Entire Function Sharing Small Function with Its Difference Operators or Shifts

Baoqin CHEN*, Zongxuan CHEN
School of Mathematical Sciences, South China Normal University, Guangdong 510631, P. R. China

Abstract

In this paper, we give some interesting results concerning the entire function $f(z)$ sharing a small function a CM with its difference operators or shifts.

Keywords Brück conjecture; shift; difference; shared value.
MR(2010) Subject Classification 30D35; 39B32

1. Introduction and main results

In this paper, we adopt the standard notations in the Nevanlinna theory of meromorphic functions as explained in [1-4]. We denote the exponent of convergence of zeros of $f(z)$ by $\lambda(f)$ which is defined as follows

$$
\lambda(f)=\varlimsup_{r \rightarrow \infty} \frac{\log N\left(r, \frac{1}{f}\right)}{\log r}
$$

In addition, for any given nonconstant meromorphic function $f(z)$, we denote by $S(r, f)$ any quantity satisfying

$$
\lim _{r \rightarrow \infty} \frac{S(r, f)}{T(r, f)}=0, \quad r \notin E
$$

where $E \subset(0, \infty)$ is of finite logarithmic measure. A meromorphic function $a(z)$ is said to be a small function of $f(z)$ if $T(r, a)=S(r, f)$. In addition, we say that two meromorphic functions $f(z)$ and $g(z)$ share a small function a CM, provided that $f(z)-a$ and $g(z)-a$ have the same zeros counting multiplicities. For a fixed, nonzero complex constant η, we define difference operators as

$$
\Delta_{\eta} f(z)=f(z+\eta)-f(z) \text { and } \Delta_{\eta}^{n} f(z)=\Delta_{\eta}^{n-1}\left(\Delta_{\eta} f(z)\right), \quad n \in \mathbb{N}, n \geq 2
$$

In particular, we use a general difference notation $\Delta_{\eta}^{n} f(z)=\Delta^{n} f(z)$ for $\eta=1$.
In 1977, Rubel and Yang started to consider the uniqueness of meromorphic functions sharing values with their derivatives in [5]. Here we recall a well-known conjecture by Brück [6].

Conjecture ([6]) Let $f(z)$ be a nonconstant entire function such that $\rho_{2}(f)<\infty$ and $\rho_{2}(f) \notin \mathbb{N}$.
Received December 9, 2010; Accepted May 18, 2011
Supported by the National Natural Science Foundation of China (Grant Nos. 10871076; 11026096).

* Corresponding author

E-mail address: chenbaoqin_chbq@126.com (Baoqin CHEN); chzx@vip.sina.com (Zongxuan CHEN)

If $f(z)$ and $f^{\prime}(z)$ share a finite value a $C M$, then

$$
\frac{f^{\prime}(z)-a}{f(z)-a}=c
$$

where c is a nonzero constant and $\rho_{2}(f)$ is the hyper-order of $f(z)$ which is defined by

$$
\rho_{2}(f)=\varlimsup_{r \rightarrow \infty} \frac{\log \log T(r, f)}{\log r}
$$

This conjecture has been well studied, although it remains open in full generality. For the case that $a=0$ and that $N\left(r, \frac{1}{f^{\prime}}\right)=S(r, f)$, the conjecture had been proved by Brück himself [6]. In [7], Gundersen and Yang proved the above conjecture is true, provided that $f(z)$ is of finite order. Moreover, Chen and Shon [8] proved that the conjecture still holds for the case that $\rho_{2}(f)<\frac{1}{2}$. Recently, Heittokangas et al. [9] proved a shifted analogue of Brück conjecture as the following Theorem A.

