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1. Introduction

Classifying certain classes of finite p-groups defined by their subgroup structure is important

in the study of finite p-groups. For example, finite p-groups with “large cyclic subgroups” have

been investigated by many authors. A well-known important result is the classification of finite

p-groups with a cyclic subgroup of index p, which was obtained by Burnside [5] in 1897. Hua

and Tuan [7] classified finite p-groups with a cyclic subgroup of index p2 in terms of generators

and defining relations for p > 2 in 1940, and Bai [1] did this for p = 2 in 1985. Ninomiya [14]

in 1994 also classified these p-groups. Berkovich and Janko [2, pp. 274–276] in 2008 classified

again these p-groups in a structural form, Berkovich for p > 2, and Janko for p = 2. It is natural

to classify finite p-groups with a cyclic subgroup of index p3. In fact, early in the last century,

Neikirk [13] classified these p-groups for p > 2, and McKelden [12] for p = 2. However, their

results are incorrect and some groups are missing from their papers. Titov [16] in 1980 classified

these p-groups in some special cases for p > 3. The objective in this paper is to classify these

p-groups completely in terms of generators and define relations for p > 2 up to isomorphism.

This also solves Problem 12.11.13 proposed by Xu and Qu in [18].

For convenience, we introduce some new notation. Assume G is a group of order pn. We say

G is a Ct-group if G has a cyclic subgroup of index pt and all subgroups of index pt−1 of G are

not cyclic. In other words, G is a Ct-group if expG = pn−t.

We sketch the classification: If G is a regular C3-group of order pn, then the type of G is one

of the following: (e, 3), (e, 2, 1) or (e, 1, 1, 1), where e = n − 3. If the type of G is (e, 3), then G
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is a metacyclic p-group. Metacyclic p-groups have been classified by Xu in [19]. So it is enough

to determine which ones have type (e, 3). If the type of G is (e, 2, 1), then G was classified by Ji

et al. in [10]. However, the list of groups given there is incorrect and we correct their results. If

the type of G is (e, 1, 1, 1), then G was classified by Zhang et al. in [21], so it suffices for us to

classify irregular C3-groups of order pn with p odd.

If G is an irregular C3-group of order pn, then we classify C3-groups using different methods.

First we prove that p = 3. We then proceed by examining two cases, depending on whether |G| <

37, or |G| ≥ 37. If |G| < 37, then the desired groups are completely listed in the “SmallGroups”

library of Magma [3, 4], and we only need to select those that satisfy our conditions. If |G| ≥ 37,

we classify the desired groups by considering whether Z(G) is cyclic or not. The methods we

use are cyclic extensions and central extensions, respectively.

2. Preliminaries

Let G be a finite p-group. Then G is inner abelian if G is non-abelian, but every proper

subgroup of G is abelian; G is metabelian if G′′ = 1; G is regular if (ab)p = apbpc3
p · · · cm

p for

arbitrary a, b ∈ G, where ci ∈ 〈a, b〉
′
; and G is ps-abelian if for arbitrary a, b ∈ G, (ab)ps

= aps

bps

,

where s is a positive integer.

Assume H and N are finite groups. Then G is an extension of N by H if there exists a

normal subgroup M � G such that N ∼= M and G/M ∼= H . if H is cyclic, we say that G is

a cyclic extension; if M ⊆ Z(G), we say G is a central extension. And we say G is a central

extension of degree p if G is a central extension of N by H and |N | = p.

If G is a finite group, then exp G denotes the smallest positive integer n such that gn = 1

for all g ∈ G, c(G) denotes the nilpotency class of G, and o(b) denotes the order of an element b

of G. We use Gn to denote the nth term of the lower central series of G.

Assume A and B are subgroups of a group G. We say that G is a central product of A and

B if G = AB and [A, B] = 1, we denote this by A ∗ B.

Assume G is a finite p-group, expG = pe. For 0 ≤ s ≤ e, let

Ωs(G) = 〈g ∈ G|gps

= 1〉, ℧s(G) = 〈gps

|g ∈ G〉.

Let pωs(G) = |Ωs(G)/Ωs−1(G)|. Then (ω1, ω2, . . . , ωe) is an invariant of G. For arbitrary

integer i, 1 ≤ i ≤ ω, let ei be the number satisfying ωt ≥ i for ωt ∈ {ω1, ω2, . . . , ωe}. Then

e1 ≥ e2 ≥ · · · ≥ eω. The type of G is (e1, e2, . . . , eω).

Let G be a p-group and let b1, . . . , bω be elements of G. We call (b1, . . . , bω) a uniqueness

basis (a U.B.) of G if every g ∈ G can be uniquely expressed in the following form:

g = bα1

1 bα2

2 · · · bαω

ω ,

where 0 ≤ αj < o(bj), j = 1, . . . , ω.

For convenience, we summarize known results which are used in this paper.

Lemma 1 ([15]) Assume G is an inner abelian p-group. Then G is one of the following pairwise
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non-isomorphic groups:

(1) Q8;

(2) Mp(n, m) = 〈a, b|apn

= bpm

= 1, ab = a1+pn−1

〉, n ≥ 2 (metacyclic); or

(3) Mp(n, m, 1) = 〈a, b, c|apn

= bpm

= cp = 1, [a, b] = c, [c, a] = [c, b] = 1〉, n ≥ m and p = 2,

m + n ≥ 3 (non-metacyclic).

Lemma 2 ([17, Lemma 3]) Assume G is a metabelian p-group, a, b ∈ G. For arbitrary integers

i, j, let

[ia, jb] = [a, b, a, . . . , a
︸ ︷︷ ︸

i−1

, b, . . . , b
︸ ︷︷ ︸

j−1

].

Then for arbitrary integers m, n,

[am, bn] =

m∏

i=1

n∏

j=1

[ia, jb](
m

i )(
n

j),

(ab−1)m = amΠi+j≤m [ia, jb](
m

i+j)b−m, m ≥ 2.

Theorem 3 ([8]) Assume G is a group of order pn, expG = pn−α, p ≥ 3, n ≥ 2α + 1. Then

(1) There exist α+1 elements b, b1, b2, . . . , bα in G such that for all g ∈ G, g can be uniquely

expressed as g = bλα
α . . . bλ1

1 bλ, 1 ≤ λα ≤ p, . . . , 1 ≤ λ1 ≤ p, 1 ≤ λ ≤ pn−α, where o(b) = pn−α,

o(bi) ≤ pi.

(2) For all b1, b2 ∈ G, (b1b2)
pα

= bpα

1 bpα

2 .

(3) |G′| ≤ pα, |G3| ≤ pα−1.

(4) bpα

∈ Z(G).

Theorem 4 ([7]) Assume G is a group of order pn+2, expG = pn, where p ≥ 3, n ≥ 4. Then G

is one of the following pairwise non-isomorphic groups:

H1 = 〈a, b, c | apn

= 1, bp = 1, cp = 1, [a, b] = [a, c] = [b, c] = 1〉;

H2 = 〈a, b | apn

= 1, bp2

= 1, [a, b] = 1〉;

H3 = 〈a, b, c | apn

= 1, bp = 1, cp = 1, [a, b] = apn−1

, [a, c] = [b, c] = 1〉;

H4 = 〈a, b, c | apn

= 1, bp = 1, cp = 1, [b, c] = apn−1

, [a, b] = [a, c] = 1〉;

H5 = 〈a, b, c | apn

= 1, bp = 1, [a, b] = c, cp = 1, [a, c] = [b, c] = 1〉 ∼= M3(n, 1, 1);

H6 = 〈a, b, c | apn

= 1, bp = 1, [a, b] = c, cp = 1, [a, c] = apn−1

, [b, c] = 1〉;

H7 = 〈a, b, c | apn

= 1, bp = 1, [a, b] = c, cp = 1, [b, c] = apn−1

, [a, c] = 1〉;

H8 = 〈a, b, c | apn

= 1, bp = 1, [a, b] = c, cp = 1, [b, c] = aνpn−1

, [a, c] = 1〉 where ν is a fixed

quadratic non-residue modulo p;

H9 = 〈a, b | apn

= 1, bp2

= 1, [a, b] = apn−1

〉 ∼= M3(n, 2);

H10 = 〈a, b | apn

= 1, bp2

= 1, [a, b] = apn−2

〉;

H11 = 〈a, b | apn

= 1, bp2

= 1, [a, b] = bp〉 ∼= M3(2, n);

H12 = 〈a, b | apn

= bp2

= 1, [a, b] = apn−2

bp, [a, bp] = apn−1

〉.

Lemma 5 ([9, p. 322, Satz 10.2]) Assume G is a finite p-group. If G satisfies one of the following

conditions, then G is regular:
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(1) c(G) < p,

(2) p > 2 and G′ is cyclic,

(3) exp G = p,

(4) |G/℧1(G)| < pp.

Lemma 6 ([18, p. 132, Theorem 5.2.2, p. 134, Theorem5.2.11])

(1) Assume G is finite 3-group generated by two elements. Then G is regular if and only if

G′ is cyclic.

(2) A finite 3-group is regular if and only if every subgroup generated by two elements has

a cyclic derived subgroup.

Lemma 7 ([18, p. 71, Theorem 2.2.15]) Assume G is a finite p-group. If Z(G′) is cyclic, then

G′ is cyclic.

Lemma 8 ([18, p. 78, Corollary2.4.5]) Assume G is a finite p-group, p > 2. If G can be ex-

pressed as a product of two cyclic subgroups, then G is metacyclic.

Lemma 9 ([6]) Assume G is a regular p-group with the type (e1, e2, . . . , eω). Then G has a

uniqueness basis (b1, b2, . . . , br), where r = ω and o(bi) = pei .

Lemma 10 ([19, 20]) Every metacyclic p-group G (p an odd prime) has the following presenta-

tion:

〈a, b | apr+s+u

= 1, bpr+s+t

= apr+s

, [a, b] = apr

〉,

where r, s, t, u are non-negative integers with r ≥ 1 and u ≤ r. Different values of the parameters

r, s, t, u with the above conditions give non-isomorphic metacyclic p-groups. Furthermore, G is

split if and only if either s = 0, or t = 0, or u = 0. Also |G| = p2r+2s+t+u and expG = pr+s+t+u.

3. A classification of finite regular C3-groups

Assume G is a regular C3-group of order pn, p > 2, e = n − 3. Obviously, G is a C3-group if

and only if the type of G is one of the following: (e, 3), (e, 2, 1) or (e, 1, 1, 1), where e = n−3. So

classifying regular C3-groups of order pn is equivalent to classifying regular p-groups whose types

are (e, 3), (e, 2, 1) or (e, 1, 1, 1), respectively. The following three theorems give the classification

of regular C3-groups.

Theorem 11 Assume G is a p-group of order pn, p > 2, e = n− 3. Then G is a regular p-group

whose type is (e, 3) if and only if G is one of the following pairwise non-isomorphic groups:

(1) 〈a, b | ap3

= 1, bpe

= 1, [a, b] = ap〉, e ≥ 3;

(2) 〈a, b | ap4

= 1, bpe−1

= ap3

, [a, b] = ap〉, e ≥ 4;

(3) 〈a, b | ap3

= 1, bpe

= 1, [a, b] = ap2

〉, e ≥ 3;

(4) 〈a, b | ap4

= 1, bpe−1

= ap3

, [a, b] = ap2

〉, e ≥ 4;

(5) 〈a, b | ap5

= 1, bpe−2

= ap3

, [a, b] = ap2

〉, e ≥ 5;

(6) 〈a, b | ap3

= 1, bpe

= 1, [a, b] = 1〉, e ≥ 3;
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(7) 〈a, b | ap4

= 1, bpe−1

= ap3

, [a, b] = ap3

〉, e ≥ 4;

(8) 〈a, b | ap5

= 1, bpe−2

= ap3

, [a, b] = ap3

〉, e ≥ 5;

(9) 〈a, b | ap6

= 1, bpe−3

= ap3

, [a, b] = ap3

〉, e ≥ 6.

Proof Since G is regular and the type of G is (e, 3), G has a uniqueness basis (b1, b2) such that

G = 〈b1〉〈b2〉. Since p > 2, G is metacyclic by Lemma [8]. By Lemma [10],

G ∼= 〈a, b | apr+s+u

= 1, bpr+s+t

= apr+s

, [a, b] = apr

〉,

where r, s, t, u are non-negative integers with r ≥ 1 and u ≤ r. Different values of the parameters

r, s, t and u give non-isomorphic metacyclic p-groups. Furthermore, |G| = p2r+2s+t+u and

exp G = pr+s+t+u.

Since the type invariant of G is (e, 3), we have e = r + s + t + u, r + s = 3.

Obviously, e ≥ r + s + u. Then t = e− r− s− u ≥ 0 is uniquely determined by r, s, u. Since

r + s = 3, r ≥ 1, u ≤ r, we obtain the groups listed in the theorem by considering all possible

values for r, s, u.

Conversely, by checking we know the conclusion is true. 2

Theorem 12 Assume G is a p-group of order pn, p > 2. Then G is a regular p-group whose type

invariant is (e, 2, 1) if and only if G is isomorphic to one of the following pairwise non-isomorphic

groups, where ν denotes a fixed quadratic non-residue modulo p.

