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1. Introduction and main results

In this paper, we adopt the standard notations in the Nevanlinna theory of meromorphic

functions as explained in [1–4]. We denote the exponent of convergence of zeros of f(z) by λ(f)

which is defined as follows

λ(f) = lim
r→∞

logN(r, 1
f
)

log r
.

In addition, for any given nonconstant meromorphic function f(z), we denote by S(r, f) any

quantity satisfying

lim
r→∞

S(r, f)

T (r, f)
= 0, r 6∈ E,

where E ⊂ (0,∞) is of finite logarithmic measure. A meromorphic function a(z) is said to be a

small function of f(z) if T (r, a) = S(r, f). In addition, we say that two meromorphic functions

f(z) and g(z) share a small function a CM, provided that f(z)−a and g(z)−a have the same zeros

counting multiplicities. For a fixed, nonzero complex constant η, we define difference operators

as

∆ηf(z) = f(z + η) − f(z) and ∆n
ηf(z) = ∆n−1

η (∆ηf(z)), n ∈ N, n ≥ 2.

In particular, we use a general difference notation ∆n
ηf(z) = ∆nf(z) for η = 1.

In 1977, Rubel and Yang started to consider the uniqueness of meromorphic functions

sharing values with their derivatives in [5]. Here we recall a well-known conjecture by Brück [6].

Conjecture ([6]) Let f(z) be a nonconstant entire function such that ρ2(f) <∞ and ρ2(f) 6∈ N.
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If f(z) and f ′(z) share a finite value a CM, then

f ′(z) − a

f(z)− a
= c,

where c is a nonzero constant and ρ2(f) is the hyper-order of f(z) which is defined by

ρ2(f) = lim
r→∞

log log T (r, f)

log r
.

This conjecture has been well studied, although it remains open in full generality. For the

case that a = 0 and that N(r, 1
f ′

) = S(r, f), the conjecture had been proved by Brück himself

[6]. In [7], Gundersen and Yang proved the above conjecture is true, provided that f(z) is of

finite order. Moreover, Chen and Shon [8] proved that the conjecture still holds for the case that

ρ2(f) < 1
2 . Recently, Heittokangas et al. [9] proved a shifted analogue of Brück conjecture as

the following Theorem A.

Theorem A ([9]) Let f(z) be a meromorphic function of order of growth ρ(f) < 2, and let

η ∈ C. If f(z) and f(z + η) share the values a ∈ C and ∞ CM, then

f(z + η) − a

f(z) − a
= τ

for some constant τ .

Then Li and Gao [10] proved the following result.

Theorem B ([10]) Let f(z) be a non-periodic transcendental entire function of finite order

ρ(f) <∞. If f(z) and ∆n
ηf(z) share a nonzero finite value a CM, then 1 ≤ ρ(f) ≤ λ(f − a) + 1,

that is, f(z) is of the form

f(z) = P (z)eQ(z) + a,

where P (z) is an entire function such that ρ(P ) = λ(f − a) and Q(z) is a polynomial such that

deg(Q) ≤ ρ(P ) + 1.

A new question is: What happens if the entire function f(z) shares a small function a(z)

with its difference operator ∆n
ηf(z) or shift f(z + η)? Considering this question, we improve

Theorems A and B by the following results.

Theorem 1.1 Let f(z) be a transcendental entire function of finite order and a(z) be an entire

small function of f(z) such that ρ(a) < ρ(f). If f(z) and ∆n
ηf(z) share the entire small function

a CM, then ρ(f) ≥ 1. What’s more, if ρ(∆n
ηa− a) < 1, then we have 1 ≤ ρ(f) ≤ λ(f − a) + 1.

Example 1.1 (1) Let

f(z) = e−z ln 2 +
3

2
z +

3

2
, a(z) =

z

2
+

3

2
.

Then ρ(f) = 1 > 0 = ρ(a), and the functions f(z) and ∆f(z) share the small function a CM;

(2) Let

f(z) = 2ez + (e− 2), a(z) ≡ e− 1.

