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Abstract In this paper, we give some interesting results concerning the entire function f(z)
sharing a small function a CM with its difference operators or shifts.
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1. Introduction and main results

In this paper, we adopt the standard notations in the Nevanlinna theory of meromorphic
functions as explained in [1-4]. We denote the exponent of convergence of zeros of f(z) by A(f)

which is defined as follows
_ logN(r,1

r—oo  logr

In addition, for any given nonconstant meromorphic function f(z), we denote by S(r, f) any

quantity satisfying

lim =0, r¢€FE,
TG ) ?

where E C (0,00) is of finite logarithmic measure. A meromorphic function a(z) is said to be a
small function of f(z) if T(r,a) = S(r, f). In addition, we say that two meromorphic functions
f(2) and g(z) share a small function a CM, provided that f(z)—a and g(z)—a have the same zeros
counting multiplicities. For a fixed, nonzero complex constant 7, we define difference operators
as

Apf(2) = f(z+n) = f(2) and A} f(z) = AT7H (A f(2)), neN, n>2.

In particular, we use a general difference notation A?]f(z) = A"f(z) for n = 1.
In 1977, Rubel and Yang started to consider the uniqueness of meromorphic functions

sharing values with their derivatives in [5]. Here we recall a well-known conjecture by Briick [6].

Conjecture ([6]) Let f(z) be a nonconstant entire function such that p2(f) < oo and p2(f) ¢ N.
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If f(2) and f'(z) share a finite value a CM, then
f'(z) —a _
ORI

where c¢ is a nonzero constant and pa(f) is the hyper-order of f(z) which is defined by

po(f) = Tm loglog T(r, f)

r—00 logr

This conjecture has been well studied, although it remains open in full generality. For the
case that ¢ = 0 and that N(r, %) = S(r, f), the conjecture had been proved by Briick himself
[6]. In [7], Gundersen and Yang proved the above conjecture is true, provided that f(z) is of
finite order. Moreover, Chen and Shon [8] proved that the conjecture still holds for the case that
p(f) < % Recently, Heittokangas et al. [9] proved a shifted analogue of Briick conjecture as
the following Theorem A.

Theorem A ([9]) Let f(z) be a meromorphic function of order of growth p(f) < 2, and let
n € C. If f(2) and f(z +n) share the values a € C and co CM, then
fe+n)—a _
f(z) —a
for some constant 7.

Then Li and Gao [10] proved the following result.

Theorem B ([10]) Let f(z) be a non-periodic transcendental entire function of finite order
p(f) < oo. If f(z) and A} f(z) share a nonzero finite value a CM, then 1 < p(f) < A(f —a) +1,
that is, f(z) is of the form

f(z) = P(2)e?®) +q,

where P(z) is an entire function such that p(P) = A(f — a) and Q(z) is a polynomial such that
deg(Q) < p(P) + 1.

A new question is: What happens if the entire function f(z) shares a small function a(z)
with its difference operator AJ f (z) or shift f(z +n)? Considering this question, we improve

Theorems A and B by the following results.

Theorem 1.1 Let f(z) be a transcendental entire function of finite order and a(z) be an entire
small function of f(z) such that p(a) < p(f). If f(z) and A} f(z) share the entire small function
a CM, then p(f) > 1. What’s more, if p(Aja —a) <1, then we have 1 < p(f) < A(f —a) + 1.

Example 1.1 (1) Let

fey=e ™ 4 2at ) e =240
Then p(f) =1 > 0= p(a), and the functions f(z) and Af(z) share the small function a CM;

(2) Let
f(z)=2e"+(e—2), a(z)=e—1.

Then p(f) =1 > 0 = p(a), and the functions f(z) and Af(z) share the constant function a CM;
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(3) Let
In 2

f(z) =2e*m3n(2) + elnTQZ, a(z)=en ~.

If h(z) is a periodic entire function with period 7 such that 1 < p(h) < oo, then p(f) = p(h) >
1 = p(a), and the functions f(z) and A, f(z) share the small function a CM. Here we note that
for any 1 < o < oo, there exists a prime periodic entire function w(z) such that p(w) = o by

Theorem 1 in [11]. This implies the existence of h(z).