(1) 〈a, b, c | ape

= 1, bp2

= 1, cp = 1, [b, a] = c, [c, a] = [c, b] = 1〉, where p ≥ 3, e ≥ 2;

(2) 〈a, b, c | ape

= 1, bp2

= 1, cp = 1, [b, a] = c, [c, a] = 1, [c, b] = ape−1

〉, where p ≥ 5, e ≥ 2;

(3) 〈a, b, c | ape

= 1, bp2

= 1, cp = 1, [b, a] = c, [c, a] = 1, [c, b] = bp〉, where p ≥ 5, e ≥ 2;

(4) 〈a, b, c | ape

= 1, bp2

= 1, cp = 1, [b, a] = c, [c, a] = 1, [c, b] = aνpe−1

〉, where p ≥ 5, e ≥ 2;

(5) 〈a, b, c | ape

= 1, bp2

= 1, cp = 1, [b, a] = c, [c, a] = ape−1

, [c, b] = 1〉, where p ≥ 5, e ≥ 3;

(6) 〈a, b, c | ape

= 1, bp2

= 1, cp = 1, [b, a] = c, [c, a] = bp, [c, b] = 1〉, where p ≥ 5, e ≥ 3;

(7) 〈a, b, c | ape

= 1, bp2

= 1, cp = 1, [b, a] = c, [c, a] = bνp, [c, b] = 1〉, where p ≥ 5, e ≥ 3;

(8) 〈a, b, c | ap2

= 1, bp2

= 1, cp = 1, [b, a] = c, [c, a] = b−p, [c, b] = apbhp〉, where p ≥ 5,

h = 0, . . . , p−1
2 ;

(9) 〈a, b, c | ap2

= 1, bp2

= 1, cp = 1, [b, a] = c, [c, a] = b−νp, [c, b] = aνpb2νp〉, where p ≥ 5;

(10) 〈a, b, c | ap2

= 1, bp2

= 1, cp = 1, [b, a] = c, [c, a] = b−p, [c, b] = aνpbhp〉, where p ≥ 5,

h = 0, . . . , p−1
2 ;

(11) 〈a, b, c | ape

= 1, bp2

= 1, cp = 1, [b, a] = c, [bp, a] = 1, [c, a] = bp, [c, b] = ape−1

〉, where

p ≥ 5, e ≥ 3;

(12) 〈a, b, c | ape

= 1, bp2

= 1, cp = 1, [b, a] = c, [bp, a] = 1, [c, a] = bνp, [c, b] = ape−1

〉, where

p ≥ 5, e ≥ 3;

(13) 〈a, b, c | ape

= 1, bp2

= 1, cp = 1, [b, a] = c, [bp, a] = 1, [c, a] = bp, [c, b] = aνpe−1

〉, where

p ≥ 5, e ≥ 3;

(14) 〈a, b, c | ape

= 1, bp2

= 1, cp = 1, [b, a] = c, [bp, a] = 1, [c, a] = bνp, [c, b] = aνpe−1

〉, where

p ≥ 5, e ≥ 3;
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(15) 〈a, b, c | ape

= 1, bp2

= 1, cp = 1, [b, a] = c, [bp, a] = 1, [c, a] = aipe−1

, [c, b] = bp〉, where

p ≥ 5, e ≥ 3, i = 1, . . . , p − 1;

(16) 〈a, b, c | ap2

= 1, bp2

= 1, cp = 1, [b, a] = c, [bp, a] = 1, [c, a] = ap, [c, b] = bp〉, where

p ≥ 5;

(17) 〈a, b, c | ape

= bp2

= cp2

= 1, [b, a] = c, cp = ape−1

, [c, a] = 1, [c, b] = akpe−1

〉, where

p ≥ 3, e ≥ 3, k = 0, . . . , p − 1;

(18) 〈a, b, c | ape

= bp2

= cp2

= 1, [b, a] = c, cp = ape−1

, [c, a] = ape−1

, [c, b] = 1〉, where p ≥ 3,

e ≥ 3;

(19) 〈a, b, c | ape

= bp2

= cp2

= 1, [b, a] = c, cp = ape−1

, [c, a] = bp, [c, b] = akpe−1

〉, where

p ≥ 5, e ≥ 3, k = 0, . . . , p − 1;

(20) 〈a, b, c | ape

= bp2

= cp2

= 1, [b, a] = c, cp = ape−1

, [c, a] = bνp, [c, b] = akpe−1

〉, where

p ≥ 5, e ≥ 3, k = 0, . . . , p − 1;

(21) 〈a, b, c | ape

= bp2

= cp = 1, [b, a] = ape−1

, [c, a] = [c, b] = 1〉, where p ≥ 3, e ≥ 2;

(22) 〈a, b, c | ape

= bp2

= cp = 1, [b, c] = ape−1

, [b, a] = [c, a] = 1〉, where p ≥ 3, e ≥ 2;

(23) 〈a, b, c | ape

= bp2

= cp = 1, [b, c] = bp, [b, a] = [c, a] = 1〉, where p ≥ 3, e ≥ 2;

(24) 〈a, b, c | ape

= bp2

= cp = 1, [b, a] = bp, [c, a] = [c, b] = 1〉, where p ≥ 3, e ≥ 3;

(25) 〈a, b, c | ape

= bp2

= cp = 1, [c, a] = ape−1

, [b, a] = [c, b] = 1〉, where p ≥ 3, e ≥ 3;

(26) 〈a, b, c | ape

= bp2

= cp = 1, [c, a] = bp, [b, a] = [c, b] = 1〉, where p ≥ 3, e ≥ 3;

(27) 〈a, b, c | ape

= bp2

= cp = 1, [b, a] = 1, [b, c] = ape−1

bhp, [c, a] = bp〉, where p ≥ 3, e ≥ 2,

h = 0, . . . , p−1
2 ;

(28) 〈a, b, c | ape

= bp2

= cp = 1, [b, a] = 1, [b, c] = ape−1

bhp, [c, a] = bνp〉, where p ≥ 3, e ≥ 2,

h = 0, . . . , p−1
2 ;

(29) 〈a, b, c | ape

= bp2

= cp = 1, [b, a] = bp, [b, c] = 1, [c, a] = ape−1

〉, where p ≥ 3, e ≥ 2;

(30) 〈a, b, c | ape

= bp2

= cp = 1, [b, a] = ape−1

, [b, c] = 1, [c, a] = bp〉, where p ≥ 3, e ≥ 2;

(31) 〈a, b, c | ap2

= bp2

= cp = 1, [b, a] = 1, [b, c] = b−p, [c, a] = ap〉, where p ≥ 3;

(32) 〈a, b, c | ape

= bp2

= cp = 1, [b, a] = ape−1

, [b, c] = bp, [c, a] = 1〉, where p ≥ 3, e ≥ 3;

(33) 〈a, b, c | ape

= bp2

= cp = 1, [b, a] = bp, [b, c] = ape−1

, [c, a] = 1〉, where p ≥ 3, e ≥ 3;

(34) 〈a, b, c | ape

= bp2

= cp = 1, [b, a] = ape−2

, [b, c] = ape−1

, [c, a] = 1〉, where p ≥ 3, e ≥ 3;

(35) 〈a, b, c | ape

= bp2

= cp = 1, [b, a] = ape−2

, [b, c] = [c, a] = 1〉, where p ≥ 3, e ≥ 3;

(36) 〈a, b, c|ape

= bp2

= cp = 1, [b, a] = ape−2

bp, [bp, a] = ape−1

, [b, c] = ape−1

, [c, a] = 1〉,

where p ≥ 3, e ≥ 4;

(37) 〈a, b, c | ape

= bp2

= cp = 1, [b, a] = ape−2

bp, [bp, a] = ape−1

, [b, c] = [c, a] = 1〉, where

p ≥ 3, e ≥ 4;

(38) 〈a, b, c | ape

= bp2

= cp = 1, [b, a] = ape−2

, [b, c] = 1, [c, a] = bp〉, where p ≥ 5, e ≥ 3;

(39) 〈a, b, c | ape

= bp2

= cp = 1, [b, a] = ape−2

, [b, c] = ape−1

, [c, a] = bp〉, where p ≥ 5, e ≥ 3;

(40) 〈a, b, c | ape

= bp2

= cp = 1, [b, a] = ape−2

, [b, c] = aνpe−1

, [c, a] = bp〉, where p ≥ 5, e ≥ 3;

(41) 〈a, b, c | ape

= bp2

= cp = 1, [b, a] = [b, c] = [c, a] = 1〉, where p ≥ 3, e ≥ 2.

Proof The groups satisfying the hypothesis were classified incorrectly in [10]. We correct this

work. The errors are as follows.
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(i) The defining relation [bp, a] = 1 in the following 5 groups listed in Table 1 of [10] is

missing. We add it and get groups (11)–(15).

(11) 〈a, b | ape

= 1, bp2

= 1, cp = 1, [b, a] = c, [c, a] = bp, [c, b] = ape−1

〉, where p ≥ 5, e ≥ 3;

(12) 〈a, b | ape

= 1, bp2

= 1, cp = 1, [b, a] = c, [c, a] = bνp, [c, b] = ape−1

〉, where p ≥ 5, e ≥ 3;

(13) 〈a, b | ape

= 1, bp2

= 1, cp = 1, [b, a] = c, [c, a] = bp, [c, b] = aνpe−1

〉, where p ≥ 5, e ≥ 3;

(14) 〈a, b | ape

= 1, bp2

= 1, cp = 1, [b, a] = c, [c, a] = bνp, [c, b] = aνpe−1

〉, where p ≥ 5, e ≥ 3;

(15) 〈a, b | ape

= 1, bp2

= 1, cp = 1, [b, a] = c, [c, a] = aipe−1

, [c, b] = bp〉, where p ≥ 5, e ≥ 3,

i = 1, . . . , p − 1.

(ii) By [21, Theorem 5.1], the following group in Table 1 of [10] is missing, which is group

(16).

〈a, b | ap2

= 1, bp2

= 1, cp = 1, [b, a] = c, [bp, a] = 1, [c, a] = ap, [c, b] = bp〉, where p ≥ 5;

(iii) The authors of [10] omit the case k = 0 of the groups (1), (2), (4) listed in Table 2 of

[10], so the following 3 groups are missing. They are the case k = 0 of groups (17), (19), (21).

〈a, b | ape

= bp2

= cp2

= 1, [b, a] = c, cp = ape−1

, [c, a] = 1, [c, b] = 1〉, where p ≥ 3, e ≥ 3;

〈a, b | ape

= bp2

= cp2

= 1, [b, a] = c, cp = ape−1

, [c, a] = bp, [c, b] = 1〉, where p ≥ 5, e ≥ 3;

〈a, b | ape

= bp2

= cp2

= 1, [b, a] = c, cp = ape−1

, [c, a] = bνp, [c, b] = 1〉, where p ≥ 5, e ≥ 3.

(iv) One of the groups (11) in Table 3 of [10] is isomorphic to one of groups (7), (8). The

following is the proof.

The groups (11) are 〈a, b, c | ape

= bp2

= cp = 1, [b, a] = 1, [b, c] = bhp, [c, a] = ape−1

〉, where

p ≥ 3, e ≥ 3, h = 1, . . . , p − 1.

Replacing a by ab, we have 〈a, b, c | ape

= bp2

= cp = 1, [b, a] = 1, [b, c] = bhp, [c, a] =

ape−1

b−hp〉. Replacing b by b−hape−2

, we have 〈a, b, c | ape

= bp2

= cp = 1, [b, a] = 1, [b, c] =

bhpa−hpe−1

, [c, a] = bp〉.

Letting s be an integer satisfying −sh ≡ 1(mod p) and replacing b by bs, we have 〈a, b, c | ape

=

bp2

= cp = 1, [b, a] = 1, [b, c] = bhpape−1

, [c, a] = bs−1p〉, where s−1 is the inverse of s in the field

Zp.

Let t be an integer satisfying s−1t2 ≡ 1 or ν(mod p), where ν is a fixed quadratic non-residue

modulo p. Replacing a by at, c by ct, we have 〈a, b, c | ape

= bp2

= cp = 1, [b, a] = 1, [b, c] =

bthpape−1

, [c, a] = bp〉, or 〈a, b, c | ape

= bp2

= cp = 1, [b, a] = 1, [b, c] = bthpape−1

, [c, a] = bνp〉.

If th < p/2, the groups are isomorphic to some groups in (7) and (8). If th > p/2, replacing

a by a−1, c by c−1, then the groups are also isomorphic to some groups in (7) and (8).

(v) By [21, Theorem 5.1], the following group in Table 3 of [10] is missing, which is group

(31).

〈a, b, c | ap2

= bp2

= cp = 1, [b, a] = 1, [b, c] = b−p, [c, a] = ap〉, where p ≥ 3.

(vi) The defining relation [bp, a] = ape−1

in the following 2 groups listed in the Table 4 of

[10] is missing. We add it and get groups (36), (37).