Then ρ(f) = 1 > 0 = ρ(a), and the functions f(z) and ∆f(z) share the constant function a CM;
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(3) Let

f(z) = 2ez ln 3h(z) + e
ln 2
η
z, a(z) = e

ln 2
η
z.

If h(z) is a periodic entire function with period η such that 1 < ρ(h) < ∞, then ρ(f) = ρ(h) >

1 = ρ(a), and the functions f(z) and ∆ηf(z) share the small function a CM. Here we note that

for any 1 ≤ σ < ∞, there exists a prime periodic entire function w(z) such that ρ(w) = σ by

Theorem 1 in [11]. This implies the existence of h(z).

Theorem 1.2 Let f(z) be a transcendental entire function of finite order such that ∆ηf(z) 6≡ 0,

and let a(z) be an entire small function of f(z) such that ρ(a) < ρ(f). If f(z) and f(z+ η) share

the entire small function a CM, then ρ(f) ≥ 1. What’s more, if a(z) is a periodic function with

period η, especially, a constant function, then f(z0 + kη) = a(z0) holds for all k ∈ Z provided

that f(z0) = a(z0).

Example 1.2 (1) Let

f(z) = ez
2

sin z + cos z, a(z) = cos z, η = 2π.

Then ρ(f) = 2 > 1 = ρ(a), ∆ηf(z) 6≡ 0 and the functions f(z) and f(z + η) share the entire

small function a CM;

(2) Let

f(z) = 3ez + 2, a(z) ≡ 2.

Then ρ(f) = 1 > 0 = ρ(a), ∆f(z) 6≡ 0 and the functions f(z) and f(z + 1) share the constant

function a CM.

Remark Theorems 1.1 and 1.2 improve Theorems A and B. Our method in the proof of them

is quite different from that in [10] and seems more simple.

2. Proof of Theorem 1.1

Lemma 2.1 ([12]) Let f(z) be a meromorphic function with ρ(f) = α < +∞. Then for any

given ε > 0, there exists a set E ⊂ [0,+∞) with finite linear measure mE <∞, such that for all

z satisfying |z| = r 6∈ [0, 1] ∪E, and r sufficiently large,

exp{−rα+ε} ≤ |f(z)| ≤ exp{rα+ε}.

Lemma 2.2 ([13]) Let f(z) be a meromorphic function with finite order ρ(f) = ρ < 1. Then

for any given ε > 0, and integers 0 ≤ j < k, there exists a set E ⊂ (1,∞) of finite logarithmic

measure, so that for all z satisfying |z| = r 6∈ E ∪ [0, 1], we have

∣

∣

∣

∆kf(z)

∆jf(z)

∣

∣

∣
≤ |z|(k−j)(ρ−1)+ε.

We need the following observation.

Lemma 2.3 Let

P (z) = pnz
n + pn−1z

n−1 + · · · + p0, Q(z) = qnz
n + qn−1z

n−1 + · · · + q0,
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where n is a positive integer, pn = αeiθ, qn = βeiϕ, α ≥ β > 0, θ, ϕ ∈ [−π, π). If pn 6= qn, then

for any given ε > 0, there exists some r0 > 1, such that for all z = re−i
θ
n satisfying r ≥ r0, we

have

Re{P (re−i
θ
n )} > α(1 − ε)rn

and

Re{P (re−i
θ
n ) −Q(re−i

θ
n )} > [α− β cos(θ − ϕ)](1 − ε)rn.

Proof The first assertion holds because

Re{pn(re
−i θ

n )n} = αrn

and for sufficiently large r,

|pn−1z
n−1| + · · · + |p0| = o(rn).

Next we prove the second assertion. Since α ≥ β > 0 and cos(θ − ϕ) = 1 if and only if

θ = ϕ, we see that, if pn 6= qn,

α− β cos(θ − ϕ) > 0.

What’s more, we have

Re{pn(re
−i θ

n )n − qn(re−i
θ
n )n} = [α− β cos(θ − ϕ)]rn.