Theorem A ([9]) Let $f(z)$ be a meromorphic function of order of growth $\rho(f)<2$, and let $\eta \in \mathbb{C}$. If $f(z)$ and $f(z+\eta)$ share the values $a \in \mathbb{C}$ and $\infty C M$, then

$$
\frac{f(z+\eta)-a}{f(z)-a}=\tau
$$

for some constant τ.
Then Li and Gao [10] proved the following result.
Theorem B ([10]) Let $f(z)$ be a non-periodic transcendental entire function of finite order $\rho(f)<\infty$. If $f(z)$ and $\Delta_{\eta}^{n} f(z)$ share a nonzero finite value a $C M$, then $1 \leq \rho(f) \leq \lambda(f-a)+1$, that is, $f(z)$ is of the form

$$
f(z)=P(z) e^{Q(z)}+a
$$

where $P(z)$ is an entire function such that $\rho(P)=\lambda(f-a)$ and $Q(z)$ is a polynomial such that $\operatorname{deg}(Q) \leq \rho(P)+1$.

A new question is: What happens if the entire function $f(z)$ shares a small function $a(z)$ with its difference operator $\Delta_{\eta}^{n} f(z)$ or shift $f(z+\eta)$? Considering this question, we improve Theorems A and B by the following results.

Theorem 1.1 Let $f(z)$ be a transcendental entire function of finite order and $a(z)$ be an entire small function of $f(z)$ such that $\rho(a)<\rho(f)$. If $f(z)$ and $\Delta_{\eta}^{n} f(z)$ share the entire small function $a C M$, then $\rho(f) \geq 1$. What's more, if $\rho\left(\Delta_{\eta}^{n} a-a\right)<1$, then we have $1 \leq \rho(f) \leq \lambda(f-a)+1$.

Example 1.1 (1) Let

$$
f(z)=e^{-z \ln 2}+\frac{3}{2} z+\frac{3}{2}, \quad a(z)=\frac{z}{2}+\frac{3}{2} .
$$

Then $\rho(f)=1>0=\rho(a)$, and the functions $f(z)$ and $\Delta f(z)$ share the small function $a \mathrm{CM}$;
(2) Let

$$
f(z)=2 e^{z}+(e-2), \quad a(z) \equiv e-1
$$

Then $\rho(f)=1>0=\rho(a)$, and the functions $f(z)$ and $\Delta f(z)$ share the constant function a CM;
(3) Let

$$
f(z)=2 e^{z \ln 3} h(z)+e^{\frac{\ln 2 z}{\eta} z}, \quad a(z)=e^{\frac{\ln 2}{\eta} z} .
$$

If $h(z)$ is a periodic entire function with period η such that $1<\rho(h)<\infty$, then $\rho(f)=\rho(h)>$ $1=\rho(a)$, and the functions $f(z)$ and $\Delta_{\eta} f(z)$ share the small function a CM. Here we note that for any $1 \leq \sigma<\infty$, there exists a prime periodic entire function $w(z)$ such that $\rho(w)=\sigma$ by Theorem 1 in [11]. This implies the existence of $h(z)$.

Theorem 1.2 Let $f(z)$ be a transcendental entire function of finite order such that $\Delta_{\eta} f(z) \not \equiv 0$, and let $a(z)$ be an entire small function of $f(z)$ such that $\rho(a)<\rho(f)$. If $f(z)$ and $f(z+\eta)$ share the entire small function a CM, then $\rho(f) \geq 1$. What's more, if $a(z)$ is a periodic function with period η, especially, a constant function, then $f\left(z_{0}+k \eta\right)=a\left(z_{0}\right)$ holds for all $k \in \mathbb{Z}$ provided that $f\left(z_{0}\right)=a\left(z_{0}\right)$.

Example 1.2 (1) Let

$$
f(z)=e^{z^{2}} \sin z+\cos z, \quad a(z)=\cos z, \quad \eta=2 \pi .
$$

Then $\rho(f)=2>1=\rho(a), \Delta_{\eta} f(z) \not \equiv 0$ and the functions $f(z)$ and $f(z+\eta)$ share the entire small function a CM;
(2) Let

$$
f(z)=3 e^{z}+2, \quad a(z) \equiv 2 .
$$

Then $\rho(f)=1>0=\rho(a), \Delta f(z) \not \equiv 0$ and the functions $f(z)$ and $f(z+1)$ share the constant function a CM.

Remark Theorems 1.1 and 1.2 improve Theorems A and B. Our method in the proof of them is quite different from that in [10] and seems more simple.