(3) 〈a, b, c|ape

= bp2

= cp = 1, [b, a] = ape−2

bp, [b, c] = ape−1

, [c, a] = 1〉, where p ≥ 3, e ≥ 4;

(4) 〈a, b, c | ape

= bp2

= cp = 1, [b, a] = ape−2

bp, [b, c] = [c, a] = 1〉, where p ≥ 3, e ≥ 4.

(vii) The order of groups (5) in Table 4 of [10] is not pe+3, so we remove them.
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The groups (5) are 〈a, b, c | ape

= bp2

= cp = 1, [b, a] = ape−2

, [b, c] = bp, [c, a] = 1〉, where

p ≥ 3, e ≥ 3. It is easy to see that |〈a, b〉| = pe+2 and G/〈a, b〉 ∼= 〈c〉. Thus, if the order of groups

(5) is pe+3, then [bc, ac] = (ape−2

)c. On the other hand, it follows from G is regular and Lemma

2 that [bc, ac] = [b1+p, a] = ([b, a])p[bp, a] = ape−2

ape−1

6= (ape−2

)c, a contradiction.

(viii) In the following 3 groups in the Table 4 of [10] p ≥ 3 should replace p ≥ 5. Thus we

get the groups (38), (39), (40) of Theorem.

(6) 〈a, b, c | ape

= bp2

= cp = 1, [b, a] = ape−2

, [b, c] = 1, [c, a] = bp〉, where p ≥ 3, e ≥ 3;

(7) 〈a, b, c | ape

= bp2

= cp = 1, [b, a] = ape−2

, [b, c] = ape−1

, [c, a] = bp〉, where p ≥ 3, e ≥ 3;

(8) 〈a, b, c| ape

= bp2

= cp = 1, [b, a] = ape−2

, [b, c] = aνpe−1

, [c, a] = bp〉, where p ≥ 3, e ≥ 3.

The reason is as follows: if p = 3, then 〈c, a〉′ is not cyclic. By Lemma 6, G is irregular.

Finally, those groups listed in the statement of the theorem are pairwise non-isomorphic and

satisfy all hypotheses. 2

Theorem 13 Assume G is a p-group of order pn. Then G is a regular p-group whose type is

(e, 1, 1, 1) if and only if G is isomorphic to one of the following pairwise non-isomorphic groups,

where ν denotes a fixed quadratic non-residue modulo p and p ≥ 5, e ≥ 2 unless otherwise stated.

(1) 〈a, b, c, d | ape

= bp = cp = dp = 1, [b, a] = c, [c, a] = 1, [c, b] = d, [d, a] = [d, b] = 1〉;

(2) 〈a, b, c, d | ape

= bp = cp = dp = 1, [b, a] = c, [c, a] = d, [c, b] = 1, [d, a] = [d, b] = 1〉; where

e ≥ 1;

(3) 〈a, b, c, d | ape

= bp = cp = dp = 1, [b, a] = c, [c, a] = d, [c, b] = aipe−1

, [d, a] = [d, b] = 1〉,

where i = 1 or ν;

(4) 〈a, b, c, d | ape

= bp = cp = dp = 1, [b, a] = c, [c, a] = ape−1

, [c, b] = d, [d, a] = [d, b] = 1〉;

(5) If p ≡ 3(mod 4), 〈a, b, c, d|ape

= bp = cp = dp = 1, [b, a] = c, [c, a] = d, [c, b] =

aipe−1

, [d, a] = ape−1

, [d, b] = [d, c] = 1〉, where i = 0, 1 or ν;

If p ≡ 1(mod 4),

〈a, b, c, d|ape

= bp = cp = dp = 1, [b, a] = c, [c, a] = d, [c, b] = aipe−1

, [d, a] = ape−1

, [d, b] = 1〉,

where i = 0, 1, ν, µ or ρ and 1, ν, µ, ρ are the coset representations of the subgroup generated by

biquadratic residues of Z∗
p;

(6) If p ≡ 2(mod 4),

〈a, b, c, d | ape

= bp = cp = dp = 1, [b, a] = c, [c, a] = akpe−1

, [c, b] = d, [d, a] = 1, [d, b] = ape−1

〉,

where k = 0 or 1;

If p ≡ 1(mod 3),

〈a, b, c, d | ape

= bp = cp = dp = 1, [b, a] = c, [c, a] = akpe−1

, [c, b] = d, [d, a] = 1, [d, b] =

aspe−1

〉, where k = 0 or 1, s = 1, µ or ν and 1, ν, µ are the coset representations of the subgroup

generated by cubic residues of Z∗
p;

(7) 〈a, b, c, d | ape

= bp = cp = dp = 1, [b, a] = d, [c, a] = [c, b] = 1, [d, a] = [d, b] = [d, c] = 1〉,

where p ≥ 3, e ≥ 1;

(8) 〈a, b, c, d|ape

= bp = cp = dp = 1, [b, a] = 1, [c, a] = 1, [c, b] = d, [d, a] = [d, b] = [d, c] = 1〉,

where p ≥ 3;
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(9) 〈a, b, c, d | ape

= bp = cp = dp = 1, [b, a] = ape−1

, [c, a] = d, [c, b] = 1, [d, a] = [d, b] =

[d, c] = 1〉, where p ≥ 3;

(10) 〈a, b, c, d | ape

= bp = cp = dp = 1, [b, a] = 1, [c, a] = ape−1

, [c, b] = d, [d, a] = [d, b] =

[d, c] = 1〉, where p ≥ 3;

(11) 〈a, b, c, d | ape

= bp = cp = dp = 1, [b, a] = 1, [c, a] = d, [c, b] = ape−1

, [d, a] = [d, b] =

[d, c] = 1〉, where p ≥ 3;

(12) 〈a, b, c, d | ape

= bp = cp = dp = 1, [b, a] = 1, [c, a] = 1, [c, b] = d, [d, a] = [d, b] =

1, [d, c] = ape−1

〉;

(13) 〈a, b, c, d | ape

= bp = cp = dp = 1, [b, a] = 1, [c, a] = ape−1

, [c, b] = d, [d, a] = 1, [d, b] =

ape−1

, [d, c] = 1〉;

(14) 〈a, b, c, d | ape

= bp = cp = dp = 1, [b, a] = d, [c, a] = 1, [c, b] = 1, [d, a] = 1, [d, b] =

aipe−1

, [d, c] = 1〉, where i = 1 or ν;

(15) 〈a, b, c, d | ape

= bp = cp = dp = 1, [b, a] = d, [c, a] = ape−1

, [c, b] = 1, [d, a] = 1, [d, b] =

aipe−1

, [d, c] = 1〉, where i = 1 or ν;

(16) 〈a, b, c, d|ape

= bp = cp = dp = 1, [b, a] = d, [c, a] = 1, [c, b] = 1, [d, a] = ape−1

, [d, b] =

[d, c] = 1〉;

(17) 〈a, b, c, d | ape

= bp = cp = dp = 1, [b, a] = d, [c, a] = 1, [c, b] = ape−1

, [d, a] =

ape−1

, [d, b] = [d, c] = 1〉;

(18) 〈a, b, c, d | ape

= bp = cp = dp = 1, [b, a] = [c, a] = [c, b] = [d, a] = [d, b] = [d, c] = 1〉,

where p ≥ 3, e ≥ 1;

(19) 〈a, b, c, d | ape

= bp = cp = dp = 1, [b, a] = [c, a] = [c, b] = [d, a] = [d, c] = 1, [d, b] =

ape−1

〉, where p ≥ 3;

(20) 〈a, b, c, d | ape

= bp = cp = dp = 1, [b, a] = [c, a] = [c, b] = [d, b] = [d, c] = 1, [d, a] =

ape−1

〉, where p ≥ 3;

(21) 〈a, b, c, d | ape

= bp = cp = dp = 1, [b, a] = [c, a] = [d, b] = [d, c] = 1, [c, b] = [d, a] =

ape−1

〉, where p ≥ 3.

Proof By Theorem 3.4 in [21] we obtain the desired p-groups for p ≥ 5. For p = 3, we only

need to select those regular 3-groups from that list.

If e = 1, then G is one of the groups of order p4 and expG = p. These groups occur in (2),

(7) and (18). If e ≥ 2, then by Theorem 3.4 in [21] we obtained the desired p-groups for the case

of p ≥ 5. For p = 3, obviously, d(G) ≤ 4. If d(G) = 2, then, by using the same approach as [21,

Theorem 3.1], we get G′ is not cyclic. By Lemma 6(1) there do not exist such 3-groups satisfying

the theorem’s condition. If d(G) = 3 or 4, we observe that the method in [21, Theorem 3.2, 3.3]

is still effective for p = 3. By checking the list of Theorems 3.2 and 3.3 in [21] using Lemma 6(2),

we learn that these groups occur in (7)–(11) and (18)–(21).

The groups we obtained are pairwise non-isomorphic and satisfy the hypothesis. 2

4. A classification of finite irregular C3-groups

Assume G is an irregular C3-group of order pn. By Lemma 15 below we have p = 3. Since
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our argument depends on Theorem 3, we proceed in two cases: |G| ≥ 37 and |G| < 37.

Lemma 14 Assume G is a C3-group of order pn. If p ≥ 5, then G is regular.

Proof Since exp G = pn−3, there exists a ∈ G such that o(a) = pn−3. Since 〈ap〉 ≤ ℧1(G) and

p ≥ 5, |G/℧1(G)| ≤ p4 < pp. By Lemma 5(4), G is regular. 2

Lemma 15 Assume G is an irregular C3-group of order pn and p > 2. Then

(1) p = 3;

(2) G′ is not cyclic;

(3) c(G) ≥ 3;

(4) G has a subgroup H generated by two elements with H ′ being not cyclic.

Proof (1) follows by Lemma 14; (2) and (3) follows by Lemma 5; (4) follows by Lemma 6. 2

Lemma 16 If G is an irregular C3-group of order 3n and n ≥ 7, then

(1) G′ is one of C3 × C3, C3 × C3 × C3 or C9 × C3,

(2) exp G3 = 3, where G3 is the third term of the lower central series of G,

(3) G is 9-abelian,

(4) if a ∈ G, then a9 ∈ Z(G).

Proof (1) By Theorem 3(3) we have |G′| ≤ 33. If G′ is not abelian, then G′ has order 33. So

Z(G′) is cyclic. By Lemma 7 we have G′ is cyclic, which contradicts Lemma 15(2). So G′ is

noncyclic abelian and the conclusion follows.

(2) We consider the quotient group G/Ω1(G
′). Since |(G/Ω1(G

′))′| = |G′/Ω1(G
′)| ≤ 3, we

have |(G/Ω1(G
′))3| = 1. Therefore, G3 ≤ Ω1(G

′), that is, expG3 = 3.

(3) and (4) follow from the formula of Lemma 2. 2

Lemma 17 Let Hi be the groups listed in Theorem 4. Then

(1) H ′
i have the following possible cases:

H ′
1
∼= H ′

2 = 1; H ′
3
∼= H ′

4
∼= H ′

9 = 〈apn−1

〉 ∼= Cp; H ′
5 = 〈c〉 ∼= Cp; H ′

11 = 〈bp〉 ∼= Cp;

H ′
6
∼= H ′

7
∼= H ′

8 = 〈c〉 × 〈apn−1

〉 ∼= Cp × Cp; H ′
10 = 〈apn−2

〉 ∼= Cp2 ; H ′
12 = 〈apn−2

bp〉 ∼= Cp2 .

(2) Z(Hi) have the following possible cases:

Z(H1) = H1, Z(H2) = H2; Z(H3) ∼= Z(H5) = 〈ap〉 × 〈c〉 ∼= Cpn−1 × Cp;

Z(H9) ∼= Z(H11) = 〈ap〉 × 〈bp〉 ∼= Cpn−1 × Cp; Z(H4) = 〈a〉 ∼= Cpn ;

Z(H6) ∼= Z(H7) ∼= Z(H8) = 〈ap〉 ∼= Cpn−1 ; Z(H10) ∼= Z(H12) = 〈ap2

〉 ∼= Cpn−2 .

(3) c(Hi) have the following possible cases:

c(H1) = c(H2) = 1; c(H3) = c(H4) = c(H5) = c(H9) = c(H11) = 2;

c(H6) = c(H7) = c(H8) = c(H10) = c(H12) = 3.

(4) Ω(Hi) have the following possible cases:

Ωi(H1) ∼= Ωi(H3) ∼= Ωi(H4) ∼= Ωi(H5) ∼= Ωi(H6) ∼= Ωi(H7) ∼= Ωi(H8) = 〈apn−i

, b, c〉;

Ωi(H2) ∼= Ωi(H9) ∼= Ωi(H10) ∼= Ωi(H11) ∼= Ωi(H12) = 〈apn−i

, bp2−i

〉, where 1 ≤ i ≤ 2;

Ωi(H2) ∼= Ωi(H9) ∼= Ωi(H10) ∼= Ωi(H11) ∼= Ωi(H12) = 〈apn−i

, b〉, where i > 2.
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(5) ℧(Hi) have the following possible cases:

℧i(H1) ∼= ℧i(H3) ∼= ℧i(H4) ∼= ℧i(H5) ∼= ℧i(H6) ∼= ℧i(H7) ∼= ℧i(H8) = 〈api

, bpi

, cpi

〉;

℧i(H2) ∼= ℧i(H9) ∼= ℧i(H10) ∼= ℧i(H11) ∼= ℧i(H12) = 〈api

, bpi

〉.