On the other hand, for z = reiψ , |z| = r, ψ ∈ [−π, π), we have, as r sufficiently large,

|pn−1z
n−1| + · · · + |p0| + |qn−1z

n−1| + · · · + |q0| = o(rn).

Now we can easily find that our conclusion is true. �

The following Lemma was proved by Nevanlinna in [14], and can be seen in [4], Theorem

1.50.

Lemma 2.4 ([4, 14]) Let fj(z) (j = 1, 2, . . . , n, n ≥ 2) be meromorphic functions such that

(1)
∑n
j=1 Cjfj(z) ≡ 0, where Cj (j = 1, 2, . . . , n) are all constants;

(2) fj(z) 6≡ 0 (j = 1, 2, . . . , n) and
fj

fk
are not constant functions for 1 ≤ j < k ≤ n;

(3)
∑n

j=1(N(r, fj) +N(r, 1
fj

)) = o(τ(r)), (r → ∞, r 6∈ E), where E is an exceptional set of

finite linear measure, τ(r) = min1≤j<k≤n{T (r,
fj

fk
)}.

Then Cj = 0 (j = 1, 2, . . . , n).

Proof of Theorem 1.1 Without loss of generality, it may be assumed that η = 1. Denote

g(z) = f(z) − a(z), then ρ(g) = ρ(f) = ρ and

∆nf(z) = ∆ng(z) + ∆na(z) =

n
∑

j=0

(−1)n−jCjng(z + j) + ∆na(z),

where C0
n = Cnn = 1, C1

n = Cn−1
n = n,C2

n = Cn−2
n = n(n− 1)/2, . . . , are non-zero integers.

It follows from the assumption that

∆nf(z) − a(z)

f(z) − a(z)
=

∆ng(z) + ∆na(z) − a(z)

g(z)
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=

n
∑

j=0

(−1)n−jCjng(z + j) + b(z)

g(z)
= eP (z), (2.1)

where b(z) = ∆na(z) − a(z) is an entire small function of f(z) such that σ = ρ(b) ≤ ρ(a) < ρ,

and P (z) is an entire function satisfying

ρ(eP ) ≤ ρ(f) = ρ <∞.

Therefore, we see that P (z) is a polynomial with 0 ≤ d = deg(P ) ≤ ρ. Now set

P (z) = pdz
d + pd−1z

d−1 + · · · + p0,

where pd 6= 0, pd−1, . . . , p0 are constants, pd = αde
iθd , αd > 0, θd ∈ [−π, π). Next, we divide the

proof into two steps.

Step 1. We prove that ρ ≥ 1. Otherwise, we have ρ < 1 and hence P (z) ≡ C ∈ C. By

Lemma 2.1, for any given ε1(0 < ε1 < min{ ρ−σ3 , 1−ρ
2 }), there exists a set E1 ⊂ [0,+∞) with

finite linear measure, such that for all z satisfying |z| = r 6∈ [0, 1] ∪ E1, and r sufficiently large,

exp{−rσ+ε1} ≤ |b(z)| ≤ exp{rσ+ε1}. (2.2)

By Lemma 2.2, for the given ε1, there exists a set E2 ⊂ (1,∞) of finite logarithmic measure,

so that for all z satisfying |z| = r 6∈ [0, 1] ∪ E2, we have
∣

∣

∣

∆ng(z)

g(z)

∣

∣

∣
≤ |z|n(ρ−1)+ε1 . (2.3)

Choose an infinite sequence of points {zk = rke
iθk} such that

|g(zk)| = M(rk, g) ≥ exp{rρ−ε1k }, rk 6∈ E1 ∪ E2. (2.4)

(2.1)–(2.4) give a contradiction that

|eC | ≤
∣

∣

∣

∆ng(zk)

g(zk)

∣

∣

∣
+

|b(zk)|

M(rk, g)
≤ rk

n(ρ−1)+ε1 + o(1) = o(1).