2. Proof of Theorem 1.1

Lemma 2.1 ([12]) Let $f(z)$ be a meromorphic function with $\rho(f)=\alpha<+\infty$. Then for any given $\varepsilon>0$, there exists a set $E \subset[0,+\infty)$ with finite linear measure $m E<\infty$, such that for all z satisfying $|z|=r \notin[0,1] \cup E$, and r sufficiently large,

$$
\exp \left\{-r^{\alpha+\varepsilon}\right\} \leq|f(z)| \leq \exp \left\{r^{\alpha+\varepsilon}\right\}
$$

Lemma 2.2 ([13]) Let $f(z)$ be a meromorphic function with finite order $\rho(f)=\rho<1$. Then for any given $\varepsilon>0$, and integers $0 \leq j<k$, there exists a set $E \subset(1, \infty)$ of finite logarithmic measure, so that for all z satisfying $|z|=r \notin E \cup[0,1]$, we have

$$
\left|\frac{\Delta^{k} f(z)}{\Delta^{j} f(z)}\right| \leq|z|^{(k-j)(\rho-1)+\varepsilon} .
$$

We need the following observation.
Lemma 2.3 Let

$$
P(z)=p_{n} z^{n}+p_{n-1} z^{n-1}+\cdots+p_{0}, \quad Q(z)=q_{n} z^{n}+q_{n-1} z^{n-1}+\cdots+q_{0},
$$

where n is a positive integer, $p_{n}=\alpha e^{i \theta}, q_{n}=\beta e^{i \varphi}, \alpha \geq \beta>0, \theta, \varphi \in[-\pi, \pi)$. If $p_{n} \neq q_{n}$, then for any given $\varepsilon>0$, there exists some $r_{0}>1$, such that for all $z=r e^{-i \frac{\theta}{n}}$ satisfying $r \geq r_{0}$, we have

$$
\operatorname{Re}\left\{P\left(r e^{-i \frac{\theta}{n}}\right)\right\}>\alpha(1-\varepsilon) r^{n}
$$

and

$$
\operatorname{Re}\left\{P\left(r e^{-i \frac{\theta}{n}}\right)-Q\left(r e^{-i \frac{\theta}{n}}\right)\right\}>[\alpha-\beta \cos (\theta-\varphi)](1-\varepsilon) r^{n}
$$

Proof The first assertion holds because

$$
\operatorname{Re}\left\{p_{n}\left(r e^{-i \frac{\theta}{n}}\right)^{n}\right\}=\alpha r^{n}
$$

and for sufficiently large r,

$$
\left|p_{n-1} z^{n-1}\right|+\cdots+\left|p_{0}\right|=o\left(r^{n}\right)
$$

Next we prove the second assertion. Since $\alpha \geq \beta>0$ and $\cos (\theta-\varphi)=1$ if and only if $\theta=\varphi$, we see that, if $p_{n} \neq q_{n}$,

$$
\alpha-\beta \cos (\theta-\varphi)>0
$$

What's more, we have

$$
\operatorname{Re}\left\{p_{n}\left(r e^{-i \frac{\theta}{n}}\right)^{n}-q_{n}\left(r e^{-i \frac{\theta}{n}}\right)^{n}\right\}=[\alpha-\beta \cos (\theta-\varphi)] r^{n}
$$

On the other hand, for $z=r e^{i \psi},|z|=r, \psi \in[-\pi, \pi)$, we have, as r sufficiently large,

$$
\left|p_{n-1} z^{n-1}\right|+\cdots+\left|p_{0}\right|+\left|q_{n-1} z^{n-1}\right|+\cdots+\left|q_{0}\right|=o\left(r^{n}\right)
$$

Now we can easily find that our conclusion is true.
The following Lemma was proved by Nevanlinna in [14], and can be seen in [4], Theorem 1.50 .

