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1. Introduction

Throughout this paper, we will work over an algebraically closed field k of characteristic

zero.

A semisimple Hopf algebra H is called of Frobenius type if the dimensions of the simple

H-modules divide the dimension of H . Kaplansky conjectured that every finite dimensional

semisimple Hopf algebra is of Frobenius type [1, Appendix 2]. In general, the conjecture is still

open. It is well-known that if H is a group algebra, then H is of Frobenius type. This is a

classical result by Frobenius.

Many examples show that a positive answer to Kaplansky’s conjecture would be very helpful

in the classification of semisimple Hopf algebras. For example, Natale [2] completed the classifi-

cation of semisimple Hopf algebras of dimension pq2 < 100 by showing that these Hopf algebras

are of Frobenius type.

Quite recently, Natale proved [3] that semisimple Hopf algebras of dimension less than 60

are of Frobenius type. Based on this fact, Natale then proved that all these Hopf algebras are

semisolvable in the sense introduced by Montgomery and Witherspoon [4].

The present paper is devoted to extending Natale’s result to semisimple Hopf algebras of

dimension less than 80. By [5, Theorem 3.5], semisimple Hopf algebras of dimension 60 are of

Frobenius type. By [6], semisimple Hopf algebras of dimension 72 are of Frobenius type. By [7, 8],

semisimple Hopf algebras of dimension 61, 62, 65, 67, 69, 71, 73, 74, 77 and 79 are group algebras

or their duals. Hence, these Hopf algebras are of Frobenius type. By [2, Section 5.5], semisimple

Hopf algebras of dimension 63, 68, 75 and 76 are of Frobenius type. By [4], semisimple Hopf
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algebras of dimension 64 are of Frobenius type. Therefore, it suffices to consider the semisimple

Hopf algebras of dimension 66, 70 and 78 in this paper.

The paper is organized as follows. In Section 2, we recall some basic results on characters

of a semisimple Hopf algebra. Some useful lemmas are also contained in this section.

In Section 3, we discuss the algebra types of semisimple Hopf algebras of dimension 66, 70

and 78, respectively. The notion of algebra types of a semisimple Hopf algebra is recalled in

Section 2. Based on the study of the character algebra of a semisimple Hopf algebra, we obtain

all possible algebra types of these Hopf algebras. As a consequence, all these Hopf algebras are

of Frobenius type.

Throughout this paper, all modules are left modules. Moreover they are finite dimensional

over k. ⊗, dim mean ⊗k, dimk, respectively. Our references for the theory of Hopf algebras are

[9] or [10]. The notation for Hopf algebras is standard. For example, the group of group-like

elements in H is denoted by G(H).

2. Characters of a semisimple Hopf algebra

Throughout this section, H will be a semisimple Hopf algebra over k.

Let V be an H-module. The character of V is the element χ = χV ∈ H∗ defined by

〈χ, h〉 = TrV (h) for all h ∈ H . The degree of χ is defined to be the integer degχ = χ(1) = dimV .

We shall use Xt to denote the set of all irreducible characters of H of degree t. If U is another

H-module, we have

χU⊗V = χUχV , χV ∗ = S(χV ),

where S is the antipode of H∗.

Hence, the irreducible characters, namely, the characters of the simple H-modules, span a

subalgebra R(H) of H∗, which is called the character algebra of H . The antipode S induces an

anti-algebra involution ∗ : R(H) → R(H), given by χ→ χ∗ := S(χ). The character of the trivial

H-module is the counit ε.

The properties of R(H) have been intensively studied in [11]. We recall some of them here,

and will use them freely in this paper [3, Section 1.2].

Let χU , χV ∈ R(H) be the characters of the H-modules U and V , respectively. The integer

m(χU , χV ) = dimHomH(U, V ) is defined to be the multiplicity of U in V . This can be extended

to a bilinear form m : R(H) × R(H) → k.

Let Ĥ denote the set of irreducible characters of H . If χ ∈ R(H), we may write χ =
∑

α∈Ĥ
m(α, χ)α. Let χ, ψ, ω ∈ R(H). Thenm(χ, ψω) = m(ψ∗, ωχ∗) = m(ψ, χω∗) andm(χ, ψ) =

m(χ∗, ψ∗) (see [11, Theorem 9]).

For each group-like element g in G(H∗), we have m(g, χψ) = 1, if ψ = χ∗g and 0 otherwise

for all χ, ψ ∈ Ĥ . In particular,m(g, χψ) = 0 if deg(χ) 6= deg(ψ). Let χ ∈ Ĥ . Then for any group-

like element g in G(H∗), m(g, χχ∗) > 0 iff m(g, χχ∗) = 1 iff gχ = χ. The set of such group-like

elements forms a subgroup of G(H∗), of order at most (deg(χ))2 (see [11, Theorem 10]). Denote

this subgroup by G[χ]. In particular, we have χχ∗ =
∑

g∈G[χ] g +
∑

α∈Ĥ,degα>1m(α, χχ∗)α.
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Lemma 1 Let χ ∈ Ĥ be an irreducible character of H . Then

(1) The order of G[χ] divides (degχ)2.

(2) The order of G(H∗) divides n(degχ)2, where n is the number of non-isomorphic simple

H-modules of dimension degχ.

Proof It follows from Nichols-Zoeller Theorem [12, Lemma 2.2.2].