Step 2. We prove that ρ ≤ λ(f − a) + 1, if ρ(∆na − a) < 1. Otherwise, we have ρ >

λ(f − a) + 1 and hence ρ(g) > λ(g) + 1. It follows from the Hadamard factorization theorem

that,

g(z) = h(z)eQ(z),

where Q(z) is a polynomial such that (we will need this special form to simplify our proof in the

following)

Q(z) = −(qlz
l + ql−1z

l−1 + · · · + q0),

where ql 6= 0, ql−1, . . . , q0 are constants, ql = βle
iϕl , βl > 0, ϕl ∈ [−π, π), and h(z) is an entire

function satisfying ρ(h) = λ(g) < ρ− 1 = l − 1.

Rewrite (2.1) as

b(z)

h(z)eQ(z)
= eP (z) −

n
∑

j=0

(−1)n−jCjnh(z + j)eQ(z+j)

h(z)eQ(z)
.
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Observe that for each j ∈ {0, . . . , n}, deg(Q(z + j)−Q(z)) = l− 1, and ρ( b(z)
h(z)eQ(z) ) = l, then by

the equation above, we can easily get l ≤ d. Thus we have d = l.

We claim that pd = qd. Otherwise, pd 6= qd, and we may assume that αd ≥ βd > 0. In what

follows, set Q∗
j (z) = Q(z + j) + qdz

d, P ∗(z) = P (z) − pdz
d. Then we obtain from (2.1) that

eP (z) −
b(z)e−Q(z)

h(z)
=

n
∑

j=0

(−1)n−jCjnh(z + j)eQ
∗

j (z)

h(z)eQ
∗

0(z)
. (2.5)

Set b1(z) = b(z), b2(z) = h(z), σj = ρ(bj) (j = 1, 2), then by Lemma 2.1 again, for any given

ε2(0 < ε2 < min{ ρ−σ1

2 , ρ−σ2

2 , 1
2}), there exists a set E3 ⊂ [0,+∞) with finite linear measure,

such that for all z satisfying |z| = r 6∈ [0, 1] ∪ E3, and r sufficiently large,

exp{−rσj+ε2} ≤ |bj(z)| ≤ exp{rσj+ε2}. (2.6)

By Lemma 2.3, we see that, for sufficiently large r,

∣

∣

∣

e−Q(re−i
θd
d )

eP (re−i
θd
d )

∣

∣

∣
= exp{−{Re{P (re−i

θd
d ) − [−Q(re−i

θd
d )]}}}

< exp{−[αd − βd cos(θd − ϕd)](1 − ε2)r
d}. (2.7)

By (2.6) and (2.7), we can easily get that

∣

∣

∣

b(re−i
θd
d )e−Q(re−i

θd
d )

h(re−i
θd
d )eP (re−i

θd
d )

∣

∣

∣
< exp{−[αd − βd cos(θd − ϕd)](1 − ε2)r

d + rσ1+ε2 + rσ2+ε2}

< exp{−[αd − βd cos(θd − ϕd)](1 − ε2)r
d + 2rd−ε2}, (2.8)

as r 6∈ [0, 1] ∪E3, and r sufficiently large.

Since pd 6= qd and αd ≥ βd > 0, we have αd − βd cos(θd − ϕd) > 0. It now follows by (2.8)

that

∣

∣

∣

b(re−i
θd
d )e−Q(re−i

θd
d )

h(re−i
θd
d )

∣

∣

∣
= o(|eP (re−i

θd
d )|), (2.9)

as r 6∈ [0, 1] ∪E3, and r → ∞.

Applying Lemma 2.3 again, with (2.5) and (2.9), we have

1

2
exp{(1 − ε2)αdr

d} ≤
1

2
|eP (re−i

θd
d )| < |eP (re−i

θd
d )| −

∣

∣

∣

b(re−i
θd
d )e−Q(re−i

θd
d )

h(re−i
θd
d )

∣

∣

∣

≤
∣

∣

∣

n
∑

j=0

(−1)n−jCjnh(re
−i

θd
d + j)eQ

∗

j (re−i
θd
d )

h(re−i
θd
d )eQ

∗

0(re−i
θd
d )