Lemma $2.4([4,14])$ Let $f_{j}(z)(j=1,2, \ldots, n, n \geq 2)$ be meromorphic functions such that
(1) $\sum_{j=1}^{n} C_{j} f_{j}(z) \equiv 0$, where $C_{j}(j=1,2, \ldots, n)$ are all constants;
(2) $f_{j}(z) \not \equiv 0(j=1,2, \ldots, n)$ and $\frac{f_{j}}{f_{k}}$ are not constant functions for $1 \leq j<k \leq n$;
(3) $\sum_{j=1}^{n}\left(N\left(r, f_{j}\right)+N\left(r, \frac{1}{f_{j}}\right)\right)=o(\tau(r)),(r \rightarrow \infty, r \notin E)$, where E is an exceptional set of finite linear measure, $\tau(r)=\min _{1 \leq j<k \leq n}\left\{T\left(r, \frac{f_{j}}{f_{k}}\right)\right\}$.
Then $C_{j}=0(j=1,2, \ldots, n)$.
Proof of Theorem 1.1 Without loss of generality, it may be assumed that $\eta=1$. Denote $g(z)=f(z)-a(z)$, then $\rho(g)=\rho(f)=\rho$ and

$$
\Delta^{n} f(z)=\Delta^{n} g(z)+\Delta^{n} a(z)=\sum_{j=0}^{n}(-1)^{n-j} C_{n}^{j} g(z+j)+\Delta^{n} a(z)
$$

where $C_{n}^{0}=C_{n}^{n}=1, C_{n}^{1}=C_{n}^{n-1}=n, C_{n}^{2}=C_{n}^{n-2}=n(n-1) / 2, \ldots$, are non-zero integers.
It follows from the assumption that

$$
\frac{\Delta^{n} f(z)-a(z)}{f(z)-a(z)}=\frac{\Delta^{n} g(z)+\Delta^{n} a(z)-a(z)}{g(z)}
$$

$$
\begin{equation*}
=\frac{\sum_{j=0}^{n}(-1)^{n-j} C_{n}^{j} g(z+j)+b(z)}{g(z)}=e^{P(z)} \tag{2.1}
\end{equation*}
$$

where $b(z)=\Delta^{n} a(z)-a(z)$ is an entire small function of $f(z)$ such that $\sigma=\rho(b) \leq \rho(a)<\rho$, and $P(z)$ is an entire function satisfying

$$
\rho\left(e^{P}\right) \leq \rho(f)=\rho<\infty
$$

Therefore, we see that $P(z)$ is a polynomial with $0 \leq d=\operatorname{deg}(P) \leq \rho$. Now set

$$
P(z)=p_{d} z^{d}+p_{d-1} z^{d-1}+\cdots+p_{0}
$$

where $p_{d} \neq 0, p_{d-1}, \ldots, p_{0}$ are constants, $p_{d}=\alpha_{d} e^{i \theta_{d}}, \alpha_{d}>0, \theta_{d} \in[-\pi, \pi)$. Next, we divide the proof into two steps.

Step 1. We prove that $\rho \geq 1$. Otherwise, we have $\rho<1$ and hence $P(z) \equiv C \in \mathbb{C}$. By Lemma 2.1, for any given $\varepsilon_{1}\left(0<\varepsilon_{1}<\min \left\{\frac{\rho-\sigma}{3}, \frac{1-\rho}{2}\right\}\right)$, there exists a set $E_{1} \subset[0,+\infty)$ with finite linear measure, such that for all z satisfying $|z|=r \notin[0,1] \cup E_{1}$, and r sufficiently large,

$$
\begin{equation*}
\exp \left\{-r^{\sigma+\varepsilon_{1}}\right\} \leq|b(z)| \leq \exp \left\{r^{\sigma+\varepsilon_{1}}\right\} \tag{2.2}
\end{equation*}
$$

By Lemma 2.2, for the given ε_{1}, there exists a set $E_{2} \subset(1, \infty)$ of finite logarithmic measure, so that for all z satisfying $|z|=r \notin[0,1] \cup E_{2}$, we have

$$
\begin{equation*}
\left|\frac{\Delta^{n} g(z)}{g(z)}\right| \leq|z|^{n(\rho-1)+\varepsilon_{1}} \tag{2.3}
\end{equation*}
$$