Let 1 = d1, d2, . . . , ds, n1, n2, . . . , ns be positive integers, with d1 < d2 < · · · < ds. H is said

to be of type (d1, n1; . . . ; ds, ns) as an algebra if d1, d2, . . . , ds are the dimensions of the simple

H-modules and ni is the number of the non-isomorphic simple H-modules of dimension di. That

is, as an algebra, H is isomorphic to a direct product of full matrix algebras

H ∼= k(n1) ×

s∏

i=2

Mdi
(k)(ni).

IfH∗ is of type (d1, n1; . . . ; ds, ns) as an algebra, thenH is said to be of type (d1, n1; . . . ; ds, ns)

as a coalgebra. �

The following result is due to [13, Lemma 11].

Lemma 2 If H is of type (1, 1; d2, n2; . . . , ds, ns) as an algebra, then {di|di > 1} has at least

three elements.

A subalgebra A of R(H) is called a standard subalgebra if A is spanned by irreducible

characters of H . Let X be a subset of Ĥ . Then X spans a standard subalgebra of R(H) if

and only if the product of characters in X decomposes as a sum of characters in X . There is

a bijection between standard subalgebras of R(H) and quotient Hopf algebras of H (see [11,

Theorem 6]). The following theorem is a finite-dimensional version of [11, Theorem 11].

Theorem 1 If H has an irreducible character χ of degree 2, then at least one of the following

conditions holds:

(1) G[χ] 6= {ε};

(2) H has a quotient Hopf algebra of dimension 24, which has a character g of degree 1 of

order 2 such that gχ 6= χ;

(3) H has a quotient Hopf algebra of dimension 12 or 60.

The next three lemmas are due to [6, Lemmas 2.3–2.5]. We give the proof here for com-

pleteness.

Lemma 3 Let H have an irreducible character χ of degree 2.

(1) If 12 does not divide dimH or H does not have irreducible characters of degree 3, then

G[χ] 6= {ε}.

(2) If G(H∗) = {ε}, then H has a quotient Hopf algebra of dimension 60.

Proof Part (1) is obvious from Theorem 1. Part (2) is a special case of [11, Theorem 11]. In

fact, from the proof of [11, Theorem 11], we know if H has a quotient Hopf algebra of dimension

12 or 24, then G(H∗) contains at least 2 elements. �
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Lemma 4 If H is of type (1,m; t, n) as an algebra, then t|m. In particular, H is of Frobenius

type.

Proof Let χi (1 ≤ i ≤ n) be all distinct irreducible characters of degree t, s the order of group

G[χ1], and u the number of irreducible characters of degree t in the decomposition of χ1χ
∗
1.

Then, we have t2 = s + ut from χ1χ
∗
1 =

∑
g∈G[χ1] g +

∑
im(χi, χ1χ

∗
1)χi. It follows that t|s,

which implies t|m. �

Lemma 5 Suppose that |G(H∗)| = 2 and s = |X2|. Then at least one of the following conditions

holds:

(a) H has a quotient Hopf algebra of dimension 12, 24 or 60;

(b) G[χ2] = G(H∗) for every χ2 ∈ X2, and 2 + 4s divides dimH .

Proof The result follows from Lemma 1(1) and Lemma 3(1). �

Lemma 6 Suppose that H has an irreducible character of degree 2 and does not have irreducible

characters of degree 4. If 12 does not divide dimH or H does not have irreducible characters of

degree 3, then n+ 4s divides dimH , where n = |G(H∗)|, s = |X2|.

Proof By assumption and Lemma 3(1), we have G[χ] 6= {ε} for all χ ∈ X2. We shall show that

χ′χ∗ is a sum of irreducible characters of degrees 1 and 2, for all χ′, χ ∈ X2. In fact, if there is an

irreducible characters ψ of degree 3 such that m(ψ, χ′χ∗) = 1, then there must exist a group-like

element g ∈ G(H∗) such that m(g, χ′χ∗) = 1. Then we have χ′ = gχ. It follows that

χ′χ∗ = gχχ∗ = g(ε+ g′ + φ) = g + gg′ + gφ,

where g′ ∈ G(H∗), φ is either a sum of two irreducible characters of degree 1 or an irreducible

character of degree 2. Hence, χ′χ∗ is a sum of irreducible characters of degrees 1 and 2, which

contradicts the assumption that ψ is an element in χ′χ∗.

As a result, all irreducible characters of degrees 1 and 2 span a standard subalgebra of R(H).

It follows that H has a quotient Hopf algebra of dimension n+ 4s. �

Lemma 7 Let G be a non-trivial subgroup of G(H∗). If G[χt] = G for every χt ∈ Xt, then

χtχ
′
t is not irreducible for all χt, χ

′
t ∈ Xt.

Proof Let g ∈ G and χt ∈ Xt. Then, by assumption, gχt = χt and g−1χ∗
t = χ∗

t . This means

that gχt = χtg = χt.

If χtχ
′
t = ψ is irreducible, we have

ψψ∗ = χt(χ
′

tχ
′∗

t )χ∗

t = χt(
∑

g∈G

g + φ)χ∗

t

=
∑

g∈G

χtgχ
∗

t + χtφχ
∗

t =
∑

g∈G

χtχ
∗

t + χtφχ
∗

t

= |G|χtχ
∗

t + χtφχ
∗

t ,

where we write χ′
tχ

′∗
t =

∑
g∈G g+φ. This means thatm(ε, ψψ∗) ≥ |G| > 1, which is impossible. �
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Lemma 8 Let H be a finite-dimensional semisimple Hopf algebra over k.