Theorem 1.2 Let f(z) be a transcendental entire function of finite order such that A, f(z) # 0,
and let a(z) be an entire small function of f(z) such that p(a) < p(f). If f(z) and f(z+n) share
the entire small function a CM, then p(f) > 1. What’s more, if a(z) is a periodic function with
period 1), especially, a constant function, then f(zo + kn) = a(zo) holds for all k € Z provided
that f(z9) = a(zo).

Example 1.2 (1) Let
flz)= e* sinz + cos z, a(z) =cosz, n=2m.

Then p(f) =2 > 1 = p(a), A, f(2) # 0 and the functions f(z) and f(z + n) share the entire
small function a CM;
(2) Let
f(z)=3e"4+2, a(z)=2.
Then p(f) =1> 0= p(a), Af(z) # 0 and the functions f(z) and f(z + 1) share the constant
function a CM.

Remark Theorems 1.1 and 1.2 improve Theorems A and B. Our method in the proof of them

is quite different from that in [10] and seems more simple.

2. Proof of Theorem 1.1

Lemma 2.1 ([12]) Let f(z) be a meromorphic function with p(f) = a < 4occ. Then for any
given € > 0, there exists a set E C [0,400) with finite linear measure mE < oo, such that for all

z satistying |z| = r ¢ [0,1] U E, and r sufficiently large,
exp{—r®"} < [f(2)] < exp{r*T°}.

Lemma 2.2 ([13]) Let f(z) be a meromorphic function with finite order p(f) = p < 1. Then
for any given € > 0, and integers 0 < j < k, there exists a set E C (1,00) of finite logarithmic
measure, so that for all z satisfying |z| =r & EU|0,1], we have
A*f(2)
A f(z)

We need the following observation.

< |Z|(kfj)(p71)+s.

Lemma 2.3 Let

P(z) = pnz" +Pn—12"_1 +- - +po, Q()=g2"+ qn_lz"_l + -+ qo,
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where n is a positive integer, p, = ae?, ¢, = fe'?, a > 3> 0, 0,0 € [~m, 7). If pp # qn, then

for any given € > 0, there exists some ry > 1, such that for all z = re=in satisfying r > ro, we

have
Re{P(re ")} > a(l — )™

and
Re{P(re”n) — Q(re 'n)} > [a — Beos(d — ¢)](1 — e)r™
Proof The first assertion holds because
Re{pn(reﬂ'%)”} =ar"
and for sufficiently large r,
[Pn12" | e [pol = o(r™).
Next we prove the second assertion. Since a > 8 > 0 and cos(f — ¢) = 1 if and only if

0 = ¢, we see that, if p, # ¢n,
a — Beos(f — ) > 0.

What’s more, we have
Re{pa(re™"")" = gu(re™%)"} = [a = feos(0 — p)r"
On the other hand, for z = r7e™, |z| = r, ¢ € [~7, ), we have, as r sufficiently large,
Pa-12" 7 4+ [pol + |gn-12" 7+ - + [go] = o(r™).

Now we can easily find that our conclusion is true. [J
The following Lemma was proved by Nevanlinna in [14], and can be seen in [4], Theorem
1.50.

Lemma 2.4 ([4,14]) Let f;(z) (j =1,2,...,n,n > 2) be meromorphic functions such that

(1) 375-1Cjfi(2) =0, where C; (j = 1,2,...,n) are all constants;

(2) fi(z)#0((=1,2,...,n) and j; are not constant functions for 1 < j < k <n;

(3) 251 (N(r, fj) + N(r, % L)) = o(7(r)), (r — oco,r ¢ E), where E is an exceptional set of
finite linear measure, 7(r) = mini<;<r<n{T(r, %)}
Then C; =0 (j =1,2,...,n).