∣

∣

∣

< exp{rd−
1
2 },

as r 6∈ [0, 1] ∪E3, and r → ∞, which is impossible.
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Now we have pd = qd. Then we obtain from (2.1) that

n
∑

j=0

(−1)n−jCjnh(z + j)eQ
∗

j (z)

h(z)eQ
∗

0(z)
= epdz

d
(

eP
∗(z) −

b(z)

h(z)eQ
∗

0(z)

)

,

which infers that

eP
∗(z) −

b(z)

h(z)eQ
∗

0(z)
≡ 0, (2.10)

and hence we have
n

∑

j=0

(−1)n−jCjnh(z + j)eQ
∗

j (z) = 0 ⇐⇒

n
∑

j=0

(−1)n−jCjng(z + j) = 0. (2.11)

Then from (2.10), and ρ(b) = ρ(∆na− a) < 1, we see that ρ(h) = λ(h) ≤ λ(b) ≤ ρ(b) < 1. Since

d = l = ρ(g) > λ(g) + 1, we have d ≥ 2. Therefore, for 0 ≤ j < k ≤ n, deg(Q∗
j (z) −Q∗

k(z)) ≥ 1.

Applying Lemma 2.4 to (2.11), we get a contradiction that (−1)n−jCjn = 0, j = 0, 1, . . . , n.

Hence, we prove that 1 ≤ ρ(f) ≤ λ(f − a) + 1. �

3. Proof of Theorem 1.2

Lemma 3.1 ([15]) Let g be a function transcendental and meromorphic in the plane of order

less than 1. Let h > 0. Then there exists an ε-set E such that

g′(z + η)

g(z + η)
→ 0,

g(z + η)

g(z)
→ 1 as z → ∞ in C \ E,

uniformly in η for |η| ≤ h. Further, E may be chosen so that for large z not in E the function g

has no zeros or poles in |ζ − z| ≤ h.

Proof of Theorem 1.2 Denote g(z) = f(z)− a(z), then ρ(g) = ρ(f) = ρ. By assumption, we

have
f(z + η) − a(z)

f(z) − a(z)
=
g(z + η) + b(z)

g(z)
= eP (z), (3.1)

where P (z) is a polynomial with d = deg(P ) ≤ ρ and b(z) = a(z + η) − a(z) is an entire small

function of f(z) such that σ = ρ(b) ≤ ρ(a) < ρ.

We prove that ρ ≥ 1. Otherwise, we have ρ < 1 and hence P (z) ≡ C ∈ C. By Lemma 2.1,

for any given ε (0 < ε < ρ−σ
3 ), there exists a set E1 ⊂ [0,+∞) with finite linear measure, such

that for all z satisfying |z| = r 6∈ [0, 1] ∪ E1, and r sufficiently large,

exp{−rσ+ε} ≤ |b(z)| ≤ exp{rσ+ε}. (3.2)

By Lemma 3.1, there exists an ε-set F such that

g(z + η)

g(z)
→ 1 as z → ∞ in C \ F. (3.3)

Denote E2 = {|z| : z ∈ F, |z| > 1}, then E2 has finite logarithmic measure.

Choose an infinite sequence of points {zk = rke
iθk} such that

|g(zk)| = M(rk, g) ≥ exp{rρ−εk }, rk 6∈ E1 ∪ E2. (3.4)
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From (3.2)–(3.4), we can obtain

g(zk + η)

g(zk)
+
b(zk)

g(zk)
→ 1, rk 6∈ E1 ∪ E2, rk → ∞.

From this and (3.1), we immediately get that eC ≡ 1, which yields f(z + η) = f(z) for all

z ∈ C, a contradiction to our assumption that ∆ηf(z) 6≡ 0. Hence, we prove that ρ(f) ≥ 1.

Finally, suppose that a(z) is a periodic function with period η, especially, a constant func-

tion. Now if there exists a point z0 ∈ C such that f(z0) = a(z0), then also f(z0 + η) = a(z0),

which implies that f(z0 + kη) = a(z0) holds for all k ∈ Z. �
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