Proof It is straightforward by checking the list of groups listed in Theorem 4. 2

4.1. Irregular C3-groups of order ≥ 3
7 whose center is not cyclic

Lemmas 18, 19 and 20 below are simple, but we use them several times.

Lemma 18 Assume G is a finite p-group, N ≤ Z(G), |N | = p, G/N = 〈x̄1, x̄2, . . . , x̄s〉,

M = 〈x1, x2, . . . , xs〉. Then G = M or G = M × N. Furthermore, G = M if and only if

d(G) = d(G/N); and G = M × N if and only if d(G) = d(G/N) + 1.

Lemma 19 Assume G is a finite p-group, N ≤ Z(G), |N | = p and G/N ∼= H . Then H ′ ∼= G′

or H ′ ∼= G′/N .

Lemma 20 Assume G is a C3-group of order pn whose center is not cyclic, p > 2. Then there

exists a central subgroup N of order p in G such that G/N ∼= Hi, where Hi is one of the groups

listed in Theorem 4.

Proof By hypothesis there exists b ∈ G such that o(b) = pn−3. Since Z(G) is not cyclic, there

exists N ≤ Ω1(Z(G)), |N | = p and N ∩ 〈b〉 = 1. Thus 〈b〉N/N ∼= 〈b〉/N ∩ 〈b〉 ∼= 〈b〉 is a cyclic

subgroup of order pn−3 of G/N . That is, exp(G/N) = pn−2. Since p > 2, G/N is isomorphic to

some Hi, where Hi is one of the groups listed in Theorem 4. 2

Theorem 21 Assume G is an irregular group of order 3n+3 whose center is not cyclic, n ≥ 4

and G′ ∼= C3 × C3. Then G is a C3-group if and only if G is isomorphic to one of the following

pairwise non-isomorphic groups:

(1) 〈a, b, c, x | a3n

= 1, b3 = 1, [a, b] = c, c3 = 1, [a, c] = a3n−1

, [b, c] = 1, x3 = 1, [x, a] =

[x, b] = 1〉;

(2) 〈a, b, c, x | a3n

= 1, b3 = 1, [a, b] = c, c3 = 1, [b, c] = a3n−1

, [a, c] = 1, x3 = 1, [x, a] =

[x, b] = 1〉;

(3) 〈a, b, c, x | a3n

= 1, b3 = 1, [a, b] = c, c3 = 1, [b, c] = a2×3n−1

, [a, c] = 1, x3 = 1, [x, a] =

[x, b] = 1〉;

(4) 〈a, b, c | a3n

= 1, b32

= 1, [a, b] = c, c3 = 1, [c, b] = 1, [c, a] = b3〉;

(5) 〈a, b, c | a3n

= 1, b32

= 1, [a, b] = c, c3 = 1, [c, b] = 1, [c, a] = b2×3〉;

(6) 〈a, b, c | a3n

= 1, b32

= 1, [a, b] = c, c3 = 1, [c, b] = b3, [c, a] = 1〉;

(7) 〈a, b, c, d | a3n

= 1, b3 = 1, [a, b] = c, c3 = 1, [c, b] = d, [c, a] = 1, d3 = 1, [d, a] = [d, b] = 1〉;

(8) 〈a, b, c, d | a3n

= 1, b3 = 1, [a, b] = c, c3 = 1, [c, a] = d, [c, b] = 1, d3 = 1, [d, a] = [d, b] = 1〉;

(9) 〈a, b, c | a3n

= 1, b32

= 1, [a, b] = c, c3 = 1, [a, c] = a3n−1

, [b, c] = 1〉;

(10) 〈a, b, c | a3n

= 1, b32

= 1, [a, b] = c, c3 = 1, [a, c] = 1, [b, c] = a3n−1

〉;

(11) 〈a, b, c | a3n

= 1, b32

= 1, [a, b] = c, c3 = 1, [a, c] = 1, [b, c] = a2×3n−1

〉.
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Proof By Lemma 20, G has a central subgroup N of order 3 such that G/N ∼= Hi, where Hi is

one of the groups listed in Theorem 4, 1 ≤ i ≤ 12. For convenience, let N = 〈x〉. By Lemma 18,

G = M or G = M × N , where M is the group listed in Lemma 18.

Case 1 G = M × N .

Since G is irregular and G/N ∼= M ∼= Hi, Hi is irregular. Thus, Hi is one of H6, H7, or H8.

Therefore, G is isomorphic to H6 × C3, H7 × C3, or H8 × C3, the groups (1), (2) and (3) listed

in the theorem.

Case 2 G = M .

Subcase 1 G/N ∼= H1, H2, H10 or H12.

If G/N ∼= H1 or H2, then by Lemma 17 we have H1
′ = 1 and H2

′ = 1. By Lemma 19, |G′| = 1

or |G′| = 3. This contradicts the hypothesis. If G/N ∼= H10 or H12, then H10
′ ∼= H12

′ ∼= C9 by

Lemma 17. This contradicts the hypothesis again. Thus, this subcase is impossible.

Subcase 2 G/N ∼= H3 or H4.

If G/N ∼= H3, by Lemma 4 we can assume G/N = 〈ā, b̄, c̄ | ā3n

= 1̄, b̄3 = 1̄, c̄3 = 1̄, [ā, b̄] =

ā3n−1

, [ā, c̄] = [b̄, c̄] = 1̄〉. Then G = M = 〈a, b, c〉. By Lemma 17 we have (G/N)′ = 〈ā3n−1

〉. It

follows that G′ ≤ 〈a3n−1

, N〉. By Theorem 16(4) we have 〈a3n−1

〉 ≤ Z(G). So G′ ≤ Z(G), hence

c(G) = 2. This contradicts Lemma 15(3). If G/N ∼= H4, then a contradiction arises by a similar

argument. So this subcase is likewise impossible.

Subcase 3 G/N ∼= H5, H9 or H11.

By Theorem 4, H5
∼= M3(n, 1, 1), H9

∼= M3(n, 2), and H11
∼= M3(2, n). By hypothesis, we

have N ≤ Z(G) and |N | = p. Hence G is a central extension of degree p of an inner abelian

p-group. Such groups were classified by [11]. So we need only to pick those C3-groups G from

[11, Theorems 10, 11] that satisfy G′ ∼= C3 × C3. We get the following five groups:

〈a, b, c | a3n

= 1, b32

= 1, [a, b] = c, c3 = 1, [c, b] = 1, [c, a] = b3〉;

〈a, b, c | a3n

= 1, b32

= 1, [a, b] = c, c3 = 1, [c, b] = 1, [c, a] = b2×3〉;

〈a, b, c | a3n

= 1, b32

= 1, [a, b] = c, c3 = 1, [c, b] = b3, [c, a] = 1〉;

〈a, b, c, d | a3n

= 1, b3 = 1, [a, b] = c, c3 = 1, [c, b] = d, [c, a] = 1, d3 = 1, [d, a] = [d, b] = 1〉;

〈a, b, c, d | a3n

= 1, b3 = 1, [a, b] = c, c3 = 1, [c, a] = d, [c, b] = 1, d3 = 1, [d, a] = [d, b] = 1〉.

These are the groups (4)–(8).

Subcase 4 G/N ∼= H6, H7 or H8.

If G/N ∼= H6, then by Theorem 4 we have G = M = 〈a, b, c, x | a3n

= xi, b3 = xj , [a, b] =

cxk, c3 = xl, [a, c] = a3n−1

xm, [b, c] = xh, x3 = 1, [x, a] = [x, b] = 1〉, where i, j, k, l, m, h = 0,1 or

2 and they are not all simultaneously zero.

Since G is a C3-group, a3n

= 1. Since G′ ∼= C3×C3, [b, c] = 1 and c3 = 1. Let c1 = cxk. Then

G = 〈a, b, c1, x | a3n

= 1, b3 = xj , [a, b] = c1, c
3
1 = 1, [a, c1] = a3n−1

xm, [b, c1] = 1, x3 = 1, [x, a] =

[x, b] = 1〉.
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If b3 = 1, then m 6= 0. This is group (8). If b3 6= 1, then j 6= 0. Thus jk ≡ 1(mod3) has

a solution, say j. Let x1 = xj . Then G = 〈a, b | a3n

= 1, b3 = x1, [a, b] = c1, c
3
1 = 1, [a, c1] =

a3n−1

xmj
1 , [b, c1] = 1, x3

1 = 1, [x1, a] = [x1, b] = 1〉. Obviously, mj = 0, 1 or 2. If mj = 0, this is

group (9). If mj = 1, replacing b by a3n−2

b, then we get group (5). If mj = 2, replacing b by

a−3n−2

b, then we get group (4).

If G/N ∼= H7 or H8, we get groups (6), (7), (10) and (11) by a similar argument.

We prove the groups (1)–(11) are pairwise non-isomorphic.

It is easy to see that Φ(G) = 〈a3, c〉 for groups (1)–(3), so d(G) = 3 for these groups (1)–(3).

On the other hand, d(G) = 2 for groups (4)–(11). Thus it is enough that we prove that groups

(1) − (3) are pairwise non-isomorphic, and similarly for groups (4) through (11).

We know that H6, H7, H8 are pairwise non-isomorphic. So H6 × C3, H7 × C3, H8 × C3 are

pairwise non-isomorphic. That is, groups (1),(2) and (3) are pairwise non-isomorphic.

By Lemma 16(3) we know G is 9-abelian. Hence the following are true:

Ω2(G) = 〈a3n−2

, b, c〉 ∼= C32 × C32 × C3 for groups (4), (5) and (9);

Ω2(G) = 〈a3n−2

, b, c, d〉 ∼= C32 × C3 × C3 × C3 for group (8);

Ω2(G) = 〈a3n−2

, b, c〉 ∼= C32 × M3(2, 1) for group (6);

Ω2(G) = 〈a3n−2

, b, c, d〉 ∼= C32 × M3(1, 1, 1) for group (7);

Ω2(G) = 〈a3n−2

, b, c〉 ∼= C32 ∗C3
M3(2, 1, 1) for group (10), (11).

Observing that Ω2(G) is either abelian or not, we know that none of (4), (5), (8) or (9) is

isomorphic to any one of (6), (7), (10) or (11).

By checking Ω2(G), we know that groups (4), (5) and (9) are not isomorphic to group (8).

We observe that groups (4) and (5) have a maximal subgroup 〈a, c〉 which is isomorphic to

M3(n, 1, 1). On the other hand, no maximal subgroup of group (9) is isomorphic to M3(n, 1, 1).

It follows that group (9) is neither isomorphic to group (4) nor (5). Moreover, by [11, Theorem

11], we know that (4) is not isomorphic to (5). Thus the groups (4), (5), (8) and (9) are pairwise

non-isomorphic.

For group (7), Ω1(Ω2(G)) ∼= C4
3 . For group (6), (10) and (11), we have Ω1(Ω2(G)) ∼= C3

3 .

It follows that group (7) is not isomorphic to any of (6), (10) and (11). We consider again

Ω2(G) for groups (6), (10) and (11). Observe that C32 ∗ M3(2, 1, 1) has a maximal subgroup

which is isomorphic to M3(2, 1, 1). But no maximal subgroup of C32 ×M3(2, 1) is isomorphic to

M3(2, 1, 1). It follows that (6) is not isomorphic to either of (10) or (11).

Finally, assume there exists an isomorphism σ from the group (10) to the group (11). As

o(b) = 9, by Lemma 16 we can assume σ : a → ai1bj1ck1 , b → ai23
n−2

bj2ck2 . From o(a) = 3n,

then 3 ∤ i1. Since cσ = [aσ, bσ] = [ai1bj1ck1 , ai23n−2

bj2ck2 ] ≡ [a, b]i1j2(mod G3), we conclude

cσ ≡ ci1j2(mod G3). Since [bσ, cσ] = [bj2ck2 , ci1j2 ] = [b, c]i1j2
2 = a2i1j2

23n−1

= (aσ)3
n−1

= ai13n−1

,

2j2
2 ≡ 1(mod G3), a contradiction. Thus, (10) is not isomorphic to (11) either.

