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Abstract In this paper, we shall use Nevanlinna theory of meromorphic functions to in-

vestigate the complex oscillation theory of solutions of some higher order linear differential

equation. Suppose that A is a transcendental entire function with ρ(A) < 1
2
. Suppose that

k ≥ 2 and f (k) + A(z)f = 0 has a solution f with λ(f) < ρ(A), and suppose that A1 = A+ h,

where h 6≡ 0 is an entire function with ρ(h) < ρ(A). Then g(k) + A1(z)g = 0 does not have a

solution g with λ(g) < ∞.
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1. Introduction and main results

We shall assume that the reader is familiar with the fundamental results and the standard

notations of Nevanlinna theory of meromorphic functions [1–3], such as T (r, f), N(r, f), m(r, f)

and S(r, f) = o(T (r, f)) outside a set of finite measure. In addition, for a meromorphic function

f in the complex plane C, we shall use the notation ρ(f) and λ(f) to denote its order and the

exponent of convergence of the zeros, respectively. They are defined as follows:

ρ(f) = limr→∞
log+ T (r, f)

log r
, λ(f) = limr→∞

log+ N(r, 1
f
)

log r
.

Suppose that k ∈ N and A is an entire function, and suppose that fj (j = 1, 2, . . . , k) are

solutions of

f (k) + A(z)f = 0. (1)

Hille proved that any solution of (1) is entire [4]. In recent years, a lot of works has been done

in the connection between the growth of order ρ of A and the exponent of convergence λ of

fj (j = 1, 2, . . . , k), such as [5–9]. In particular it was shown in [6, 9] that if k = 2 and A is

transcendental of order at most 1
2 , then (1) cannot have two linearly independent solutions f1
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and f2, each with λ(fj) finite, and a comparable result was proved for higher order equations in

[10]. On the other hand, it is possible to have one solution f of (1) with no zeros at all, even for

coefficients of very small growth. To see this, set f = eB where B is an entire function. Then f

solves (1) with k = 2 and −A = f ′′

f
= B′′ + (B′)2, as well as similar equations of higher order

obtained by computing f(k)

f
in terms of B. In [5], Alotaibi proved that small perturbations of

such equations lead to the exponent of convergence of zeros of solution is at least the order of

growth of the coefficient A.

Theorem 1 ([5]) Suppose that A is a transcendental entire function with ρ(A) < 1
2 . Suppose

that k ≥ 2 and (1) has a solution f with λ(f) < ρ(A), and suppose that

A1 = A + h, (2)

where h 6≡ 0 is an entire function with ρ(h) < ρ(A). Then

g(k) + A1(z)g = 0 (3)

does not have a solution g with λ(g) < ρ(A).

In this paper, our main result shows, however, that small perturbations of such equations

lead to solutions whose zeros must have infinite exponent of convergence and include a result of

Alotaibi. The main result is the following:

Theorem 2 Suppose that A is a transcendental entire function with ρ(A) < 1
2 . Suppose that

k ≥ 2 and (1) has a solution f with λ(f) < ρ(A), and suppose that A1 satisfies (2) and h 6≡ 0

is an entire function with ρ(h) < ρ(A). Then the equation (3) does not have a solution g with

λ(g) < ∞.

The paper is organized as follows. In Section 2, we shall state and prove some lemmas which

will be used in the proof of Theorem 2. In Section 3, we shall prove the Theorem 2.

2. Some lemmas

For the proof of Theorem 2, we need the following definition and lemmas.

Definition 1 ([2]) Let B(zn, rn) be open discs in the complex plane. We say that the countable

union
⋃

B(zn, rn) is an R− set if zn → ∞ and
∑

rn < ∞.

Lemma 1 ([2]) Suppose that f is a meromorphic function of finite order. Then there exists a

positive integer N such that

|
f ′(z)

f(z)
| = O(|z|N )

holds for large z outside of an R− set.

Before stating the following lemmas, for E ⊂ [0,∞), we define the Lebesgue measure of E

by mes(E) and the logarithmic measure of E ⊂ [1,∞) by ml(E) =
∫

E
dt
t
, and define the upper
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and lower logarithmic density of E ⊂ [1,∞) respectively by

logdensE = lim
r→∞

ml(E
⋂

[1, r])

log r
,

and

logdensE = lim
r→∞

ml(E
⋂

[1, r])

log r
.

The logarithmic density gives us an idea how big the set E is. The proof of our theorem

highly depends on the following lemma.