(1) If 60 does not divide dimH , then H cannot be of type (1, 1; 2,m; · · · ) as an algebra.

(2) If 12 does not divide dimH and 2+4s does not divide dimH , then H cannot be of type

(1, 2; 2, s; . . .) as an algebra.

(3) If 12 does not divide dimH , m + 4s does not divide dimH and H does not have

irreducible characters of degree 4, then H cannot be of type (1,m; 2, s; . . .) as an algebra.

(4) If m+ 4s does not divide dimH and H does not have irreducible characters of degree

3 and 4, then H cannot be of type (1,m; 2, s; · · · ) as an algebra.

(5) If n1 does not divide dimH or nid
2
i (2 ≤ i ≤ s), then H cannot be of type (1, n1; d2, n2;

. . . ; ds, ns) as an algebra.

Proof Parts (1),(2) follow from Lemma 3(2), Lemma 5, respectively. Parts (3), (4) follow from

Lemma 6. Part (5) follows from Lemma 1(2). �

3. Semisimple Hopf algebras of dimension 66, 70 and 78

3.1. Semisimple Hopf algebras of dimension 66

Theorem 2 Let H be a semisimple Hopf algebra of dimension 66. Then, as an algebra, H is of

one of the following types:

(1, 66), (1, 3; 3, 7), (1, 2; 2, 16), (1, 6; 2, 15), (1, 22; 2, 11).

In particular, H is of Frobenius type.

Proof According to Lemma 8 and a precise calculation, H has possibly one of the following

types:

(1, 2; 8, 1), (1, 2; 4, 4), (1, 1; 4, 1; 7, 1), (1, 3; 3, 3; 6, 1), (1, 6; 2, 3; 4, 3),

(1, 66), (1, 3; 3, 7), (1, 2; 2, 16), (1, 6; 2, 15), (1, 22; 2, 11).

We shall eliminate first five types. The first two types can be eliminated by Lemma 4. The

third type can be eliminated by Lemma 2.

Suppose that H is of type (1, 3; 3, 3; 6, 1) as an algebra. Let ψ be the unique irreducible

character of degree 6. If there is an irreducible character χ of degree 3 such that m(χ, ψ2) = 1,

then m(χ, ψ2) = m(ψ, χψ) = 1. This means that χψ = ψ+φ, where m(ψ, φ) = 0 and degφ = 12.

Since |X3| = 3, there must exist an irreducible character χ′ of degree 3 such that m(χ′, φ) ≥ 2.

Hence, m(χ′, χψ) = m(χ′∗, ψχ∗) = m(ψ, χ′∗χ) ≥ 2. It is a contradiction.

It follows that we have four possible decompositions of ψ2:

(1) ψ2 = ε+ g + g2 + 3χ1 + 4ψ;

(2) ψ2 = ε+ g + g2 + 2χ1 + 3χ2 + 3ψ;

(3) ψ2 = ε+ g + g2 + 2χ1 + 2χ2 + 3χ3 + 2ψ;

(4) ψ2 = ε+ g + g2 + 3χ1 + 3χ2 + 3χ3 + ψ,

where χ1, χ2, χ3 are distinct irreducible characters of degree 3, g is the generator of G(H∗).
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In case (1)–(3), the irreducible character (denoted by χ) of degree 3 such that m(χ, ψ2) = 3

is self-dual, since ψ2 is self-dual. In case (4), we also have a self-dual irreducible character (also

denoted by χ) of degree 3 such thatm(χ, ψ2) = 3, since |X3| is odd and ψ2 contains all irreducible

characters of degree 3.

Then m(χ, ψ2) = m(ψ, χψ) = 3 implies that χψ = 3ψ. Multiplying on the left by χ, we

have (ε+g+g2 +φ)ψ = 9ψ, where we write χ2 = ε+g+g2 +φ with deg φ = 6. Hence, φψ = 6ψ.

Obviously, φ 6= ψ and φ = χ′ + χ′′, where χ′, χ′′ ∈ X3. It follows that χ′ψ = χ′′ψ = 3ψ. If

χ′ = χ′′ = χ, then {χ} ∪ {ε, g, g2} spans a standard subalgebra of R(H). It follows that H has

a quotient Hopf algebra of dimension 12. It is impossible.

We then may assume that χ′ 6= χ. From m(ψ, χ′ψ) = m(χ′, ψ2) = 3, we know that χ′ also

lies in the decomposition of ψ2 with multiplicity 3. Hence, (4) is the only decomposition of ψ2.

In this case, m(χi, ψ
2) = m(ψ, χiψ) = 3 for every χi ∈ X3. We then reach a conclusion

that χiχj is a sum of irreducible characters of degrees 1 and 3. In fact, if m(ψ, χiχj) = 1,

then m(χi, ψχ
∗
j ) = m(χ∗

i , χjψ) = 1, which contradicts the result above. Hence, all irreducible

characters of degrees 1 and 3 span a standard subalgebra of R(H). It follows that H has a

quotient Hopf algebra of dimension 30. It is also impossible.