Conversely, it is easy to verify that these groups listed in the theorem satisfy all hypotheses. 2

Theorem 22 Assume G is an irregular group of order 3n+3 whose center is not cyclic, n ≥ 4 and

|G′| = 33. Then G is a C3-group if and only if G is isomorphic to one of the following pairwise
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non-isomorphic groups:

(1) 〈a, b, c, x | a3n

= 1, b3 = 1, [a, b] = c, c3 = 1, [a, c] = a3n−1

, [b, c] = x, x3 = 1, [x, a] =

[x, b] = 1〉;

(2) 〈a, b, c | a3n

= 1, b32

= 1, [a, b] = c, c3 = 1, [a, c] = a3n−1

, [b, c] = b3〉;

(3) 〈a, b, c | a3n

= 1, b32

= 1, [a, b] = c, c3 = 1, [a, c] = a3n−1

, [b, c] = b6〉;

(4) 〈a, b, c, x | a3n

= 1, b3 = 1, [a, b] = c, c3 = 1, [a, c] = x, [b, c] = a3n−1

, x3 = 1, [x, a] =

[x, b] = 1〉;

(5) 〈a, b, c | a3n

= 1, b32

= 1, [a, b] = c, c3 = 1, [a, c] = b3, [b, c] = a3n−1

〉;

(6) 〈a, b, c | a3n

= 1, b32

= 1, [a, b] = c, c3 = 1, [a, c] = b6, [b, c] = a3n−1

〉;

(7) 〈a, b, c, x | a3n

= 1, b3 = 1, [a, b] = c, c3 = 1, [a, c] = x, [b, c] = a2×3n−1

, x3 = 1, [x, a] =

[x, b] = 1〉;

(8) 〈a, b, c | a3n

= 1, b32

= 1, [a, b] = c, c3 = 1, [a, c] = b3, [b, c] = a2×3n−1

〉;

(9) 〈a, b, c | a3n

= 1, b32

= 1, [a, b] = c, c3 = 1, [a, c] = b6, [b, c] = a2×3n−1

〉.

Proof By Lemma 20, G has a central subgroup N of order 3 such that G/N ∼= Hi, where Hi

is one of the groups listed in Theorem 4. For convenience, assume N = 〈x〉. Then G = M or

G = M × N , where M is the group listed in Lemma 18.

Case I G = M × N .

Since G is irregular and G/N ∼= M ∼= Hi, Hi is irregular. By inspection, Hi is one of H6, H7

or H8. So G is isomorphic to one of H6 × C3, H7 × C3 or H8 × C3, but their derived subgroups

are, in each of these cases, isomorphic to C3 × C3. This contradicts the hypothesis.

Case II G = M .

Subcase 1 G/N ∼= H1, H2, H3, H4, H5, H9, H10, H11 or H12.

If G/N is isomorphic to one of H1, H2, H3, H4, H5, H9, H11, then, since Lemma 17, |Hi
′| = 1

or 3 for these Hi, we have |G′| = 1, 3 or 32 by Lemma 19. This contradicts |G′| = 33.

If G/N ∼= H10, then by Theorem 4 we have that G/N = 〈ā, b̄ | ā3n

= 1̄, b̄32

= 1̄, [ā, b̄] = ā3n−2

〉.

Then G = M = 〈a, b〉. By Lemma 17, (G/N)′ = 〈ā3n−2

〉. It follows that G′ ≤ 〈a3n−2

, N〉. By

Theorem 16(4), 〈a3n−2

〉 ≤ Z(G). So G′ ≤ Z(G) and c(G) = 2. This contradicts Lemma 15(3).

If G/N ∼= H12, then by Theorem 4 we have that G = 〈a, b, x | a3n

= xi, b32

= xj , [a, b] =

a3n−2

b3xk, [a, b3] = a3n−1

xl, x3 = 1, [x, a] = [x, b] = 1〉, where i, j, k, l ∈ {0, 1, 2} and they are not

all simultaneously zero. Since G is a C3-group, a3n

= 1. By Lemma 16(4), a3n−2

∈ Z(G). Using

the formula in Lemma 2, we have [a, b, b] = 1, [a, b, a] = [b3, a] = [b, a]3 = [a, b]−3 = a−3n−1

∈

Z(G). It follows that G′ = 〈a3n−2

b3xk〉 ∼= C9. This contradicts |G′| = 33.

Subcase 2 G/N ∼= H6.

By Theorem 4, assume G = M = 〈a, b | a3n

= xi, b3 = xj , [a, b] = cxk, c3 = xl, [a, c] =

a3n−1

xm, [b, c] = xh, x3 = 1, [x, a] = [x, b] = 1〉, where i, j, k, l, m, h ∈ {0, 1, 2} and they are not

all simultaneously zero.

Since G is a C3-group, a3n

= 1. We claim � c3 = 1. If not, then by the formula in Lemma
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2, we get: [a, b3] = [a, b]3[a, b, b]3(3−1)/2 = c3 6= 1. On the other hand, [a, b3] = [a, xj ] = 1, a

contradiction. Let c1 = cxk. Then [a, b] = c1, c
3
1 = 1, [a, c1] = a3n−1

xm, [b, c1] = xh.

Since |G′| = 33, h 6= 0. It follows that (h, 3) = 1, so m + hy ≡ 0(mod 3) has a solution,

say t. Then [abt, c1] = a3n−1

. Let a1 = abt, c2 = c1x
−ht. Then G = 〈a1, b, x, c2 | a3n

1 = 1, b3 =

xj , [a1, b] = c2, c
3
2 = 1, [a1, c2] = a3n−1

1 , [b, c2] = xh, x3 = 1, [x, a1] = [x, b] = 1〉. If b3 = 1, then,

replacing x by xh, we get group (1). If b3 6= 1, then j 6= 0. Replacing x by xj , and letting h1 = hj

we obtain h1 6= 0. By calculation, G = 〈a1, b | a3n

1 = 1, b32

= 1, [a1, b] = c2, c
3
2 = 1, [a1, c2] =

a3n−1

1 , [b, c2] = b3h1〉. If h1 = 1, then we get group (2). If h1 = 2, then we get group (3). If

h1 = 4, then it reduces to the case of h1 = 1.

Subcase 3 G/N ∼= H7.

By Theorem 4, assume G = M = 〈a, b, c, x | a3n

= xi, b3 = xj , [a, b] = cxk, c3 = xl, [a, c] =

xm, [b, c] = a3n−1

xh, x3 = 1, [x, a] = [x, b] = 1〉, where i, j, k, l, m, h ∈ {0, 1, 2} and they are not

all simultaneously zero.

By the same argument as in Subcase 2, G = 〈a, b, c, x | a3n

= 1, b3 = xj , [a, b] = c1, c
3
1 =

1, [a, c1] = xm, [b, c1] = a3n−1

xh, x3 = 1, [x, a] = [x, b] = 1〉. Since |G′| = 33, m 6= 0.

Subcase 3.1 xh = 1.

If b3 = 1, then, letting x1 = xm, we get group (4). If b3 6= 1, then j 6= 0. Let x1 = xj and

m1 = mj. Then G = 〈a, b, c1 | a3n

= 1, b32

= 1, [a, b] = c1, c
3
1 = 1, [a, c1] = b3m1 , [b, c1] = a3n−1

〉.

If m1 = 1, then we get group (5). If m1 = 2, then we get group (6). If m1 = 4, then it reduces

to the case of m1 = 1.

Subcase 3.2 xh 6= 1.

We have h 6= 0. Let x1 = xh. Then G = 〈a, b, c1, x1 | a3n

= 1, b3 = xjh
1 , [a, b] = c1, c

3
1 =

1, [a, c1] = xmh
1 , [b, c1] = a3n−1

x1, x
3
1 = 1, [x1, a] = [x1, b] = 1〉.

Assume b3 = 1. If mh = 1, then G is isomorphic to group (1). In fact, σ : a → a2b, b → b is an

isomorphism from group (1) to G. If mh = 2, then, letting a1 = a, b1 = b2 and c2 = c2
1a

−3n−1

x−1,

it reduces to the case of mh = 1. If mh = 4, then it reduces to the case of mh = 1.

If b3 6= 1, then j 6= 0. If mh = 1, then, letting j1 = jh, we deduce that j1 ≡ 1 or 2 (mod 3).

If j1 ≡ 1 (mod 3), then σ : a → ab, b → a2×3n−1

b2 is an isomorphism from group (3) to G. If

j1 ≡ 2 (mod 3), then σ : a → ab, b → a2×3n−1

b2 is an isomorphism from group (2) to G. If

mh = 2, then, letting b1 = b2, c2 = c2
1a

−3n−1

x−1
1 and j1 = 2jh, it reduces to the case mh = 1. If

mh = 4, then it also reduces to the case of mh = 1.

Subcase 4 G/N ∼= H8.

By an argument similar to that in Subcase 3, we get groups (1)–(3) and (7)–(9).

Those groups listed in the statement of the theorem are pairwise non-isomorphic, and satisfy

all hypotheses. The details are omitted. 2

4.2. Irregular C3-groups of order ≥ 3
7 whose center is cyclic
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Lemma 23 Assume G is a C3-group of order pn. Then G has a maximal subgroup M which is

a C2-group.

Proof Since G is a C3-group of order pn, there exists a ∈ G such that o(a) = pn−3. Thus G has

a subnormal series 〈a〉 < N < M < G. Obviously, the maximal subgroup M of G is a C2-group.

In the following theorem, unless otherwise stated, the values of all parameters are 0, 1 or 2.

Theorem 24 Assume G is an irregular group of order 3n+3 whose center is cyclic, n ≥ 4 and

G′ ∼= C3×C3. Then G is a C3-group if and only if G is isomorphic to one of the following pairwise

non-isomorphic groups:

(1) 〈a, b, c, x | a3n

= 1, b3 = 1, c3 = 1, x3 = 1, [a, b] = [a, c] = [b, c] = [a, x] = 1, [b, x] =

a3n−1

, [c, x] = b〉;

(2) 〈a, b, c, x | a3n

= 1, b3 = 1, c3 = 1, [a, b] = a3n−1

, x3 = 1, [a, x] = b, [c, x] = a3n−1

, [a, c] =

[b, c] = [b, x] = 1〉;

(3) 〈a, b, c, x | a3n

= 1, b3 = 1, c3 = 1, [a, b] = a3n−1

, x3 = 1, [a, x] = bc, [c, x] = a3n−1

, [a, c] =

[b, c] = [b, x] = 1〉;

(4) 〈a, b, c, x | a3n

= 1, b3 = 1, c3 = 1, [a, b] = a3n−1

, x3 = 1, [a, x] = bc2, [c, x] = a3n−1

, [a, c] =

[b, c] = [b, x] = 1〉;

(5) 〈a, b, c, x | a3n

= 1, b3 = 1, c3 = 1, [a, b] = a3n−1

, x3 = 1, [a, x] = 1, [b, x] = c, [c, x] =

a3n−1

, [a, c] = [b, c] = 1〉.

Proof By Lemma 23, G has a maximal subgroup M such that M ∼= Hi, where Hi is one of the

groups listed in Theorem 4. Let x ∈ G \ M . Then G = 〈M, x〉.

Since G′ ∼= C3 × C3, we get by Lemma 2 that for all g1, g2 ∈ G, [g3
1 , g2] = [g1, g2]

3[g1, g2, g1]
3

[g1, g2, g1, g1] = 1. Thus, g3
1 ∈ Z(G) for all g ∈ G; that is, ℧1(G) ≤ Z(G). Thus 〈x3〉 ≤ Z(G).

Assume a ∈ M and o(a) = 3n. Then 〈a3〉 ≤ Z(G). By hypothesis, o(a) ≥ o(x). Since Z(G)

is cyclic, 〈x3〉 ≤ 〈a3〉. Assume x9 = a9m, m is an integer. Let x1 = xa−m ∈ G \ M . By

Lemma 16(3) we get x9
1 = (xa−m)9 = x9a−9m = 1. Similarly, 〈x3

1〉 ≤ 〈a3〉. Since o(x1) ≤ 9,

we can assume x3
1 = at3n−1

. Let x2 = x1a
−t3n−2

. Then x2
3 = (x1a

−t3n−2

)
3

= x3
1a

−t3n−1

= 1.

Thus G = 〈M, x2〉. For convenience, we replace x2 by x, so G = 〈M, x〉, where x3 = 1. Since

G′ ∼= C3 × C3, we have c(G) = 3 by Lemma 15(3).

Case 1 M ∼= H2, H5, H9, H10, H11 or H12.

If M ∼= H2, H9 or H11, then, by Theorem 17, ℧1(M) are not cyclic. But ℧1(G) ≤ Z(G), a

contradiction. If M ∼= H5, then by Theorem 4 we have M = 〈a, b, c | a3n

= 1, b3 = 1, [a, b] =

c, c3 = 1, [a, c] = [b, c] = 1〉. Since 〈c〉 = M ′charM � G, 〈c〉 � G. Since |〈c〉| = 3, |〈c〉| ≤ Z(G).

By Lemma 16(3), a9 ∈ Z(G). Thus Z(G) is not cyclic, a contradiction. If M ∼= H10 or H12,

then, by Lemma 17, M ′ ∼= C9, which contradicts G′ ∼= C3 × C3.

Case 2 M ∼= H1.

By Theorem 4, we have M = 〈a, b, c | a3n

= 1, b3 = 1, c3 = 1, [a, b] = [a, c] = [b, c] = 1〉.

Obviously, 〈a3〉 ≤ Z(G). Since Z(G) is cyclic, we have [b, x] 6= 1, [c, x] 6= 1 and G′ = 〈[b, x]〉 ×
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〈[c, x]〉 ∼= C3 × C3. Thus there exist integers m, n such that [abmcn, x] = [a, x][b, x]m[c, x]n = 1.

Let a1 = abmcn. Then [a1, x] = 1.