Lemma 2 ([11]) Let f be an entire function with ρ(f) = ρ < 1
2 and suppose that m(r) is defined

as

m(r) = inf
|z|=r

log |f(z)|.

If σ < ρ, then the set {r : m(r) > rσ} has positive upper logarithmic density.

Moreover, we are going to use the following lemma, which gives an asymptotic representation

for the logarithmic derivative of a solutions of (1) with few zeros. The first of these is a special

case of a result from [10].

Lemma 3 Let A be a transcendental entire function of finite order, and let E1 be a subset of

[1,∞) of infinite logarithmic measure with the property that for each r ∈ E1 there exists an arc

ar = {reit : 0 ≤ αr ≤ t ≤ βr ≤ 2π}

of the circle S(0, r) such that

lim
r→∞,r∈E1

min{log |A(z)| : z ∈ ar}

log r
= +∞.

Let k ≥ 2 and let f be a solution of (1) with λ(f) < ∞. Then there exists a subset E2 ⊂ [1,∞)

of finite measure, such that for large r ∈ E0 = E1 − E2, we have

f ′(z)

f(z)
= crA(z)

1
k −

k − 1

2k

A′(z)

A(z)
+ O(r−2)

holds for all z ∈ ar, here the constant cr satisfies ck
r = −1 and may depend on r but not, for a

given r ∈ E0, on z, and the branch of A(z)
1
k is analytic on ar (including in the case where ar is

the whole circle S(0, r)).

We note that E2 has finite measure and so finite logarithmic measure, and so E0 has infinite

logarithmic measure. Moreover, we exclude the case k = 1 because for k = 1 the general solution

of (1) is

f = C exp
(

−

∫ z

0

A(t)dt
)

, C ∈ C.

We will employ the following well-known representation for higher order logarithmic deriva-

tives [1].

Lemma 4 Let f be an analytic function, and let F = f ′

f
. Then for k ∈ N we have

f (k)

f
= F k +

k(k − 1)

2
F k−2F ′ + Pk−2(F ),
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where Pk−2 is a differential polynomial with constant coefficients, which vanishes identically for

k ≤ 2 and has degree at most k − 2 when k > 2.

Remark 1 By using Lemma 4, we shall see that it is possible to have a solution f of (1) with

no zeros. Let F = f ′

f
and f = eB where B is an entire function with F = B′. It is clear to see

that f = eB, which has no zeros, solves (1).

Lemma 5 Suppose that A is a transcendental entire function with ρ(A) = ρ < 1
2 in complex

plane C. Suppose that f is an entire function with λ(f) < ρ. Then there exists a set E3 ⊂ [1,∞)

with logdensE3 > 0, such that for σ < ρ, we have

inf
|z|=r∈E3

log |A(z)| > rσ

and

lim
r→∞,r∈E3

n(r, 1
f
) log r

T (r, A)
= 0

hold.

Proof By using Lemma 2, for any λ(f) < σ < ρ, there exists a set E0 ⊂ [1,∞) with logdensE0 >

0, where

E0 = {r > 1 : inf
|z|=r

log |A(z)| > rσ}. (4)

Since λ(f) < σ, for any given 0 < ε <
σ−λ(f)

2 , there exists r0 > 1, such that

n(r,
1

f
) < rλ(f)+ε (5)

holds for all r > r0. Set E3 = E0

⋂

[r0,∞), we claim logdensE3 > 0. In fact,

[r0,∞) = ([r0,∞)
⋂

E0)
⋃

([r0,∞) − E0).

Thus,

logdensE3 ≥ logdensE3 = logdens[r0,∞) − logdens([r0,∞) − E0)

≥ logdens[r0,∞) − (1 − logdensE0) = logdensE0 > 0.

By using (4), (5) and T (r, A) ≤ log+ M(r, A) ≤ 3T (2r, A), for any r ∈ E3, we obtain

n(r, 1
f
) log r

T (r, A)
≤

rλ(f)+ε log r

( r
2 )σ

.