Suppose that H is of type (1, 6; 2, 3; 4, 3) as an algebra. Let χi (1 ≤ i ≤ 3) be all distinct

irreducible characters of degree 2. Since the order of G[χi] divides both |G(H∗)| and 4, we have

|G[χi]| = 1 or 2. In addition, H does not have irreducible characters of degree 3. It follows that

|G[χi]| = 2 for all 1 ≤ i ≤ 3. By [3, Proposition 1.2.6], we know that G(H∗) is abelian. Let G

be the unique subgroup of G(H∗) of order 2. As a result, we have G[χi] = G for all 1 ≤ i ≤ 3.

By Lemma 7, χiχj is not irreducible. Hence, the irreducible characters of degree 1 and 2 span a

standard subalgebra of R(H). It follows that H has a quotient Hopf algebra of dimension 18. It

is impossible by Nichols-Zoeller Theorem. This completes the proof. �

Remark The computation in the proof of Theorem 10 is partly handled by a computer. For

example, it is easy to write a computer program by which one finds out all possible positive

integers 1 = d1, d2, . . . , ds and n1, n2, . . . , ns such that 66 =
∑s

i=1 nid
2
i , and then one can elim-

inate those which cannot be algebra types of H by using Lemma 8. The computations in the

followings are similar.

Corollary 1 Let H be a semisimple Hopf algebra of dimension 66. If H is not a dual group

algebra, then G(H∗) is abelian.

Proof The corollary follows from Theorem 2 and [3, Proposition 1.2.6]. �

3.2. Semisimple Hopf algebras of dimension 70

Theorem 3 Let H be a semisimple Hopf algebra of dimension 70. Then, as an algebra, H is of

one of the following types:

(1, 70), (1, 14; 2, 14), (1, 10; 2, 15), (1, 2; 2, 17).
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In particular, H is of Frobenius type.

Proof According to Lemma 8 and a precise calculation, H has possibly one of the following

types:

(1, 7; 3, 7), (1, 2; 4, 2; 6, 1), (1, 2; 3, 2; 5, 2), (1, 2; 3, 4; 4, 2),

(1, 14; 2, 14), (1, 10; 2, 15), (1, 2; 2, 17), (1, 70).

We shall eliminate first four types. The first type can be eliminated by Lemma 4.

Suppose that H is of type (1, 2; 4, 2; 6, 1) as an algebra. Let χ4, χ
′
4 be distinct irreducible

characters of degree 4, χ6 the unique irreducible character of degree 6, and {ε, g} = G(H∗).

Then {ε, g, χ4, χ
′
4, χ6} is a basis of R(H). Let {e1, e2, . . . , en} be the set of primitive orthogonal

idempotents in R(H) such that e1 is an integral in H∗. Note that ε, g commute with χ4, χ
′
4, χ6.

Suppose that χ∗
4 = χ′

4, χ
′∗
4 = χ4. There is only one decomposition of χ4χ

∗
4:

χ4χ
∗

4 = χ4χ
′

4 = ε+ g + χ4 + χ′

4 + χ6.

From m(χ6, χ4χ
′
4) = m(χ4, χ6χ

′∗
4 ) = 1, we have χ6χ4 = χ4 + 2χ′

4 + 2χ6. From m(χ′
4, χ6χ4) =

m(χ′∗
4 , χ

∗
4χ

∗
6) = m(χ4, χ

′
4χ6) = m(χ′

4, χ4χ6) = 2, we have χ4χ6 = χ4 + 2χ′
4 + 2χ6. Hence, χ4

commutes with χ6. In addition, χ′
4χ

′∗
4 = χ′

4χ4 = ε+ g + χ4 + χ′
4 + χ6. This means that χ4 also

commutes with χ′
4. Therefore, χ4 appears in the center of R(H). Similarly, we can show that

χ′
4 also appears in the center of R(H). Hence, R(H) is commutative.

Suppose that χ∗
4 = χ4, χ

′∗
4 = χ′

4. There are three possible decompositions of χ4χ
∗
4:

χ4χ
∗

4 = ε+ g + 2χ4 + χ6;χ4χ
∗

4 = ε+ g + 2χ′

4 + χ6;χ4χ
∗

4 = ε+ g + χ4 + χ′

4 + χ6.

In all cases, we have m(χ6, χ4χ
∗
4) = m(χ4, χ6χ4) = 1, which implies that χ6χ4 = χ4 +2χ′

4 +

2χ6. Applying “∗” on both sides, we have χ4χ6 = χ4 +2χ′
4 +2χ6. Hence, χ4 commutes with χ6.

From m(χ′
4, χ6χ4) = m(χ6, χ

′
4χ4) = 2, we have χ′

4χ4 = 2χ6 + ϕ, where ϕ is χ4 or χ′
4. Applying

“∗” on both sides, we have χ4χ
′
4 = 2χ6 + ϕ. Hence, χ4 also commutes with χ′

4. Therefore, χ4

appears in the center of R(H). Similarly, we can show that χ′
4 also appears in the center of

R(H). Hence, R(H) is commutative.

Now, we reach a conclusion thatR(H) is semisimple and commutative. Hence, {e1, e2, . . . , en}

is also a basis ofR(H) and n = 5. By the well-known “Class Equation” [8, Theorem 1], dim(eiH
∗)

divides dimH = 70 and

dimH = 1 +

5∑

i=2

dim(eiH
∗).