Since G′ ≤ M and G′ ∼= C3 × C3, we have [b, x] = ai3n−1

1 bjck.

Subcase 2.1 If k = 0, then j = 0 by [b, x, x, x] = 1. That is, [b, x] = ai3n−1

1 , where i 6= 0.

Assume [c, x] = ar3n−1

1 bsct. By [c, x, x, x] = 1 we have t = 0. Since G′ ∼= C3 × C3, s 6= 0. Let

b1 = ar3n−1

1 bs. Then [c, x] = b1. Let a2 = ais
1 . It is easy to deduce that [b1, x] = a3n−1

2 . It

follows that G = 〈a2, b1, c, x | a3n

2 = 1, b3
1 = 1, c3 = 1, x3 = 1, [a2, b1] = [a2, c] = [b1, c] = [a2, x] =

1, [b1, x] = a3n−1

2 , [c, x] = b1〉. This is group (1).

Subcase 2.2 If k 6= 0, letting c1 = ai3n−1

1 bjck, then [b, x] = c1. Assume [c1, x] = ar3n−1

1 bsct
1.

Then [c1, x, x] ∈ Z(G) since [c1, x, x] ∈ G3. That is, [c1, x, x] = [bsct
1, x] = [b, x]s[c1, x]t =

cs
1a

rt3n−1

1 bstct2

1 ∈ Z(G). Since Z(G) is cyclic, bstct2

1 cs
1 ∈ 〈a3n−1

〉. It follows that st ≡ 0 (mod 3), s+

t2 ≡ 0 (mod 3). Then we have s = 0, t = 0. So [c1, x] = ar3n−1

1 , r 6= 0. Thus there exists m such

that [cm
1 , x] = a3n−1

1 . Let b1 = cm
1 and c2 = b. Then [b1, x] = a1

3n−1

, [c2, x] = bm
1 . This reduces

to Subcase 2.1.

Case 3 M ∼= H3.

By Theorem 4, we have M = 〈a, b, c | a3n

= 1, b3 = 1, c3 = 1, [a, b] = a3n−1

, [a, c] = [b, c] = 1〉.

Since 〈a3〉×〈c〉 = Z(M)�G and [c, x]3 = (ccx)3 = 1, we have [c, x] = ai3n−1

cj . Since [c, x, x, x] =

1, we get j = 0. Thus [c, x] = ai3n−1

. Since Z(G) is cyclic, i 6= 0. Assume [a, x] = ar3n−1

bsct,

[b, x] = au3n−1

bvcw. From [b, x, x, x] = 1 we get v = 0. Thus G = 〈a, b, c, x | a3n

= 1, b3 = 1, c3 =

1, [a, b] = a3n−1

, [a, c] = [b, c] = 1, x3 = 1, [c, x] = ai3n−1

, [a, x] = ar3n−1

bsct, [b, x] = au3n−1

cw〉.

Since i 6= 0, there exists m1 satisfying u + im1 ≡ 0 (mod 3). Let b1 = bcm1 such that

[b1, x] = cw. Since i 6= 0, there exists m2 satisfying r+ im2 ≡ 0 (mod 3). Let a1 = acm2 such that

[a1, x] = bs
1c

t1 . We observe that t1 may be different from t. Then G = 〈a1, b1, c, x | a3n

1 = 1, b3
1 =

1, c3 = 1, [a1, b1] = a3n−1

1 , [a1, c] = [b1, c] = 1, x3 = 1, [c, x] = ai3n−1

1 , [a1, x] = bs
1c

t1 , [b1, x] = cw〉.

If w = 0, by considering all possible values of parameters s, t1, i, we get groups (2), (3) and

(4).

If w 6= 0, then G′ = 〈a3n−1

〉×〈c〉. Since w 6= 0, there exists m satisfying t+wm ≡ 0 (mod 3).

Let a2 = a1b
m
1 such that [a2, x] = 1. Then G = 〈a2, b1, c, x | a3n

2 = 1, b3
1 = 1, c3 = 1, [a2, b1] =

a3n−1

2 , [a2, c] = [b1, c] = 1, x3 = 1, [c, x] = ai3n−1

2 , [a2, x] = 1, [b1, x] = cw〉, where w, i 6= 0.

If i = 2, then, replacing x by x2, it reduces to the case i = 1. Thus G = 〈a2, b1, c, x | a3n

2 =

1, b3
1 = 1, c3 = 1, [a2, b1] = a3n−1

2 , [a2, c] = [b1, c] = 1, x3 = 1, [c, x] = a3n−1

2 , [a2, x] = 1, [b1, x] =

c2w〉, where w 6= 0. If 2w ≡ 2 (mod 3), then, letting x1 = x2 and a3 = a2
2, it reduces to the case

2w ≡ 1 (mod 3). Thus we get group (5).

Case 4 M ∼= H4.

By Theorem 4, we have M = 〈a, b, c | a3n

= 1, b3 = 1, c3 = 1, [b, c] = a3n−1

, [a, b] = [a, c] = 1〉.

Since 〈a〉 = Z(M) � G, we can assume [a, x] = ai3n−1

. Furthermore, let [b, x] = ar3n−1

bsct,

[c, x] = au3n−1

bvcw.

By the symmetry of b and c, we may assume t 6= 0 without loss of generality.
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Let ct
1 = ar3n−1

bsct. Then [b, x] = ct
1, t 6= 0. Hence [c1, x] ∈ G3 ≤ Z(G). It follows from

[c, x, x] = 1 that v = 0 and w = 0. Thus G = 〈a, b, c1, x | a3n

= 1, b3 = 1, c3
1 = 1, [b, c1] =

a3n−1

, x3 = 1, [a, x] = ai3n−1

, [b, x] = ct
1, [c1, x] = au3n−1

, [a, c1] = [b, a] = 1〉, where t 6= 0. If

[c1, x] = 1, then 〈a, x, c1〉 is isomorphic to H2 or H3. This reduces to Cases 1 or 3. If [c1, x] 6= 1,

letting x1 = xbu, then [c1, x1] = 1. Thus the maximal subgroup 〈a, x1, c1〉 is isomorphic to H2

or H3, This reduces to Cases 1 or 3 again.

Case 5 M ∼= H6.

By Theorem 4, we have M = 〈a, b | a3n

= 1, b3 = 1, [a, b] = c, c3 = 1, [a, c] = a3n−1

, [b, c] = 1〉.

Since M ′ = 〈a3n−1

〉 × 〈c〉 � G, we have [c, x] = ai3n−1

cj . Since [c, x, x, x] = 1, we have j = 0.

Since G′ = 〈a3n−1

〉 × 〈c〉, we have [b, x] = ar3n−1

cs, [a, x] = au3n−1

cv and m is an integer

satisfying m + u ≡ 0 (mod 3). Let x1 = xcm. Then [a, x1] = cv. Let l be an integer satisfying

l + v ≡ 0 (mod 3) and x2 = x1b
l. Then [a, x2] = 1. By calculation, we have x3

2 ∈ 〈ai3n−1

〉. Let

x3
2 = am3n−1

and x3 = x2a
−m3n−2

. Then x3
3 = 1.

If [c, x3] = 1, then 〈a, c, x3〉 ∼= H3. Thus the problem reduces to Case 3. If [c, x3] 6= 1, then

G = 〈a, b, c, x3 | a3n

= 1, b3 = 1, [a, b] = c, c3 = 1, [a, c] = a3n−1

, [b, c] = 1, x3
3 = 1, [a, x3] =

1, [b, x3] = ar3n−1

cs, [c, x3] = ai3n−1

〉, where i 6= 0. Let a1 = aix3. Then [a1, c] = 1. Since

〈a1, c, x3〉 is a maximal subgroup of G isomorphic to H4, this reduces to Case 4.

Case 6 M ∼= H7 or H8.

If M ∼= H7, then by Theorem 4 we have M = 〈a, b | a3n

= 1, b3 = 1, [a, b] = c, c3 = 1, [b, c] =

a3n−1

, [a, c] = 1〉. Since M ′ = 〈a3n−1

〉 × 〈c〉 � G, we have [c, x] = ai3n−1

cj . By [c, x, x, x] = 1

we get j = 0. Since G′ = 〈a3n−1

〉 × 〈c〉, we have [b, x] = ar3n−1

cs, [a, x] = au3n−1

cv. Let

m be an integer satisfying m + v ≡ 0 (mod 3) and x1 = xbm. Then [a, x1] = au3n−1

. Since

[ax1 , bx1 ] = [a, bcs] = [a, cs][a, b] = c = cx1 = cai3n−1

, we have i = 0, that is, [c, x1] = 1. Thus

〈a, c, x1〉 ∼= H3 or are abelian. This reduces to Cases 1, 2 or 3.

If M ∼= H8, then a similar argument likewise reduces to Cases 1, 2 or 3.

Those groups listed in the statement of the theorem are pairwise non-isomorphic, and satisfy

all hypotheses. The details are omitted. 2

Theorem 25 Assume G is an irregular group of order 3n+3 whose center is cyclic, n ≥ 4 and

G′ ∼= C3 × C3 × C3. Then G is a C3-group if and only if G is isomorphic to one of the following

pairwise non-isomorphic groups:

(1) 〈a, b, c, x|a3n

= 1, b3 = 1, [a, b] = c, c3 = 1, [a, c] = a3n−1

, [b, c] = 1, x3 = 1, [a, x] =

b, [b, x] = 1, [c, x] = 1〉;

(2) 〈a, b, c, x|a3n

= 1, b3 = 1, [a, b] = c, c3 = 1, [a, c] = a3n−1

, [b, c] = 1, x3 = 1, [a, x] =

b, [b, x] = a3n−1

, [c, x] = 1〉;

(3) 〈a, b, c, x|a3n

= 1, b3 = 1, [a, b] = c, c3 = 1, [a, c] = a3n−1

, [b, c] = 1, x3 = 1, [a, x] =

b, [b, x] = a2×3n−1

, [c, x] = 1〉.

Proof By Lemma 23, G has a maximal subgroup M which is isomorphic to M ∼= Hi, where Hi

is one of the group listed in Theorem 4. Let x ∈ G \ M . Then G = 〈M, x〉. Obviously, G′ ≤ M .
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Since G′ ∼= C3 × C3 × C3, G′ ≤ Ω1(M).

Case 1 M ∼= H2, H4, H5, H7, H8,H9, H10, H11 or H12.

If M ∼= H2, H4, H7, H8,H9 or H11, then, by Lemma 17, Ω1(H2) ∼= Ω1(H9) ∼= Ω1(H11) ∼=

C3 × C3, Ω1(H4) ∼= Ω1(H7) ∼= Ω1(H8) ∼= M3(1, 1, 1). Thus G′ � Ω1(M), a contradiction.

If M ∼= H5, then, by Theorem 4, we have M = 〈a, b, c | a3n

= 1, b3 = 1, [a, b] = c, c3 =

1, [a, c] = [b, c] = 1〉. Since 〈c〉 = M ′ �G, 〈c〉 ≤ Z(G). By Theorem 16, 〈a9〉 ≤ Z(G). Thus Z(G)

is not cyclic, a contradiction.

If M ∼= H10 or H12, then by Lemma 17, M ′ ∼= C9, which contradicts G′ ∼= C3 × C3 × C3.

Case 2 M ∼= H1.

By Theorem 4 we have M = 〈a, b, c | a3n

= 1, b3 = 1, c3 = 1, [a, b] = [a, c] = [b, c] = 1〉. By

Lemma 17, Ω1(H1) ∼= C3 ×C3 ×C3. Obviously, G′ = Ω1(M) = 〈a3n−1

〉 × 〈b〉 × 〈c〉. By Theorem

16, 〈a9〉 ≤ Z(G). Since Z(G) is cyclic, we have [b, x] 6= 1, [c, x] 6= 1. Assume [b, x] = ai3n−1

bjck.

Subcase 2.1 k = 0.

By [b, x, x, x, x] = 1 we get j = 0. That is, [b, x] = ai3n−1

, i 6= 0. Assume [c, x] = ar3n−1

bsct.

By [c, x, x, x, x] = 1 we get t = 0. Since Z(G) is cyclic, s 6= 0. Let b1 = ar3n−1

bs. Then

[c, x] = b1. Assume [a, x] = au3n−1

bv
1c

w. Since G′ ∼= C3 ×C3 ×C3, we get w 6= 0. Since [a, x, x] =

[au3n−1

bv
1c

w, x] = [b1, x]v[c, x]w = av3n−1

bw
1 , [a, x, x, x] = [av3n−1

bw
1 , x] = [b1, x]w = aw3n−1

6= 1.

It follows that [a, x3] = [a, x]3[a, x, x]3[a, x, x, x] = [a, x, x, x] 6= 1. On the other hand, x3 ∈ M

and M is abelian, so [a, x3] = 1, a contradiction.

Subcase 2.2 k 6= 0.