Proof of Theorem 1.1 Without loss of generality, it may be assumed that 7 = 1. Denote
9(z) = f(z) — a(2), then p(g) = p(f) = p and

A" f(z) = A"g(z) + A"a(z) = Y (-1)" I Clg(z + j) + A"a(2),
7=0
where C0 =C" =1,C} =C ' =n,C%2 =C" 2 =n(n—1)/2,..., are non-zero integers.
It follows from the assumption that
A"f(z) —alz) _ Ang(z) + Ama(z) — a(2)
f(z) —a(z) 9(2)
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-

(=) 9Cg(z + ) +b(2)

— =0 = P®) .
9(2) ’ @1)

where b(z) = A"a(z) — a(z) is an entire small function of f(z) such that o = p(b) < p(a) < p,

and P(z) is an entire function satisfying
p(e”) < p(f) = p < oo
Therefore, we see that P(z) is a polynomial with 0 < d = deg(P) < p. Now set
P(2) =paz’ +pa12""" + - + po,

where pg # 0,p4—1, - - .,po are constants, pg = age’?®, ag > 0, 4 € [—7, 7). Next, we divide the
proof into two steps.

Step 1. We prove that p > 1. Otherwise, we have p < 1 and hence P(z) = C € C. By
Lemma 2.1, for any given €;(0 < &1 < min{#37, 1-21), there exists a set By C [0,+00) with
finite linear measure, such that for all z satisfying |z| = r € [0, 1] U E1, and r sufficiently large,

exp{—r791} < [b(2)] < exp{rTtei}. (2.2)

By Lemma 2.2, for the given 1, there exists a set Fy C (1, 00) of finite logarithmic measure,

so that for all z satisfying |z| = r & [0, 1] U E», we have

A"g(z) (p—1
< n(p )+€1. .
S|k (2.3)

Choose an infinite sequence of points {zj = rre?*} such that
lg(2k)] = M(ri,g) > exp{ry” "'}, i & E1U Ea. (2.4)

(2.1)—(2.4) give a contradiction that

A"g(zp) |b(2)| _
¢l <« g < n(p—1)+e1 _ ]
le I_\ e ]+M(%g) <7y +0(1) = o(1)

Step 2. We prove that p < A(f —a) + 1, if p(A"a — a) < 1. Otherwise, we have p >
A(f —a) + 1 and hence p(g) > A(g) + 1. It follows from the Hadamard factorization theorem
that,
9(2) = h(z)e?,

where Q(z) is a polynomial such that (we will need this special form to simplify our proof in the
following)
Q(2) = —(@z' + a1+ + q0),

where ¢ # 0,q;_1,...,qo are constants, ¢ = ($e'?', 3, > 0, ¢; € [, 7), and h(z) is an entire
function satisfying p(h) = A(g) <p—-1=1-1.
Rewrite (2.1) as

(~1)"ICIR(z + )e+)

bz) _ P _ i=0

h(z)e@Q®)
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Observe that for each j € {0,...,n}, deg(Q(z+j) — Q(z)) =1—1, and p(%) =1, then by
the equation above, we can easily get | < d. Thus we have d = 1.

We claim that pg = ¢4. Otherwise, pg # qq, and we may assume that ag > 84 > 0. In what
follows, set Q% (2) = Q(z + j) + qaz?, P*(2) = P(z) — paz®. Then we obtain from (2.1) that
o S (IPTICHRG + e
P(2) b(Z)e Q=) . 7=0

CEE h()e@®) ' (25)

e

Set b1(z) = b(2), ba(2) = h(2), o; = p(b;) (j = 1,2), then by Lemma 2.1 again, for any given
£2(0 < g2 < min{ 57, %,% ), there exists a set F3 C [0,+00) with finite linear measure,

such that for all z satisfying |z| =r & [0,1] U E5, and r sufficiently large,
exp{—r772} < |b;(2)| < exp{r?ite}. (2.6)

By Lemma 2.3, we see that, for sufficiently large r,
‘ e_Q(Teii%i

94

)

) 04 i 9d
| = exp{—{Re{P(re™ ) — [-Q(re™ ) }})

< exp{—[aqg — Bacos(0q — ¢q)](1 — sg)rd}. (2.7)

eP(re

By (2.6) and (2.7), we can easily get that
N
b(re‘i%d)e_Q(Teﬂ%)

o, G
h(re=td )eP(re™ @)