Choose an infinite sequence of points $\left\{z_{k}=r_{k} e^{i \theta_{k}}\right\}$ such that

$$
\begin{equation*}
\left|g\left(z_{k}\right)\right|=M\left(r_{k}, g\right) \geq \exp \left\{r_{k}^{\rho-\varepsilon_{1}}\right\}, \quad r_{k} \notin E_{1} \cup E_{2} \tag{2.4}
\end{equation*}
$$

(2.1)-(2.4) give a contradiction that

$$
\left|e^{C}\right| \leq\left|\frac{\Delta^{n} g\left(z_{k}\right)}{g\left(z_{k}\right)}\right|+\frac{\left|b\left(z_{k}\right)\right|}{M\left(r_{k}, g\right)} \leq r_{k}^{n(\rho-1)+\varepsilon_{1}}+o(1)=o(1)
$$

Step 2. We prove that $\rho \leq \lambda(f-a)+1$, if $\rho\left(\Delta^{n} a-a\right)<1$. Otherwise, we have $\rho>$ $\lambda(f-a)+1$ and hence $\rho(g)>\lambda(g)+1$. It follows from the Hadamard factorization theorem that,

$$
g(z)=h(z) e^{Q(z)}
$$

where $Q(z)$ is a polynomial such that (we will need this special form to simplify our proof in the following)

$$
Q(z)=-\left(q_{l} z^{l}+q_{l-1} z^{l-1}+\cdots+q_{0}\right)
$$

where $q_{l} \neq 0, q_{l-1}, \ldots, q_{0}$ are constants, $q_{l}=\beta_{l} e^{i \varphi_{l}}, \beta_{l}>0, \varphi_{l} \in[-\pi, \pi)$, and $h(z)$ is an entire function satisfying $\rho(h)=\lambda(g)<\rho-1=l-1$.

Rewrite (2.1) as

$$
\frac{b(z)}{h(z) e^{Q(z)}}=e^{P(z)}-\frac{\sum_{j=0}^{n}(-1)^{n-j} C_{n}^{j} h(z+j) e^{Q(z+j)}}{h(z) e^{Q(z)}}
$$

Observe that for each $j \in\{0, \ldots, n\}$, $\operatorname{deg}(Q(z+j)-Q(z))=l-1$, and $\rho\left(\frac{b(z)}{h(z) e^{Q(z)}}\right)=l$, then by the equation above, we can easily get $l \leq d$. Thus we have $d=l$.

We claim that $p_{d}=q_{d}$. Otherwise, $p_{d} \neq q_{d}$, and we may assume that $\alpha_{d} \geq \beta_{d}>0$. In what follows, set $Q_{j}^{*}(z)=Q(z+j)+q_{d} z^{d}, P^{*}(z)=P(z)-p_{d} z^{d}$. Then we obtain from (2.1) that

$$
\begin{equation*}
e^{P(z)}-\frac{b(z) e^{-Q(z)}}{h(z)}=\frac{\sum_{j=0}^{n}(-1)^{n-j} C_{n}^{j} h(z+j) e^{Q_{j}^{*}(z)}}{h(z) e^{Q_{0}^{*}(z)}} \tag{2.5}
\end{equation*}
$$

Set $b_{1}(z)=b(z), b_{2}(z)=h(z), \sigma_{j}=\rho\left(b_{j}\right)(j=1,2)$, then by Lemma 2.1 again, for any given $\varepsilon_{2}\left(0<\varepsilon_{2}<\min \left\{\frac{\rho-\sigma_{1}}{2}, \frac{\rho-\sigma_{2}}{2}, \frac{1}{2}\right\}\right)$, there exists a set $E_{3} \subset[0,+\infty)$ with finite linear measure, such that for all z satisfying $|z|=r \notin[0,1] \cup E_{3}$, and r sufficiently large,

$$
\begin{equation*}
\exp \left\{-r^{\sigma_{j}+\varepsilon_{2}}\right\} \leq\left|b_{j}(z)\right| \leq \exp \left\{r^{\sigma_{j}+\varepsilon_{2}}\right\} \tag{2.6}
\end{equation*}
$$