A direct check shows that it cannot happen.

Suppose that H is of type (1, 2; 3, 2; 5, 2) as an algebra. Let χ be an irreducible character

of degree 3. By counting degrees, we have χχ∗ = ε + χ′ + ψ, where χ′ ∈ X3, ψ ∈ X5. From

m(ψ, χχ∗) = m(χ, ψχ) = 1, we have ψχ = χ+ φ, where m(χ, φ) = 0 and degφ = 12. It follows

that φ = 4χ′′, where χ 6= χ′′ ∈ X3. It is impossible since m(χ′′, ψχ) = m(ψ, χ′′χ∗) ≤ 1.

Suppose that H is of type (1, 2; 3, 4; 4, 2) as an algebra. Let χ3 be an irreducible character

of degree 3, and {ε, g} = G(H∗). Then we have two possible decompositions of χ3χ
∗
3:
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(1) χ3χ
∗
3 = ε+ 2χ4; (2) χ3χ

∗
3 = ε+ χ4 + χ′

4,

where χ4, χ
′
4 are distinct irreducible characters of degree 4.

In case (1), we have χ4χ3 = 2χ3 + mχ′
3 + nχ′′

3 from m(χ3, χ4χ3) = m(χ4, χ3χ
∗
3) = 2,

where m,n are non-negative integers such that m+ n = 2, and χ′
3, χ

′′
3 are different from χ3. If

χ4χ3 = 2χ3+χ
′
3+χ

′′
3 with χ′

3 6= χ′′
3 , then χ′

3χ
∗
3 = χ4+χ

′
4+g fromm(χ′

3, χ4χ3) = m(χ4, χ
′
3χ

∗
3) = 1

since χ′
3 6= χ3. Hence, χ′

3 = gχ3. Similarly, we obtain that χ′′
3 = gχ3. It follows that χ′

3 = χ′′
3 ,

a contradiction. If χ4χ3 = 2χ3 + 2χ′
3, then m(χ′

3, χ4χ3) = m(χ4, χ
′
3χ

∗
3) = 2 implies that

χ′
3χ

∗
3 = 2χ4 + g since χ′

3 6= χ3. Hence, χ′
3 = gχ3. Then χ′

3χ
∗
3 = gχ3χ

∗
3 = g(ε + 2χ4) implies

that gχ4 = χ4. Multiplying χ4χ3 = 2χ3 + 2gχ3 on the right by χ∗
3 and using gχ4 = χ4, we have

2χ2
4 = 2ε+ 2g + 7χ4, which is impossible.

In case (2), we have χ4χ3 = χ3 +χ′
3 +χ′′

3 +χ′′′
3 or χ4χ3 = χ3 +2χ′

3 +χ′′
3 from m(χ4, χ3χ

∗
3) =

m(χ3, χ4χ3) = 1, where χ3, χ
′
3, χ

′′
3 , χ

′′′
3 are distinct irreducible characters of degree 3. For the

first case, m(χ′
3, χ4χ3) = m(χ4, χ

′
3χ

∗
3) = 1 implies that χ′

3χ
∗
3 = χ4 + χ′

4 + g. Hence, χ′
3 = gχ3.

Similarly, we have χ′′
3 = gχ3. It follows that χ′

3 = χ′′
3 , a contradiction. For the second case, we

have χ′′
3 = gχ3 similarly. In addition, we also have χ′

3 = gχ3 from m(χ′
3, χ4χ3) = m(χ4, χ

′
3χ

∗
3) =

2. Hence, χ′
3 = χ′′

3 . It is also a contradiction. This completes the proof. �

Corollary 2 Let H be a semisimple Hopf algebra of dimension 70. If H is not a dual group

algebra, then G(H∗) is abelian.

Proof The result follows from [3, Proposition 1.2.6] and Theorem 3.

3.3. Semisimple Hopf algebras of dimension 78

Theorem 4 Let H be a semisimple Hopf algebra of dimension 78. Then, as an algebra, H is of

one of the following types:

(1, 2; 2, 1; 6, 2), (1, 6; 6, 2), (1, 2; 2, 1; 3, 4; 6, 1), (1, 6; 3, 4; 6, 1), (1, 2; 2, 1; 3, 8),

(1, 6; 3, 8), (1, 2; 2, 19), (1, 6; 2, 18), (1, 26; 2, 13), (1, 78).

In particular, H is of Frobenius type.

Proof According to Lemma 8 and a precise calculation, H has possibly one of the following

types:

(1, 3; 5, 3), (1, 1; 3, 3; 5, 2), (1, 1; 3, 5; 4, 2), (1, 1; 4, 1; 5, 1; 6, 1), (1, 1; 3, 1; 4, 2; 6, 1),

(1, 3; 3, 3; 4, 3), (1, 1; 3, 4; 4, 1; 5, 1), (1, 6; 2, 6; 4, 3), (1, 2; 2, 6; 4, 1; 6, 1), (1, 2; 2, 6; 3, 4; 4, 1),

(1, 2; 2, 1; 6, 2), (1, 6; 6, 2), (1, 2; 2, 1; 3, 4; 6, 1), (1, 6; 3, 4; 6, 1), (1, 2; 2, 1; 3, 8),

(1, 6; 3, 8), (1, 2; 2, 19), (1, 6; 2, 18), (1, 26; 2, 13), (1, 78).