So,

lim
r→∞,r∈E3

n(r, 1
f
) log r

T (r, A)
= 0. �

3. Proof of the Theorem 2

In this section, we give the proof of Theorem 2.
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Proof Suppose that the equation (1) has a solution f with λ(f) < ρ(A), and suppose that the

equation (3) has a solution g with λ(g) < ∞. We can let

f = PeU , (6)

g = QeV , (7)

where P , Q, U and V are entire functions which satisfy ρ(P ) = λ(f) < ∞ and ρ(Q) = λ(g) < ∞,

and max{ρ(U), ρ(V )} ≤ ρ(A) (see [8]). Let

F =
f ′

f
=

P ′

P
+ U ′, G =

g′

g
=

Q′

Q
+ V ′. (8)

Applying Lemma 4, we obtain

f (k)

f
= F k +

k(k − 1)

2
F k−2F ′ + Pk−2(F ), (9)

g(k)

g
= Gk +

k(k − 1)

2
Gk−2G′ + Pk−2(G), (10)

where Pk−2 is a differential polynomial with constant coefficients, which vanishes identically for

k ≤ 2 and has degree at most k − 2 when k > 2.

Pick τ, σ, such that

max{λ(f), ρ(h)} < τ < σ < ρ(A) <
1

2
. (11)

By using Lemma 5, there exits a set E1 ⊂ [1,∞) with logdensE1 > 0, such that

inf
|z|=r

log |A(z)| > rσ (12)

holds for all r ∈ E1. Let E2 ⊂ [1,∞) be a subset of finite measure so that, for some M1 ∈ N,

|
A′(z)

A(z)
| + |

P ′(z)

P (z)
| + |

Q′(z)

Q(z)
| ≤ rM1 , |z| = r ≥ 1, r 6∈ E2. (13)

Such E2 and M1 exist by Lemma 1. For large |z| = r ∈ E1 we also have, using (2), (11) and

(12),

log |A1(z)| >
rσ

2
. (14)

The next step is to estimate f ′(z)
f(z) and g′(z)

g(z) in terms of A(z). We apply Lemma 3 to equation

(1) and equation (3) by choosing ar to be the whole circle |z| = r ∈ E1. This is possible since

(12) and (14) imply that Lemma 3 holds. Hence for large r ∈ E0 = E1 − E3, where E2 ⊂ E3

and E3 has finite measure, the following is true. We have, by Lemma 3,

f ′(z)

f(z)
= cA(z)

1
k −

k − 1

2k

A′(z)

A(z)
+ O(r−2), |z| = r, ck = −1, (15)

and
g′(z)

g(z)
= dA1(z)

1
k −

k − 1

2k

A′
1(z)

A1(z)
+ O(r−2), |z| = r, dk = −1. (16)

Here c, d may depend on r, but not on z.
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Next, we apply the binomial theorem to expand A1(z)
1
k and

A′

1(z)
A1(z) in terms of A(z)

1
k and

A′(z)
A(z) . Using (11) and (12), we get for |z| = r ∈ E0, by suppressing the variable z for brevity,

A
1
k

1 = (A + h)
1
k = A

1
k (1 +

h

A
)

1
k = A

1
k (1 + O(

|h|

|A|
)) (17)

and
A′

1

A1
=

A′ + h′

A + h
=

A′ + h′

A(1 + h
A

)
=

A′

A
(1 + O(

|h|

|A|
)) + o(

|h|

|A|
). (18)

Using (13), (16), (17) and (18), we deduce that, for |z| = r ∈ E0,

g′(z)

g(z)
= dA(z)

1
k −

k − 1

2k

A′(z)

A(z)
+ O(r−2), dk = −1. (19)

We recall from Lemma 3 that c and d may depend on r but, for given r ∈ E0, do not depend on

z. The following Lemma is then the key to proof of Theorem 2.

Lemma 6 Suppose that c and d are as in (15) and (19), respectively. Then c = d for all large

r ∈ E0.

Proof We may write d = cω where ωk = 1. Using (19), we obtain

g′(z)

g(z)
= cωA(z)

1
k −

k − 1

2k

A′(z)

A(z)
+ O(r−2), ωk = 1. (20)

Multiplying (15) by ω and subtracting (20), we get

ω(
f ′(z)

f(z)
+

k − 1

2k

A′(z)

A(z)
) =

g′(z)

g(z)
+

k − 1

2k

A′(z)

A(z)
+ O(r−2).

Integrating around |z| = rn, where rn → ∞ with rn ∈ E0, we then find that

ω(n(rn,
1

f
) +

k − 1

2k
n(rn,

1

A
)) + o(1) = n(rn,

1

g
) +

k − 1

2k
n(rn,

1

A
). (21)

But the right hand side of (21) must be positive since n(rn, 1
g
) ≥ 0 and n(rn, 1

A
) > 0. This

is because if n(rn, 1
A

) = 0 we get N(rn, 1
A

) = 0. Since inf |z|=rn
log |A(z)| is very big for rn →

∞, rn ∈ E0, we get

m(rn,
1

A
) = 0.