By Lemma 2.3, we see that, for sufficiently large r,

$$
\begin{align*}
\left|\frac{e^{-Q\left(r e^{-i} \frac{\theta_{d}}{d}\right)}}{e^{P\left(r e^{-i \frac{\theta_{d}}{d}}\right)}}\right| & =\exp \left\{-\left\{\operatorname{Re}\left\{P\left(r e^{-i \frac{\theta_{d}}{d}}\right)-\left[-Q\left(r e^{-i \frac{\theta_{d}}{d}}\right)\right]\right\}\right\}\right\} \\
& <\exp \left\{-\left[\alpha_{d}-\beta_{d} \cos \left(\theta_{d}-\varphi_{d}\right)\right]\left(1-\varepsilon_{2}\right) r^{d}\right\} . \tag{2.7}
\end{align*}
$$

By (2.6) and (2.7), we can easily get that

$$
\begin{align*}
\left\lvert\, \frac{\left.b\left(r e^{-i \frac{\theta_{d}}{d}}\right) e^{-Q\left(r e^{-i \frac{\theta_{d}}{d}}\right.}\right)}{\left.h\left(r e^{-i \frac{\theta_{d}}{d}}\right) e^{P\left(r e^{-i \frac{\theta_{d}}{d}}\right)} \right\rvert\,}\right. & <\exp \left\{-\left[\alpha_{d}-\beta_{d} \cos \left(\theta_{d}-\varphi_{d}\right)\right]\left(1-\varepsilon_{2}\right) r^{d}+r^{\sigma_{1}+\varepsilon_{2}}+r^{\sigma_{2}+\varepsilon_{2}}\right\} \\
& <\exp \left\{-\left[\alpha_{d}-\beta_{d} \cos \left(\theta_{d}-\varphi_{d}\right)\right]\left(1-\varepsilon_{2}\right) r^{d}+2 r^{d-\varepsilon_{2}}\right\} \tag{2.8}
\end{align*}
$$

as $r \notin[0,1] \cup E_{3}$, and r sufficiently large.
Since $p_{d} \neq q_{d}$ and $\alpha_{d} \geq \beta_{d}>0$, we have $\alpha_{d}-\beta_{d} \cos \left(\theta_{d}-\varphi_{d}\right)>0$. It now follows by (2.8) that

$$
\begin{equation*}
\left|\frac{b\left(r e^{-i \frac{\theta_{d}}{d}}\right) e^{-Q\left(r e^{-i \frac{\theta_{d}}{d}}\right)}}{h\left(r e^{-i \frac{\theta_{d}}{d}}\right)}\right|=o\left(\left|e^{P\left(r e^{-i \frac{\theta_{d}}{d}}\right)}\right|\right) \tag{2.9}
\end{equation*}
$$

as $r \notin[0,1] \cup E_{3}$, and $r \rightarrow \infty$.
Applying Lemma 2.3 again, with (2.5) and (2.9), we have

$$
\begin{aligned}
\frac{1}{2} \exp \left\{\left(1-\varepsilon_{2}\right) \alpha_{d} r^{d}\right\} \leq \frac{1}{2}\left|e^{P\left(r e^{-i \frac{\theta_{d}}{d}}\right)}\right| & <\left|e^{P\left(r e^{-i \frac{\theta_{d}}{d}}\right)}\right|-\left|\frac{b\left(r e^{-i \frac{\theta_{d}}{d}}\right) e^{-Q\left(r e^{-i \frac{\theta_{d}}{d}}\right)}}{h\left(r e^{-i \frac{\theta_{d}}{d}}\right)}\right| \\
& \leq \left\lvert\, \frac{\sum_{j=0}^{n}(-1)^{n-j} C_{n}^{j} h\left(r e^{-i \frac{\theta_{d}}{d}}+j\right) e^{Q_{j}^{*}\left(r e^{-i \frac{\theta_{d}}{d}}\right)}}{\left.h\left(r e^{-i \frac{\theta_{d}}{d}}\right) e^{Q_{0}^{*}\left(r e^{-i \frac{\theta_{d}}{d}}\right)} \right\rvert\,}\right. \\
& <\exp \left\{r^{d-\frac{1}{2}}\right\},
\end{aligned}
$$

as $r \notin[0,1] \cup E_{3}$, and $r \rightarrow \infty$, which is impossible.