We shall rule out first ten types. The first type can be ruled out by Lemma 4. The second

and third types can be ruled out by Lemma 2.
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Suppose that H is of type (1, 1; 4, 1; 5, 1; 6, 1) as an algebra. Let χ4, χ5, χ6 be the irreducible

characters of degree 4, 5, 6, respectively. Then χ4χ
∗
4 = ε + χ4 + χ5 + χ6 or χ4χ

∗
4 = ε + 3χ5. If

the first case holds, then m(χ6, χ4χ
∗
4) = m(χ4, χ6χ4) = 1. This implies that χ6χ4 = χ4 + 4χ5.

It follows that m(χ5, χ6χ4) = m(χ6, χ5χ4) = 4. It is impossible. If the second case holds, then

m(χ5, χ4χ
∗
4) = m(χ4, χ5χ4) = 3. This implies that χ5χ4 = 3χ4 + ψ, where m(χ4, ψ) = 0 and

degψ = 8. It is also impossible.

Suppose that H is of type (1, 1; 3, 1; 4, 2; 6, 1) as an algebra. Let χ3 be the unique irreducible

character of degree 3. Then χ3χ
∗
3 = ε + χ4 + χ′

4 or χ3χ
∗
3 = ε + 2χ4, where χ4, χ

′
4 are distinct

irreducible characters of degree 4. If the first case holds, then m(χ4, χ3χ
∗
3) = m(χ3, χ4χ3) = 1.

This implies that χ4χ3 = χ3 + ψ, where m(χ3, ψ) = 0 and degψ = 9. It is impossible. If the

second case holds, then m(χ4, χ3χ
∗
3) = m(χ3, χ4χ3) = 2. This implies that χ4χ3 = 2χ3 + χ6,

where χ6 is the unique irreducible character of degree 6. Then m(χ6, χ4χ3) = m(χ3, χ6χ4) = 1.

This implies that χ6χ4 = χ3 + ψ, where m(χ3, ψ) = 0 and degψ = 21. It is also impossible.

Suppose that H is of type (1, 3; 3, 3; 4, 3) as an algebra. Let χ3 be an irreducible character

of degree 3 and G(H∗) = {ε, g1, g2}. Then χ3χ
∗
3 = ε + χ4 + ψ or χ3χ

∗
3 = ε + 2χ4 or χ3χ

∗
3 =

ε + g1 + g2 + ϕ1 + ϕ2, where χ4, ψ are distinct irreducible characters of degree 4, ϕ1, ϕ2 are

irreducible characters of degree 3.

If the first case holds, then m(χ4, χ3χ
∗
3) = m(χ3, χ4χ3) = 1. This implies that χ4χ3 =

χ3+2χ′
3+χ

′′
3 , where χ3, χ

′
3, χ

′′
3 are distinct irreducible characters of degree 3. Fromm(χ′′

3 , χ4χ3) =

m(χ4, χ
′′
3χ

∗
3) = 1, we have

(i) χ′′
3χ

∗
3 = χ4 + ϕ+ g1 + g2, where ϕ ∈ X3;

(ii) χ′′
3χ

∗
3 = χ4 + χ′

4 + g3, where χ4 6= χ′
4 ∈ X4, ε 6= g3 ∈ G(H∗).

In case (i), χ′′
3 = g1χ3 = g2χ3. This implies that g−1

1 g2 lies in the decomposition of χ3χ
∗
3.

It is a contradiction.

In case (ii), χ′′
3 = g3χ3. On the other hand, m(χ4, χ

′
3χ

∗
3) = m(χ′

3, χ4χ3) = 2. This implies

that χ′
3χ

∗
3 = 2χ4 + g4, where ε 6= g4 ∈ G(H∗). Hence, χ′

3 = g4χ3. Multiplying χ4χ3 =

χ3+2g4χ3+g3χ3 on the right by χ∗
3, we have χ2

4+χ4χ
′
4 = ε+2g4+g3+2g4χ4+2g4χ

′
4+g3χ4+g3χ

′
4.

If ε lies in the decomposition of χ2
4, then χ4 = χ∗

4, and hence g3, g4 do not lie in the decomposition

of χ2
4 since G[χ4] is trivial. Counting degrees on both sides, we know that it is impossible.

Similarly, the case that ε lies in the decomposition of χ4χ
′
4 is also impossible.

If the second case holds, then m(χ3, χ4χ3) = m(χ4, χ3χ
∗
3) = 2. This implies that

(i) χ4χ3 = 2χ3 + 2χ′
3, where χ3 6= χ′

3 ∈ X3.

(ii) χ4χ3 = 2χ3 + χ′
3 + χ′′

3 , where χ3, χ
′
3, χ

′′
3 are distinct elements in X3.

In case (i), m(χ′
3, χ4χ3) = m(χ4, χ

′
3χ

∗
3) = 2. This implies that χ′

3χ
∗
3 = 2χ4 + g for some

ε 6= g ∈ G(H∗). Hence, χ′
3 = gχ3. Multiplying χ4χ3 = 2χ3 + 2gχ3 on the right by χ∗

3, we have

2χ2
4 = 2ε+ 2g + 3χ4 + 4gχ4. This means that both ε and g lie in the decomposition of χ2

4. It is

impossible.