Hence,

T (rn,
1

A
) = 0.

Using the first fundamental theorem of Nevanlinna theory, we obtain

T (rn, A) = O(1).

This contradicts the fact that A is transcendental and proves the claim that n(rn, 1
A

) > 0. For

the same reason, n(rn, 1
f
) + n(rn, 1

A
) is a non-zero positive integer by recalling that ωk = 1.

Hence, ω is a positive rational number. Since |ω| = 1, we get ω = 1 and so c = d. �

To complete the proof of theorem 2, we can now use (15), (19) and Lemma 6 to get, as

r → ∞ with r ∈ E0,
f ′(z)

f(z)
=

g′(z)

g(z)
+ o(1), |z| = r.
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Hence,

n(r,
1

f
) = n(r,

1

g
) (22)

holds for lager r ∈ E0.

Using (8), we get
P ′(z)

P (z)
+ U ′ =

Q′(z)

Q(z)
+ V ′ + o(1).

Using (13), we obtain

|U ′(z) − V ′(z)| ≤ 2rM1

holds for |z| = r and large r ∈ E0. Since U and V are entire, we deduce that Q0 = U ′ − V ′ is a

polynomial. Thus (8) becomes

F = G + M, M =
P ′

P
−

Q′

Q
+ Q0. (23)

Using (1) and (9), we get

F k +
k(k − 1)

2
F k−2F ′ + Pk−2(F ) = −A, (24)

where Pk−2 is a differential polynomial with constant coefficients, which vanishes identically for

k ≤ 2 and has degree at most k − 2 when k > 2. Combining (2), (3) and (10), we obtain

Gk +
k(k − 1)

2
Gk−2G′ + Pk−2(G) = −A − h. (25)

Using (23) and (24), we get

(G + M)k +
k(k − 1)

2
(G + M)k−2(G′ + M ′) + Pk−2(G + M) = −A. (26)

Combining (25) and (26), by the binomial theorem, we get

h = kMGk−1 + Sk−2(G, M), (27)

where Sk−2(G, M) is a differential polynomial in G, M and their derivatives, of total degree at

most k − 2 in G and its derivatives.

Now we claim that M 6≡ 0. To prove the claim, we may assume that M ≡ 0. Using (23),

we get F ≡ G. Using (24) and (25), we have h ≡ 0. This contradicts the hypothesis h 6≡ 0 and

completes the proof of the claim.

Dividing (27) by MGk−2, we get

kG +
Sk−2(G, M)

MGk−2
=

h

MGk−2
. (28)

Suppose that |G| > 1. Now
Sk−2(G,M)

MGk−2 is a sum of terms

1

MGk−2
M j0(M ′)j1 · · · (M (k))jk Gq0(G′)q1 · · · (G(k))qk

where q0 + q1 + · · · qk ≤ k − 2 and hence such a term has modulus at most

|M |j0+j1+···+jk−1|
M ′

M
|j1 · · · |

M (k)

M
|jk |G|q0+q1+···+qk−k+2|

G′

G
|q1 · · · |

G(k)

G
|qk
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≤ |M |j0+j1+···+jk−1|
M ′

M
|j1 · · · |

M (k)

M
|jk |

G′

G
|q1 · · · |

G(k)

G
|qk . (29)

Using (28) and (29), we get

m(r, G) ≤ c0m(r, M) + m(r,
1

M
) + m(r, h) + S(r, G) + S(r, M)

≤ c1T (r, M) + T (r, h) + S(r, G), (30)

where cj (j = 0, 1) denote positive constants. Using (8), (11)–(13), (19), (22), (23), (30) and

Lemma 6, we deduce that

m(r, A) ≤ c2(m(r, G) + log r + S(r, G))

≤ c3(m(r, M) + m(r,
1

M
) + log r + m(r, h) + S(r, G) + S(r, M))

≤ c4T (r, M) + o(T (r, A)) ≤ c4N(r, M) + o(T (r, A))

≤ c4(N(r,
1

f
) + N(r,

1

g
)) + o(T (r, A))

≤ c4(n(r,
1

f
) + n(r,

1

g
)) log r + o(T (r, A))

≤ 2c4n(r,
1

f
) log r + o(T (r, A))

= o(T (r, A)) = o(m(r, A))

holds for large r ∈ E0, where cj (j = 2, 3, 4) denote positive constants. This is evidently a

contradiction, and the proof is completed. �
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