Now we have $p_{d}=q_{d}$. Then we obtain from (2.1) that

$$
\frac{\sum_{j=0}^{n}(-1)^{n-j} C_{n}^{j} h(z+j) e^{Q_{j}^{*}(z)}}{h(z) e^{Q_{0}^{*}(z)}}=e^{p_{d} z^{d}}\left(e^{P^{*}(z)}-\frac{b(z)}{h(z) e^{Q_{0}^{*}(z)}}\right),
$$

which infers that

$$
\begin{equation*}
e^{P^{*}(z)}-\frac{b(z)}{h(z) e^{Q_{0}^{*}(z)}} \equiv 0, \tag{2.10}
\end{equation*}
$$

and hence we have

$$
\begin{equation*}
\sum_{j=0}^{n}(-1)^{n-j} C_{n}^{j} h(z+j) e^{Q_{j}^{*}(z)}=0 \Longleftrightarrow \sum_{j=0}^{n}(-1)^{n-j} C_{n}^{j} g(z+j)=0 . \tag{2.11}
\end{equation*}
$$

Then from (2.10), and $\rho(b)=\rho\left(\Delta^{n} a-a\right)<1$, we see that $\rho(h)=\lambda(h) \leq \lambda(b) \leq \rho(b)<1$. Since $d=l=\rho(g)>\lambda(g)+1$, we have $d \geq 2$. Therefore, for $0 \leq j<k \leq n, \operatorname{deg}\left(Q_{j}^{*}(z)-Q_{k}^{*}(z)\right) \geq 1$. Applying Lemma 2.4 to (2.11), we get a contradiction that $(-1)^{n-j} C_{n}^{j}=0, j=0,1, \ldots, n$. Hence, we prove that $1 \leq \rho(f) \leq \lambda(f-a)+1$.

3. Proof of Theorem 1.2

Lemma 3.1 ([15]) Let g be a function transcendental and meromorphic in the plane of order less than 1. Let $h>0$. Then there exists an ε-set E such that

$$
\frac{g^{\prime}(z+\eta)}{g(z+\eta)} \rightarrow 0, \quad \frac{g(z+\eta)}{g(z)} \rightarrow 1 \quad \text { as } z \rightarrow \infty \text { in } \mathbb{C} \backslash E,
$$

uniformly in η for $|\eta| \leq h$. Further, E may be chosen so that for large z not in E the function g has no zeros or poles in $|\zeta-z| \leq h$.

Proof of Theorem 1.2 Denote $g(z)=f(z)-a(z)$, then $\rho(g)=\rho(f)=\rho$. By assumption, we have

$$
\begin{equation*}
\frac{f(z+\eta)-a(z)}{f(z)-a(z)}=\frac{g(z+\eta)+b(z)}{g(z)}=e^{P(z)}, \tag{3.1}
\end{equation*}
$$

where $P(z)$ is a polynomial with $d=\operatorname{deg}(P) \leq \rho$ and $b(z)=a(z+\eta)-a(z)$ is an entire small function of $f(z)$ such that $\sigma=\rho(b) \leq \rho(a)<\rho$.

We prove that $\rho \geq 1$. Otherwise, we have $\rho<1$ and hence $P(z) \equiv C \in \mathbb{C}$. By Lemma 2.1, for any given $\varepsilon\left(0<\varepsilon<\frac{\rho-\sigma}{3}\right)$, there exists a set $E_{1} \subset[0,+\infty)$ with finite linear measure, such that for all z satisfying $|z|=r \notin[0,1] \cup E_{1}$, and r sufficiently large,

$$
\begin{equation*}
\exp \left\{-r^{\sigma+\varepsilon}\right\} \leq|b(z)| \leq \exp \left\{r^{\sigma+\varepsilon}\right\} \tag{3.2}
\end{equation*}
$$

By Lemma 3.1, there exists an ε-set F such that

$$
\begin{equation*}
\frac{g(z+\eta)}{g(z)} \rightarrow 1 \text { as } z \rightarrow \infty \text { in } \mathbb{C} \backslash F \tag{3.3}
\end{equation*}
$$