In case (ii), we have χ′
3χ

∗
3 = χ4 + χ′

4 + g and χ′′
3χ

∗
3 = χ4 + χ′′

4 + h, where χ′
4, χ

′′
4 ∈ X4, and

{ε, g, h} = G(H∗). Hence, χ′
3 = gχ3, χ

′′
3 = hχ3. Multiplying χ4χ3 = 2χ3 + gχ3 + hχ3 on the

right by χ∗
3, we have 2χ2

4 = 2ε+ g + h+ 3χ4 + 2gχ4 + 2hχ4. It is also impossible.
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If the third case holds, we consider the decomposition of ϕχ∗
3, where χ3 6= ϕ ∈ X3. If there

exists an irreducible character χ4 of degree 4 such that m(χ4, ϕχ
∗
3) > 0, we have ϕχ∗

3 = χ4+χ′
4+g

or ϕχ∗
3 = 2χ4 + h or ϕχ∗

3 = χ4 + χ′
3 + g1 + g2, where χ4 6= χ′

4 ∈ X4, g, h ∈ G(H∗) and

χ′
3 ∈ X3. Then gχ3 = ϕ or hχ3 = ϕ or g1χ3 = ϕ. It follows that χ3χ

∗
3 = g−1χ4 + g−1χ′

4 + ε or

χ3χ
∗
3 = 2h−1χ4 + ε or χ3χ

∗
3 = g−1

1 χ4 + g−1
1 χ′

3 + ε + g−1
1 g2, which contradicts the assumption.

Hence, G(H∗)∪X3 spans a standard subalgebra of R(H). It follows that H has a quotient Hopf

algebra of dimension 30. It is impossible by Nichols–Zoeller Theorem.

Suppose that H is of type (1, 6; 2, 6; 4, 3) as an algebra. By Proposition 1.2.6 in [3], G(H∗)

is abelian. Let G = {1, g} be the unique subgroup of G(H∗) of order 2. Then G[χ2] = G for

all χ2 ∈ X2. By Lemma 8, χ2χ
′
2 is not irreducible for all χ2, χ

′
2 ∈ X2. Hence, the irreducible

character of degree 1, 2 spans a standard subalgebra of R(H). It follows that H has a quotient

Hopf algebra of dimension 30. It is also impossible by Nichols-Zoeller Theorem.

Suppose that H is of type (1, 2; 2, 6; 4, 1, 6, 1) as an algebra. In this case, G[χ2] = G(H∗)

for all χ2 ∈ X2 and χ2χ
′
2 is not irreducible for all χ2, χ

′
2 ∈ X2.

We now consider the decomposition of χ4χ
∗
4, where χ4 is the unique element in X4. If

there exists χ2 ∈ X2 such that m(χ2, χ4χ
∗
4) = 1, then m(χ4, χ2χ4) = 1. This implies that

χ2χ4 = χ4 + χ′
2 + χ′′

2 , where χ′
2, χ

′′
2 ∈ X2. If χ′

2 = χ′′
2 , then m(χ′

2, χ2χ4) = m(χ4, χ
′∗
2 χ2) = 2,

which is impossible. Hence, χ′
2 6= χ′′

2 , and m(χ4, χ
′∗
2 χ2) = 1. This implies that χ′∗

2 χ2 = χ4

is irreducible, which contradicts the result above. Hence, χ4χ
∗
4 = ε + g + 2χ2 + 2χ′

2 + χ6 or

χ4χ
∗
4 = ε + g + 2χ4 + χ6 or χ4χ

∗
4 = ε + g + 2χ2 + χ4 + χ6, where χ2, χ

′
2 ∈ X2, χ6 ∈ X6 and

{ε, g} = G(H∗).

From m(χ6, χ4χ
∗
4) = m(χ4, χ6χ4) = 1, we have χ6χ4 = χ4 + ϕ, where m(χ4, ϕ) = 0 and

degϕ = 20. If there exists χ2 ∈ X2 such that m(χ2, χ6χ4) = m ≥ 0, then m(χ2, χ6χ4) =

m(χ6, χ2χ4) implies that 0 ≤ m ≤ 1. If m = 1, then χ2χ4 = χ6 + χ′′
2 for some χ′′

2 ∈ X2. This

will deduce that χ4 = χ∗
2χ

′′
2 , which is a contradiction. Therefore, ϕ only contains several copies

of χ6, which is absurd since degϕ = 20.

Suppose that H is of type (1, 1; 3, 4; 4, 1; 5, 1) as an algebra. Let χ3 be an irreducible char-

acter of degree 3, and χ4, χ5 be the unique irreducible characters of degree 4, 5, respectively. If

χ3χ
∗
3 = ε+ 2χ4, then m(χ4, χ3χ

∗
3) = m(χ3, χ4χ3) = 2 implies that χ4χ3

(1)
= 2χ3 +ϕ1 +ϕ2,where

χ3, ϕ1, ϕ2 are distinct elements in X3. m(ϕ1, χ4χ3) = m(χ4, ϕ1χ
∗
3) = 1 implies that ϕ1χ

∗
3 =

χ4 + χ5. m(χ5, ϕ1χ
∗
3) = m(ϕ1, χ5χ3) = 1 implies that χ5χ3 = ϕ1 + ϕ3 + χ4 + χ5, where

ϕ1 6= ϕ3 ∈ X3. m(χ4, χ5χ3) = m(χ5, χ4χ
∗
3) = 1 implies that χ4χ

∗
3

(2)
= χ5 + χ4 + ϕ4, where

ϕ4 ∈ X3. m(χ4, χ4χ
∗
3) = m(χ4, χ3χ4) = m(χ3, χ

2
4) = 1 implies that χ2

4 = ε + χ3 + ω, where

m(χ3, ω) = 0 and degω = 12. Hence, we have

(i) χ2
4 = ε+ χ3 + 3χ4, or

(ii) There exists χ3 6= χ′
3 ∈ X3 such that m(χ′

3, χ
2
4) > 0.