Let c1 = ai3n−1

bjck. Then [b, x] = c1. Assume [c1, x] = ar3n−1

bsct
1. If s = 0, then t = 0 by

[c1, x, x, x, x] = 1. Replacing c1 by b, and b by c1, this reduces to subcase 2.1. If s 6= 0, then,

from [c1, x, x] = [bsct
1, x] = [b, x]s[c1, x]t = cs

1a
rt3n−1

bstct2

1 , we have [c1, x, x, x] = [bstcs+t2

1 , x] =

[b, x]st[c1, x]s+t2 = cst
1 ar(s+t2)3n−1

bs(s+t2)c
t(s+t2)
1 . Since [c1, x, x, x] ∈ Z(G), st ≡ 0 (mod 3) and

s + t2 ≡ 0 (mod 3), a contradiction.

Case 3 M ∼= H3.

By Theorem 4 we have M = 〈a, b, c | a3n

= 1, b3 = 1, c3 = 1, [a, b] = a3n−1

, [a, c] = [b, c] = 1〉.

Since 〈a3〉 × 〈c〉 = Z(M)� G, we can assume [c, x] = ai3n−1

cj. By [c, x, x, x, x] = 1 we get j = 0.

That is, [c, x] = ai3n−1

. Since Z(G) is cyclic, 3 ∤ i. Since G′ = Ω1(M) = 〈a3n−1

〉 × 〈b〉 × 〈c〉,

we have [a, x] = ar3n−1

bsct and [b, x] = au3n−1

bvcw. Since [b, x, x, x, x] = 1, we have v = 0.

Thus we have a3n

= 1, b3 = 1, c3 = 1, [a, b] = a3n−1

, [a, c] = [b, c] = 1, [c, x] = ai3n−1

, [a, x] =

ar3n−1

bsct, [b, x] = au3n−1

cw.

Since 3 ∤ i, there exists l satisfying li + u ≡ 0 (mod 3). Let b1 = bcl. Since 3 ∤ i, there exists

m satisfying mi + r ≡ 0 (mod 3). Let a1 = acm. Since G′ ∼= C3 ×C3 ×C3, we have s 6= 0, w 6= 0.

Since (w, 3) = 1 there exists m1 satisfying m1w + t ≡ 0 (mod 3). Let a2 = a1b1
m1 . We have

a3n

2 = 1, b3
1 = 1, c3 = 1, [a2, b1] = a3n−1

2 , [a2, c] = [b1, c] = 1, [c, x] = ai3n−1

2 , [a2, x] = bs
1, [b1, x] =

cw.
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Since x3 ∈ M , we have x3 = al1
2 bl2

1 cl3 , where 1 ≤ l1 ≤ 3n, 1 ≤ l2, l3 ≤ 3. Since [x3, x] = 1,

l2 = 0. Furthermore, [a2, x
3] = 1. On the other hand, [a2, x

3] = [a2, x]3[a2, x, x]3[a2, x, x, x] =

[a2, x, x, x] 6= 1, a contradiction.

Case 4 M ∼= H6.

By Theorem 4 we have M = 〈a, b | a3n

= 1, b3 = 1, [a, b] = c, c3 = 1, [a, c] = a3n−1

, [b, c] = 1〉.

By Lemma 16(4) we get x9 ∈ Z(G), a9 ∈ Z(G). Since Z(G) is cyclic and o(a) = exp G, we can

assume x9 = a9m, where m is an integer. By Lemma 16(3), G is 9-abelian. Replacing x by

xa−m, we get x9 = 1. By Lemma 17, M ′ = 〈a3n−1

〉 × 〈c〉� G, Ω1(M) = 〈a3n−1

〉 × 〈b〉 × 〈c〉 � G.

Since G′ ≤ Ω1(M), G′ = 〈a3n−1

〉 × 〈b〉 × 〈c〉. We consider the quotient group G = G/〈a3n−1

〉.

Then 〈c̄〉 = M ′ ≤ Z(G). Thus we can assume [c, x] = ai3n−1

. We consider the quotient group

G = G/M ′. Then 〈b̄〉 = Ω1(M) ≤ Z(G). Thus we can assume [b, x] = ar3n−1

cs. Furthermore, we

assume [a, x] = au3n−1

bvcw. Thus we have a3n

= 1, b3 = 1, [a, b] = c, c3 = 1, [a, c] = a3n−1

, [b, c] =

1, [a, x] = au3n−1

bvcw, [b, x] = ar3n−1

cs, [c, x] = ai3n−1

, x9 = 1.

Let m1 satisfy m1 + u ≡ 0 (mod 3), x1 = xcm1 , l satisfy l + w ≡ 0 (mod 3), x2 = x1b
l. Since

G′ = 〈a3n−1

〉 × 〈b〉 × 〈c〉, we have v 6= 0. Since [ax2 , bx2 ] = cx2 we get i = s. Thus a3n

= 1, b3 =

1, [a, b] = c, c3 = 1, [a, c] = a3n−1

, [b, c] = 1, [a, x2] = bv, [b, x2] = ar3n−1

ci, [c, x2] = ai3n−1

, x9
2 = 1.

Subcase 4.1 [c, x2] 6= 1. That is, i 6= 0.

Since x9
2 = 1, x2

3 ∈ Ω1(H6). We have x2
3 = am13

n−1

bm2cm3 . Since

[a, x2
3] = [a, x2]

3[a, x2, x2]
3[a, x2, x2, x2] = [a, x2, x2, x2] = [bv, x2, x2] = [cvi, x2] = avi23n−1

=

av3n−1

and [a, am13
n−1

bm2cm3 ] = [a, bm2cm3 ] = [a, cm3 ][a, bm2 ] = [a, c]m3 [a, b]m2 = am33
n−1

cm2 ,

we get 3 | m2 and m3 = v. Therefore 1 = [x2
3, x2] = [cv, x2] = aiv3n−1

6= 1, a contradiction.

Subcase 4.2 [c, x2] = 1.

Since [a, x2
3] = [a, x2]

3[a, x2, x2]
3[a, x2, x2, x2] = 1 and [b, x2

3] = [b, x2]
3 = 1, x2

3 ∈ Z(G).

Since Z(G) is cyclic, we have x2
3 = am3n−1

. Replacing x2 by x2a
−m3n−2

, we get x2
3 = 1.

Thus G = 〈a, x2 | a3n

= 1, b3 = 1, [a, b] = c, c3 = 1, [a, c] = a3n−1

, [b, c] = 1, x2
3 = 1, [a, x2] =

bv, [b, x2] = ar3n−1

, [c, x2] = 1〉. If v = 1 and r = 0, then we get group (1). If v = 1 and r = 1,

then we get group (2). If v = 1 and r = 2, then we get group (3). If v = 2, then, replacing x2

by x2
2, there exists m satisfying m + 2r ≡ 0 (mod 3). Replacing x2 by x2c

m reduces to the case

v = 1.

Those groups listed in the statement of the theorem are paiewise non-isomorphic, and satisfy

all hypotheses. The details are omitted. 2

Theorem 26 Assume G is an irregular group of order 3n+3 whose center is cyclic, n ≥ 4 and

G′ ∼= C9×C3. Then G is a C3-group if and only if G is isomorphic to one of the following pairwise

non-isomorphic groups:

(1) 〈a, b, c, x|a3n

= 1, x3 = 1, [a, x] = a3n−2

b2, b3 = 1, [a, b] = a3n−1

, [b, x] = c, c3 = 1, [c, x] =

a3n−1

, [a, c] = [b, c] = 1〉;

(2) 〈a, b, c, x|a3n

= 1, x3 = 1, [a, x] = a3n−2

c2, c3 = 1, [c, x] = b, b3 = 1, [b, x] = a3n−1

, [a, b] =

[a, c] = [b, c] = 1〉;
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(3) 〈a, b, x|a3n

= 1, b3 = 1, [a, b] = x3, x9 = 1, [a, x] = a3n−2

, [b, x] = 1〉;

(4) 〈a, b, x|a3n

= 1, b3 = 1, [a, b] = x3, x9 = 1, [a, x] = a3n−2

, [b, x] = a3n−1

〉;

(5) 〈a, b, x|a3n

= 1, b3 = 1, [a, b] = x3, x9 = 1, [a, x] = a3n−2

, [b, x] = a2×3n−1

〉;

(6) 〈a, b, x|a3n

= 1, b3 = 1, [a, b] = x3, x9 = 1, [a, x] = a3n−2

b, [b, x] = 1〉;

(7) 〈a, b, x|a3n

= 1, b3 = 1, [a, b] = x3, x9 = 1, [a, x] = a3n−2

b, [b, x] = a3n−1

〉;

(8) 〈a, b, x|a3n

= 1, b3 = 1, [a, b] = x3, x9 = 1, [a, x] = a3n−2

b, [b, x] = a2×3n−1

〉;

(9) 〈a, b, x|a3n

= 1, b3 = 1, [a, b] = x3, x9 = 1, [a, x] = a3n−2

b2, [b, x] = 1〉;

(10) 〈a, b, x|a3n

= 1, b3 = 1, [a, b] = x3, x9 = 1, [a, x] = a3n−2

b2, [b, x] = a3n−1

〉;

(11) 〈a, b, x|a3n

= 1, b3 = 1, [a, b] = x3, x9 = 1, [a, x] = a3n−2

b2, [b, x] = a2×3n−1

〉.

Proof By Lemma 23, G has a maximal subgroup M which is isomorphic to Hi, where Hi is one of

the groups listed in Theorem 4. Let x ∈ G\M . Then G = 〈M, x〉. Assume a ∈ M and o(a) = 3n.

Then 〈a9〉 ≤ Z(G), 〈x9〉 ≤ Z(G), o(a) ≥ o(x). Since Z(G) is cyclic, 〈x9〉 ≤ 〈a9〉. Thus we have

x9 = a9m. Obviously, xa−m ∈ G \ M . Let x1 = xa−m. Then x9
1 = (xa−m)9 = x9a−9m = 1.

We have G = 〈M, x1〉. For convenience, we replace x1 by x, so G = 〈M, x〉, x9 = 1. Obviously,

G′ ≤ M . Since G′ ∼= C9 × C3, G′ ≤ Ω2(M).

Case 1 M ∼= H2, H4, H5, H7, H8, H9 or H11.

If M ∼= H2, by Theorem 4 we have M = 〈a, b | a3n

= 1, b32

= 1, [a, b] = 1〉. If o([b, x]) ≤ 3,

then [b3, x] = [b, x]3 = 1. Thus 〈b3〉 ∈ Z(G) and so Z(G) is not cyclic, a contradiction. If

o([b, x]) = 9, then we have [b, x] = ai3n−2

bj. Since [b, x, x, x, x] = 1, we get j = 0. It follows from

x3 ∈ M that [b, x3] = 1. On the other hand, [b, x3] = [b, x]3 = ai3n−1

6= 1, a contradiction. If

M ∼= H9 or H11, then a contradiction arises by a similar argument.

If M ∼= H4, then, by Theorem 4 we have M = 〈a, b, c | a3n

= 1, b3 = 1, c3 = 1, [b, c] =

a3n−1

, [a, b] = [a, c] = 1〉. Thus [c, x]3 = (c−1cx)3 = 1 and [b, x]3 = (b−1bx)3 = 1. By Lemma 17,

Z(M) = 〈a〉. Obviously, 〈a〉 � G. It follows from x3 ∈ M that [a, x3] = 1. On the other hand,

since G′ ∼= C9 × C3, we have [a, x] = ai3n−2

. Then G′ = 〈[a, x], [b, x], [c, x], [a, b], [a, c], [b, c], G3〉.

By Lemma 16, 3 ∤ i. Thus [a, x3] = [a, x]3 = ai3n−1

6= 1, a contradiction.

If M ∼= H5, then, by Theorem 4 we have M = 〈a, b, c | a3n

= 1, b3 = 1, [a, b] = c, c3 =

1, [a, c] = [b, c] = 1〉. Since 〈c〉 = (M)′ � G, 〈c〉 ≤ Z(G). By Theorem 16, 〈a9〉 ≤ Z(G). Thus

Z(G) is not cyclic, a contradiction.

If M ∼= H7, then, by Theorem 4 we have M = 〈a, b, c | a3n

= 1, b3 = 1, [a, b] = c, c3 =

1, [b, c] = a3n−1

, [a, c] = 1〉. By Lemma 17, M ′ = 〈a3n−1

〉 × 〈c〉 � G. Since G is 9-abelian,

Ω2(M) = 〈a3n−2

, b, c〉. By G′ ≤ Ω2(M), G′ = 〈a3n−2

〉 × 〈c〉. We consider the quotient group

G/〈a3n−1

〉. Then 〈c̄〉 = M ′ ≤ Z(G). Thus we can assume [c, x] = ai3n−1

. Since [b, x]3 =

(bbx)3 = 1, we get o([b, x]) ≤ 3. Since G′ ∼= C9 × C3, we have [a, x] = ar3n−2

cs, where 3 ∤

r. Thus [a, x3] = [a, x]3 = ar3n−1

. On the other hand, it follows from x9 = 1 that x3 ∈

Ω1(M). Thus we have x3 = am13
n−1

bm2cm3 . It follows that [a, x3] = [a, am13
n−1

bm2cm3 ] =

[a, bm2 ] = [a, b]m2 [a, b, b]m2(m2−1)/2 = cm2a−3n−1m2(m2−1)/2, a contradiction. If M ∼= H8, then a

contradiction arises by a similar argument.
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Case 2 M ∼= H3.

