this also contradicts the condition.

Case 2 $c(G \setminus A) > 6/(4-k)$. Combining equation (5) and Lemma 2.4, there exist vertices $a_i \in F_i$ $(1 \le i \le 6/(4-k))$ such that $\{a_1, a_2, \ldots, a_{6/(4-k)}\}$ is an independent set of G, and

$$d_G(a_i) \le \frac{\nu(F_i) - (g - 2r - 1)}{(2^r - 1)(g - 2r)} + (g - 2r - 1), \quad 1 \le i \le 6/(4 - k).$$

As $c(G \setminus A) > 6/(4-k)$ and the order of each component of $G \setminus A$ is at least 3, we have

$$\sum_{i=1}^{6/(4-k)} \nu(F_i) \le \nu(G) - 3$$

Thus,

$$\sum_{i=1}^{6/(4-k)} d_G(a_i) \le \sum_{i=1}^{6/(4-k)} \frac{\nu(F_i) - (g - 2r - 1)}{(2^r - 1)(g - 2r)} + \frac{6(g - 2r - 1)}{4 - k}$$
$$= \frac{\sum_{i=1}^{6/(4-k)} \nu(F_i) - \frac{6}{4-k}(g - 2r - 1)}{(2^r - 1)(g - 2r)} + \frac{6(g - 2r - 1)}{4 - k}$$
$$\le \frac{(\nu(G) - 3) - \frac{6}{4-k}(g - 2r - 1)}{(2^r - 1)(g - 2r)} + \frac{6(g - 2r - 1)}{4 - k}.$$

But, this also contradicts the condition. Hence, G is up-embeddable. This completes the proof. \Box

Corollary 3.1 Let G be a k $(k \leq 3)$ -edge connected simple graph with girth $g, r = \lfloor \frac{g-1}{2} \rfloor$. If minimal degree $\delta(G) \geq 3$ and

$$\delta(G) > \frac{(4-k)\nu(G) - 6(g-2r - \lfloor \frac{k}{3} \rfloor)}{6(2^r - 1)(g-2r)} + (g-2r - 1),$$

then G is up-embeddable.

Acknowledgments The authors thank the referees for the constructive suggestions which make the paper more readable.

References

- [1] J. A. BONDY, U. S. R. MURTY. Graph Theory with Applications. North Holland Press, New York, 1982.
- [2] Yichao CHEN, Yanpei LIU. Up-embeddability of a graph by order and girth. Graphs Combin., 2007, 23(5): 521–527.
- [3] Yuanqiu HUANG, Yanpei LIU. An improvement of a theorem on the maximum genus for graphs. Math. Appl. (Wuhan), 1998, 11(2): 109–112. (in Chinese)
- [4] Yuanqiu HUANG, Yanpei LIU. The degree-sum of nonadjacent vertices and up-embeddability of graphs. Chinese Ann. Math. Ser. A, 1998, 19(5): 651–656. (in Chinese)
- [5] M. JUNGERMAN. A characterization of upper-embeddable graphs. Trans. Amer. Math. Soc., 1978, 241: 401–406.
- [6] Yanpei LIU. Embeddability in Graphs. Kluwer Press, Boston, 1995.
- [7] Shengxiang LÜ, Yanpei LIU. Up-embeddability of graphs with small order. Appl. Math. Lett., 2010, 23(3): 267–271.
- [8] L. NEBESKY. A new characterization of the maximum genus of a graph. Czechoslovak Math. J., 1981, 31(106): 604–613.
- [9] E. A. NORDHAUS, B. M. STEWART, A. T. WHITE. On the maximum genus of a graph. J. Combinatorial Theory Ser. B, 1971, 11: 258–267.
- [10] N. H. XUONG. How to determine the maximum genus of a graph. J. Combin. Theory Ser. B, 1979, 26(2): 217–225.