In case (i), χ3 = χ∗
3 since χ2

4 is self-dual. Then (1) and (2) give a contradiction.

In case (ii). If χ3 = χ∗
3, then (1) and (2) also give a contradiction. So, there must exist

χ3 6= χ′′
3 ∈ X3 such that χ3 = χ′′∗

3 and m(χ′′
3 , χ

2
4) = m > 0. Then m(χ′′

3 , χ4χ
∗
4) = m(χ4, χ

′′
3χ4) =

m(χ4, χ4χ
′′∗
3 ) = m. This implies that χ4χ

′′∗
3 = χ4χ3 = mχ4 + ψ, where m(χ4, ψ) = 0 and
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degψ = 12 − 4m, which contradicts (1).

As a conclusion, for all χ3 ∈ X3, we have χ3χ
∗
3 = ε + χ′

3 + χ5, where χ′
3 ∈ X3. Then

m(χ5, χ3χ
∗
3) = m(χ3, χ5χ3) = 1 implies that χ5χ3 = χ3 + χ4 + χ5 + ϕ1, where χ3 6= ϕ1 ∈ X3.

m(χ4, χ5χ3) = m(χ5, χ4χ
∗
3) = 1 implies that χ4χ

∗
3 = χ5+χ4+ϕ2, where ϕ2 ∈ X3. m(χ4, χ4χ

∗
3) =

m(χ4, χ3χ4) = m(χ3, χ
2
4) = 1 implies that χ3 lies in the decomposition of χ2

4 with multiplicity

1 for every χ3 ∈ X3. Hence, χ2
4 = ε + χ1

3 + χ2
3 + χ3

3 + χ4
4 + ψ, where {χ1

3, χ
2
3, χ

3
3, χ

4
4} = X3 and

ψ ∈\X3. It is impossible.

Suppose that H is of type (1, 2; 2, 6; 3, 4; 4, 1) as an algebra. By Theorem 1 and Lemma 7,

G[χ] = G(H∗) for all χ ∈ X2 and χ2χ
′
2 is not irreducible for all χ2, χ

′
2 ∈ X2.

Let χ4 be the unique irreducible character of degree 4. If there exists χ3 ∈ X3 such

that m(χ3, χ4χ
∗
4) = 1, then m(χ4, χ3χ4) = 1. This implies that χ3χ4 = χ4 + ϕ, where

m(χ4, ϕ) = 0 and degϕ = 8. If there exists χ2 ∈ X2 such that m(χ2, ϕ) = 1, then m(χ2, χ3χ4) =

m(χ3, χ2χ4) = 1. This implies that χ2χ4 = χ3 + χ′
2 + χ′

3 for some χ′
2 ∈ X2, χ

′
3 ∈ X3. This

will deduce a contradiction χ∗
2χ

′
2 = χ4. If there exists χ2 ∈ X2 such that m(χ2, ϕ) = 2, then

m(χ2, χ3χ4) = m(χ3, χ2χ4) = 2. This implies that χ2χ4 = 2χ3 + χ′
2 for some χ′

2 ∈ X2. There

is also a contradiction χ∗
2χ

′
2 = χ4. Hence, ϕ is a sum of irreducible characters of degree 3. It is

impossible since degϕ = 8.

If there exists χ3 ∈ X3 such that m(χ3, χ4χ
∗
4) = 2, then χ3χ4 = 2χ4 + χ′

2 + χ′′
2 for some

χ′
2, χ

′′
2 ∈ X2. It is impossible by the discussion above.

If there exists χ2 ∈ X2 such that m(χ2, χ4χ
∗
4) = 1, then χ1χ4 = χ4 + χ′

2 + χ′′
2 for some

χ′
2, χ

′′
2 ∈ X2. It is impossible, too.

Hence, we reach a conclusion that every irreducible character of degree 2 or 3 which appears

in the decomposition of χ4χ
∗
4 must have multiplicity 2 or 3. Counting degrees, we find this

cannot happen. This completes the proof. �

Corollary 3 Let H be a semisimple Hopf algebra of dimension 78. If H is not a dual group

algebra, then G(H∗) is abelian.

Proof The result follows from [3, Proposition 1.2.6] and Theorem 4.

Remark Let q, r, p be distinct prime numbers such that q and r divide p− 1. Andruskiewitsch

and Natale [15] constructed two classes of non-trivial non-isomorphic semisimple Hopf alge-

bras of dimension pqr. As an algebra, one is of type (1, rq; q, r(p−1)
q

) and the other is of type

(1, rq; r, q(p−1)
r

). Therefore, non-trivial semisimple Hopf algebras of dimension 78 do exist. How-

ever, the existence of non-trivial semisimple Hopf algebras of dimension 66 and 70 is still un-

known.
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