Denote $E_{2}=\{|z|: z \in F,|z|>1\}$, then E_{2} has finite logarithmic measure.
Choose an infinite sequence of points $\left\{z_{k}=r_{k} e^{i \theta_{k}}\right\}$ such that

$$
\begin{equation*}
\left|g\left(z_{k}\right)\right|=M\left(r_{k}, g\right) \geq \exp \left\{r_{k}^{\rho-\varepsilon}\right\}, \quad r_{k} \notin E_{1} \cup E_{2} . \tag{3.4}
\end{equation*}
$$

From (3.2)-(3.4), we can obtain

$$
\frac{g\left(z_{k}+\eta\right)}{g\left(z_{k}\right)}+\frac{b\left(z_{k}\right)}{g\left(z_{k}\right)} \rightarrow 1, \quad r_{k} \notin E_{1} \cup E_{2}, r_{k} \rightarrow \infty
$$

From this and (3.1), we immediately get that $e^{C} \equiv 1$, which yields $f(z+\eta)=f(z)$ for all $z \in \mathbb{C}$, a contradiction to our assumption that $\Delta_{\eta} f(z) \not \equiv 0$. Hence, we prove that $\rho(f) \geq 1$.

Finally, suppose that $a(z)$ is a periodic function with period η, especially, a constant function. Now if there exists a point $z_{0} \in \mathbb{C}$ such that $f\left(z_{0}\right)=a\left(z_{0}\right)$, then also $f\left(z_{0}+\eta\right)=a\left(z_{0}\right)$, which implies that $f\left(z_{0}+k \eta\right)=a\left(z_{0}\right)$ holds for all $k \in \mathbb{Z}$.

References

[1] W. K. HAYMAN. Meromorphic Functions. Clarendon Press, Oxford, 1964.
[2] I. LAINE. Nevanlinna Theory and Complex Differential Equations. Walter de Gruyter \& Co., Berlin, 1993.
[3] Lo YANG. Value Distribution Theory and New Research. Science Press, Beijing, 1982. (in Chinese)
[4] Hongxun YI, Chungchun YANG. The Uniqueness Theory of Meromorphic Functions. Science Press, Beijing, 1995. (in Chinese)
[5] L. A. RUBEL, Chungchun YANG. Values shared by an entire function and its derivative. Lecture Notes in Math., Springer, Berlin, 1977, 599: 101-103.
[6] R. BRÜCK. On entire functions which share one value CM with their first derivative. Results Math., 1996, 30(1-2): 21-24.
[7] G. G. GUNDERSEN, Lianzhong YANG. Entire functions that share one value with one or two of their derivatives. J. Math. Anal. Appl., 1998, 223(1): 88-95.
[8] Zongxuan CHEN, K. H. SHON. On conjecture of R. Brück concerning the entire function sharing one value CM with its derivative. Taiwanese J. Math., 2004, 8(2): 235-244.
[9] J. HEITTOKANGAS, R. KORHONEN, I. LAINE, et al. Value sharing results for shifts of meromorphic functions, and sufficient conditions for periodicity. J. Math. Anal. Appl., 2009, 355(1): 352-363.
[10] Sheng LI, Zongsheng GAO. A note on the Brück conjecture. Arch. Math. (Basel), 2010, 95(3): 257-268.
[11] M. OZAWA. On the existence of prime periodic entire functions. Kodai Math. Sem. Rep., 1977/78, 29(3): 308-321.
[12] Zongxuan CHEN. The growth of solutions to a class of second-order differential equations with entire coefficients. Chinese Ann. Math. Ser. A, 1999, 20(1): 7-14. (in Chinese)
[13] Yikman CHIANG, Shaoji FENG. On the growth of logarithmic differences, difference quotients and logarithmic derivatives of meromorphic functions. Trans. Amer. Math. Soc., 2009, 361(7): 3767-3791.
[14] R. NEVANLINNA. Le Théorème de Picard-Borel et la théorie des fonctions méromorphes. Paris, 1929.
[15] W. BERGWEILER, J. K. LANGLEY. Zeros of differences of meromorphic functions. Math. Proc. Cambridge Philos. Soc., 2007, 142(1): 133-147.