By Theorem 4 we have M = 〈a, b, c | a3n

= 1, b3 = 1, c3 = 1, [a, b] = a3n−1

, [a, c] = [b, c] = 1〉.

By Lemma 17, Z(M) = 〈a3〉 × 〈c〉 � G and Ω1(M) = 〈a3n−1

〉 × 〈b〉 × 〈c〉 � G. We consider the

quotient group G = G/〈a3〉. Then 〈c̄〉 = M ′ ≤ Z(G). By [c, x]3 = (c−1cx)3 = c−3(cx)3 = 1,

we can assume [c, x] = ai3n−1

. Since Z(G) is cyclic, [c, x] 6= 1. That is, i 6= 0. We consider

the quotient group G = G/〈a3n−1

〉 × 〈c〉. Then 〈b̄〉 = Ω1(M) ≤ Z(G). Thus we have that

[b, x] = au3n−1

cw and [a, x] = ar3n−2

bsct, 0 ≤ r ≤ 8. Since G′ ∼= C9 × C3, 3 ∤ r. Thus a3n

=

1, b3 = 1, c3 = 1, [a, b] = a3n−1

, [a, c] = [b, c] = 1, x9 = 1, [c, x] = ai3n−1

, [b, x] = au3n−1

cw, [a, x] =

ar3n−2

bsct, where i 6= 0, 0 ≤ r ≤ 8, 3 ∤ r.

Since i 6= 0, there exists m1 satisfying u+im1 ≡ 0 (mod 3). Let b1 = bcm1 . Since G′ ∼= C9×C3,

w 6= 0. Thus there exists m2 satisfying t − m1s + wm2 ≡ 0 (mod 3). Let a1 = abm2 , c1 = cw

and a2 = aiw
1 . We have [a2, x] = ar13

n−2

2 ar23
n−1

bs1

1 . Then we have 1 ≤ r1 ≤ 2, 0 ≤ r2 ≤ 2. Let

x1 = xb−r2

1 . Replacing a by a2, b by b1, c by c1 and x by x1, we have a3n

= 1, b3 = 1, c3 =

1, [a, b] = a3n−1

, [a, c] = [b, c] = 1, x9 = 1, [c, x] = a3n−1

, [b, x] = c, [a, x] = ar13
n−2

bs1 , where

1 ≤ r1 ≤ 2.

Since x3 ∈ Ω1(M), we have that x3 = am13n−1

bm2cm3 . It follows from [x3, x] = 1 that

[am13
n−1

bm2cm3 , x] = [bm2cm3 , x] = cm2am33
n−2

= 1. Thus m2 = m3 = 0. So [a, x3] = 1. Since

[a, x3] = [a, x]3[a, x, x, x] = ar13
n−1

as13n−1

= 1, r1 + s1 ≡ 0 (mod 3). Replacing x by xa−m13
n−2

,

we get x3 = 1. Thus G = 〈a, x|a3n

= 1, b3 = 1, c3 = 1, [a, b] = a3n−1

, [a, c] = [b, c] = 1, x3 =

1, [c, x] = a3n−1

, [b, x] = c, [a, x] = ar13
n−2

b−r1〉, where 1 ≤ r1 ≤ 2. If r1 = 1, we get group (1). If

r1 = 2, then, replacing x by x2, b by bc2 and c by c2, we get group (1) again.

Case 3 M ∼= H1.

By Theorem 4 we have M = 〈a, b, c | a3n

= 1, b3 = 1, c3 = 1, [a, b] = [a, c] = [b, c] = 1〉. Since

Z(G) is cyclic, [b, x] 6= 1, [c, x] 6= 1. It follows from [b, x]3 = (b−1bx)3 = 1 and [c, x]3 = (c−1cx)3 =

1 that o([b, x]) = o([c, x]) = 3. Let [b, x] = ai3n−1

bjck.

Subcase 3.1 k = 0.

Since [b, x, x, x, x] = 1, we get j = 0. Thus [b, x] = ai3n−1

, i 6= 0. Assume [c, x] = ar3n−1

bsct.

Since [b, x, x, x, x] = 1, we get t = 0. If s = 0, letting m be an integer satisfying im+r ≡ 0 (mod 3),

and replacing c by bmc, we obtain [c, x] = 1. It follows that Z(G) is not cyclic, a contradiction.

Thus s 6= 0. So a3n

= 1, b3 = 1, c3 = 1, [a, b] = [a, c] = [b, c] = 1, [b, x] = ai3n−1

, [c, x] =

ar3n−1

bs, x9 = 1, where i 6= 0, s 6= 0.

Replacing b by ar3n−1

bs and a by asi, we have a3n

= 1, b3 = 1, c3 = 1, [a, b] = [a, c] = [b, c] =

1, [b, x] = a3n−1

, [c, x] = b, x9 = 1.

Since G′ = C9 × C3, we have [a, x] = au3n−2

bvcw, where 0 ≤ u ≤ 8, 3 ∤ u. If w = 0, then

[a, x3] = [a, x]3[a, x, x]3 6= 1. On the other hand, since M is abelian, [a, x3] = 1, a contradiction.

Thus w 6= 0. We have [a, x3] = [a, x]3[a, x, x]3[a, x, x, x] = au3n−1

aw3n−1

. It follows from [a, x3] =

1 that w +u ≡ 0 (mod 3). By x3 ∈ Z(G), we can assume that x3 = al3n−1

, l 6= 0. Replacing x by

xa−l3n−2

and a by acv, we get G = 〈a, x | a3n

= 1, b3 = 1, c3 = 1, x3 = 1, [a, b] = [a, c] = [b, c] =

1, [a, x] = au3n−2

c−u, [b, x] = a3n−1

, [c, x] = b〉, where u 6= 0.
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If u = 1, then we get group (2). If u = 2, then, replacing x by x2, b by b2 and c by c2, it

reduces to the case of u = 1.

Subcase 3.2 k 6= 0.

Replacing c by ai3n−1

bjck, we get [b, x] = c. Assume [c, x] = ar3n−1

bsct. Since G′ ∼= C9×C3 ≤

Ω2(G), we get s = 0. By [c, x, x, x, x] = 1, we get t = 0. Replacing c by b and b by c, it reduces

to Subcase 3.1.

Case 4 M ∼= H6.

By Theorem 4 we have M = 〈a, b | a3n

= 1, b3 = 1, [a, b] = c, c3 = 1, [a, c] = a3n−1

, [b, c] = 1〉.

By Lemma 17, M ′ = 〈a3n−1

〉 × 〈c〉 � G, and Ω1(M) = 〈a3n−1

〉 × 〈b〉 × 〈c〉 � G. We consider

the quotient group G/〈a3n−1

〉. Then 〈c̄〉 = M ′ � G. It follows that 〈c̄〉 ≤ Z(G). Assume

[c, x] = au3n−1

. We consider G/〈a3n−1

〉 × 〈c〉. Then 〈b̄〉 = Ω1(M) � G. So 〈b̄〉 ≤ Z(G). Assume

[b, x] = ar3n−1

ct. Since G′ ∼= C9 × C3, we can assume [a, x] = ai3n−2

bjck, where 1 ≤ i ≤ 8, 3 ∤

i. Thus a3n

= 1, b3 = 1, [a, b] = c, c3 = 1, [a, c] = a3n−1

, [b, c] = 1, [c, x] = au3n−1

, [a, x] =

ai3n−2

bjck, [b, x] = ar3n−1

ct, x9 = 1.

Replacing x by xb−k, we get [a, x] = ai3n−2

bj . Thus G′ = 〈ai3n−2

bj〉 × 〈c〉. It follows from

[ax, bx] = cx that u = t. Thus there exists m satisfying 3m + i ≡ 1 or 2 (mod 3). Replacing x

by xcm which forces i = 1 or 2, we have a3n

= 1, b3 = 1, [a, b] = c, c3 = 1, [a, c] = a3n−1

, [b, c] =

1, [c, x] = au3n−1

, [a, x] = ai3n−2

bj , [b, x] = ar3n−1

cu, x9 = 1, where i = 1 or 2.

Subcase 4.1 u = 0

Assume x3 = am13
n−1

bm2cm3 . Then [a, x3] = [a, am13
n−1

bm2cm3 ] = cm2am33n−1

. On the

other hand, [a, x3] = [a, x]3[a, x, x]3[a, x, x, x] = ai3n−1

. Thus m3 = i, m2 = 0. That is, x3 =

am13
n−1

ci. Let c1 = aim13n−1

c, b1 = bcim1

1 , x1 = xbijm1

1 , x2 = xi
1, x3 = x2c1

−jr and r1 = ir.

Thus G = 〈a, x3 | a3n

= 1, b3
1 = 1, [a, b1] = x3

3, x
9
3 = 1, [a, x3] = a3n−2

bj1
1 , [b1, x3] = ar13

n−1

〉,

where j1, r1 = 0, 1 or 2, respectively. By considering all possible values of parameters j1 and r1,

we get groups (3)–(11).

Subcase 4.2 u 6= 0.

It follws from [a, x, x, x] = [bj , x, x] = [cju, x] = aju23n−1

that [a, x3] = [a, x]3[a, x, x]3[a, x, x, x] =

ai3n−1

aju23n−1

= a(i+j)3n−1

. On the other hand, since x3 ∈ Ω1(H6), we have x3 = am13
n−1

bm2cm3 .

Thus a(i+j)3n−1

= [a, x3] = [a, am13
n−1

bm2cm3 ] = cm2am33n−1

. It follows that m2 = 0, m3 = i+j.

Since [x3, x] = [am13
n−1

ci+j , x] = 1, i + j ≡ 0 (mod 3). It follows that x3 = am13
n−1

.

Replacing x by xa−m13n−2

, we get x3 = 1. Since i + j ≡ 0 (mod 3), we get j 6= 0. Thus G =

〈a, x | a3n

= 1, b3 = 1, [a, b] = c, c3 = 1, [a, c] = a3n−1

, [b, c] = 1, x3 = 1, [a, x] = ai3n−2

bj, [b, x] =

ar3n−1

cu, [c, x] = au3n−1

〉, where u, j 6= 0, i + j ≡ 0 (mod 3), 1 ≤ i ≤ 8, 3 ∤ i.

Let m be an integer satisfying 1 − um ≡ 0 (mod 3). Then [axm, b] = [a, b]x
m

[xm, b] ≡

1 (mod 〈a3n−1

〉), [axm, c] = [a, c][x, c]m = a(1−um)3n−1

= 1. Thus the maximal subgroup

〈axm, b, c〉 of G is a C2-group generated by three elements. It follows that 〈axm, b, c〉 is one

of H1, H3 or H4. It reduces to one of Cases 1, 2 or 3.
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Case 5 M ∼= H10 or H12.

If M ∼= H10, then, by Theorem 4 we have M = 〈a, b | a3n

= 1, b32

= 1, [a, b] = a3n−2

〉. Since

M ′ = 〈a3n−2

〉 ≤ G′, we observe that G′ ∼= C9 × C3
∼= 〈a3n−2

〉 × 〈b3〉. Assume [a, x] = ai3n−2

b3j,

[b, x] = ar3n−2

b3s and 1 ≤ i, r ≤ 9. Replacing x by xb−i, we get [a, x] = b3j. If the maximal

subgroup 〈a, x, b3〉 of G is a C2-group generated by three elements, then 〈a, x, b3〉 ∼= H1, H3 or H4.

It reduces to one of Cases 1, 2 or 3. If 〈a, x, b3〉 is generated by two elements, then j 6= 0. Since

o(x3) ≤ 3, we have x3 = au3n−1

b3v. Thus [b, x3] = 1. Since [a, x3] = [a, x]3[a, x, x]3[a, x, x, x] = 1,

x3 ∈ Z(G). Since Z(G) is cyclic, we have x3 = am3n−1

. Replacing x by xa−m3n−2

, we get

o(x) = 3. Thus 〈a, x, b3〉 ∼= H6. This reduces to Case 4. If M ∼= H12, then it reduces to one of

Cases 1, 2, 3 or 4 by an argument similar to that for M ∼= H10.

Those groups listed in the statement of the theorem are pairwise non-isomorphic, and satisfy

all hypotheses. The details are omitted. 2

4.3. Irregular C3-groups of order less than 3
7

Since all 3-groups of order less than 37 can be found in the SmallGroups database, we learn

the following using Magma [3, 4].

Theorem 27 There are no irregular C3-groups of order 34.

Theorem 28 G is an irregular C3-groups of order 35 if and only if G is isomorphic to one of

the following groups in the SmallGroups database:

3,4,5,6,7,8,9,13,14,15,17,18,25,26, 27,28,29,30,51,52,53,54,55,56,57,58,59, or 60.

Theorem 29 G is an irregular C3-groups of order 36 if and only if G is isomorphic to one of

the following groups in the SmallGroups database:

4,5,6,7,8,13,14,15,16,17,18,19,20,21,27,28,29,67,70,71,74,75,77,80,82,83, 86,90,95,96,97,98,99,

100,101,253,254,261,262,263,264,284,285,388,389,390.
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