< exp{—[aq — Bacos(8g — pa)](1 — eg)rd 4 ro1+e2 4 pozteay

< exp{—[ag — Bacos(Bg — pa)](1 — e2)r? + 2rd=e2}, (2.8)

as r ¢ [0,1] U E3, and r sufficiently large.
Since pg # qq and ag > B4 > 0, we have ag — 4 cos(84 — ¢q) > 0. It now follows by (2.8)
that

.04 77;24
b(re’ZT)efQ(Te <) ro—i g
o = o(|ePtre ), (2.9)
h(re=td)

asr € [0,1] U E5, and r — oo.
Applying Lemma 2.3 again, with (2.5) and (2.9), we have

1 1 i% 0
g exp{(1 - £2)agrt} < §|eP(TE D) < [ePlre )| =

asr € [0,1] U E5, and r — oo, which is impossible.
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Now we have pg = ¢q. Then we obtain from (2.1) that

> (~1)" (4 e )

J=0 _ paz? [ P*(z) _ b(Z)
h(z)e@a ) ‘ (6 h(2)eQ5 () ) ’
which infers that o2)
P*(z) _ 72 _

and hence we have

S (=) ICIh(z + §)e%i ) = 0 = Z )" ICIg(z +j) = 0. (2.11)
7=0
Then from (2.10), and p(b) = p(A"a — a) < 1, we see that p(h) = A(h) < A(b) < p(b) < 1. Since
d=1=p(g9) > Mg) + 1, we have d > 2. Therefore, for 0 < j <k < n, deg(Q}(z x
Applying Lemma 2.4 to (2.11), we get a contradiction that (—1)"7/C} = 0,
Hence, we prove that 1 < p(f) < A(f —a)+1. O

3. Proof of Theorem 1.2

Lemma 3.1 ([15]) Let g be a function transcendental and meromorphic in the plane of order
less than 1. Let h > 0. Then there exists an e-set E such that
/
gltm , 9z+n)
g9(z+mn) 9(2)
uniformly in n for |n| < h. Further, E may be chosen so that for large z not in E the function g

—1 as z— o0 in C\E,

has no zeros or poles in | — z| < h.

Proof of Theorem 1.2 Denote g(z) = f(z) —a(z), then p(g) = p(f) = p. By assumption, we

have
fetm) —alz) _glztm) +b() _ pe). (3.1)

f(z)—a(z) 9(2)
where P(z) is a polynomial with d = deg(P) < p and b(z) = a(z +n) — a(z) is an entire small
function of f(z) such that o = p(b) < p(a) < p.
We prove that p > 1. Otherwise, we have p < 1 and hence P(z) = C € C. By Lemma 2.1,

for any given ¢ (0 < ¢ < £5%), there exists a set Ey C [0, +00) with finite linear measure, such

that for all z satisfying |z| =r ¢ [0,1]U Ey, and r sufficiently large,
exp{—r71} < |b(2)| < exp{r’Te}. (3.2)

By Lemma 3.1, there exists an e-set F' such that

g9(z+m)
9(2)
Denote Ey = {|z] : z € F,|z| > 1}, then E3 has finite logarithmic measure.

—1 as z— o0 in C\ F. (3.3)

Choose an infinite sequence of points {zj = rre?*} such that

lg(zk)| = M(rk,g) > exp{ry °}, 7 & E1U Es. (3.4)
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From (3.2)—(3.4), we can obtain
g9(zk +m) | blzk)
_l’_
9(zk)  g(zk)
From this and (3.1), we immediately get that e“ = 1, which yields f(z +n) = f(2) for all
z € C, a contradiction to our assumption that A, f(z) # 0. Hence, we prove that p(f) > 1.

— 1, r, &€ E1UEs, 1 — 00.

Finally, suppose that a(z) is a periodic function with period 7, especially, a constant func-
tion. Now if there exists a point zg € C such that f(z9) = a(zo), then also f(zo +n) = a(zo),
which implies that f(zo + kn) = a(zp) holds for all k € Z. O
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