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Abstract Based on Fermat’s principle and the automatic optimization mechanism in the

propagation process of light, an optimal searching algorithm named light ray optimization is

presented, where the laws of refraction and reflection of light rays are integrated into searching

process of optimization. In this algorithm, coordinate space is assumed to be the space that

is full of media with different refractivities, then the space is divided by grids, and finally the

searching path is assumed to be the propagation path of light rays. With the law of refraction,

the search direction is deflected to the direction that makes the value of objective function

decrease. With the law of reflection, the search direction is changed, which makes the search

continue when it cannot keep going with refraction. Only the function values of objective

problems are used and there is no artificial rule in light ray optimization, so it is simple and

easy to realize. Theoretical analysis and the results of numerical experiments show that the

algorithm is feasible and effective.
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optimal search mechanism.
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1. Introduction

With the development of science and improvement of society, more and more practical

problems are transformed into optimization problems. The characteristics of these problems

are high-dimension, large amount of data, complex-solving and time-consuming [1]. Traditional

optimization algorithms cannot meet the need of people in the process of solving this kind of

problems because derivative operation and other complex operations are needed. Therefore,

more and more mathematicians and engineering experts begin to study new optimization algo-

rithms. The optimization development mode and “Economic nature” in nature enlighten people

to solve optimization problems. Some new optimization algorithms are born from the thoughts of

natural and physical phenomena. Breaking the mathematical processes of traditional analytical

and numerical algorithms, these algorithms solve the optimization problems by simulating the

developing process in nature, which is considered as a new effective way to solve the optimization
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problems. In these algorithms, the global convergence is realized by simulating the physical or

ecological process in nature and the optimization mechanisms of algorithms themselves. Some

common intelligent optimization algorithms are as follows: genetic algorithm (GA) [2, 3], sim-

ulated annealing (SA) [4, 5], ant colony optimization (ACO) [6, 7], particle swarm optimization

(PSO) [8, 9].

In view of Fermat’s principle, the actual path between two points taken by a beam of light

is the one which is traversed in the least time [10]. Based on this thought, the optimization

search is made by simulating the propagation process of light in inhomogeneous media in light

ray optimization (LRO)[11–13]. Divide the searching area into rectangular grids, and then put

different media into each grid, that is, let the propagation velocity of light in each grid be the

objective function value of some point in this grid. Light rays propagate along the straight

line in each gird, and reflection or refraction occurs only when light rays go from one grid to

another grid. During the searching process, the search direction is deflected to the direction that

makes the value of objective function decrease by simulating refraction phenomenon of light, or

the trend of function value is changed by simulating reflection phenomenon of light. Gradient

information is not necessary and only a few parameters are needed to be adjusted in LRO, so

it is simple and easy to be used. In this paper, some conclusions of optimal search mechanism

are obtained by theoretical analysis and research. As a new algorithm, there are still a lot of

problems in LRO to be studied.

2. LRO algorithm

2.1. The optimal search mechanism of LRO algorithm

Let us study the following problem

min f(X), X ∈ M ⊂ R2, (1)

where f(X) is a positive function, that is, f(x, y) > 0 for an arbitrary (x, y) ∈ M , X is a feasible

solution, M is the feasible range of f(X), R2 is a 2-dimensional real number space.

As shown in Figure 1, let X∗ be a local minimum point of f(X), and X(0) be an initial

point. We can set up an interface between points X(0) and X∗, which separates the search space

into two divisions. The light rays go faster in upper plane than in the other one. It can be easily

seen that the new iteration point X(2) generated by refraction is closer to the minimum point

X∗ than the searching point X(1) in unchanged direction P (0) is. In order to make the iteration

points generated by the refraction scheme get closer to the minimum point, the more interfaces

can be set up, as shown in Figure 2. Generally, the more divisions are divided, the closer the

searching point X(k) in the kth iteration is to X∗. Opposite situation will likely happen that an

inappropriate selection of initial direction P (0) makes generated points get further from X∗, as

shown in Figure 3. As a matter of fact, the dimension of vector space on the plain is 2, so vertical

and horizontal searches ought to be taken into consideration when we do not know the exact

position of minimum value. In Figure 4, vertical interfaces are established, and then search is
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made according to the law of refraction. Both vertical and horizontal lines are needed to be used

in dividing search space, meanwhile, both vertical and horizontal searches are needed in LRO as

shown in Figure 5. If the grid lengths tend to zero, the generated points according to the optical

refraction will go towards X∗ by continuing searches adjusted vertically and horizontally.
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2.2. LRO iterative algorithm

Let us first analyze the relation between directions in the ith iteration and i + 1st iteration.

From X(i) produced by the iteration at ith search step in direction P (i), proceed the iterative

search in direction P (i+1), then the next iteration point X(i+1) is obtained. The relation between

P (i) and P (i+1) satisfies

1) If
vi+1

vi

sin αi ≤ 1, then refraction occurs as shown in Figure 6:

sin αi+1 =
sin αi · vi+1

vi

, (2)

where αi is the angle of incidence in Di, αi+1 is the angle of refraction in Di+1, vi is the

propagation velocity of light in Di, which can be set as the value of objective function at point

X(i−1) = (x(i−1), y(i−1)) in Di, vi+1 is the propagation velocity of light in Di+1, which can be

set as the value of objective function at point X(i) = (x(i), y(i)) in Di+1.

2) If vi+1

vi

sinαi > 1, then reflection occurs as shown in Figure 7:

αi = αi+1, (3)

where αi is the angle of incidence in Di, and αi+1 is the angle of reflection in Di.
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Figure 6 The direction updating Figure 7 The direction updating

based on refraction based on reflection

According to the above analysis, the procedure of LRO is given as follows:

Step 1. Select a vertical grid length and a horizontal one as well, and divide the search

space.

Step 2. Let the velocity of light rays traveling in each division be a value of objective

function at some point in the division.

Step 3. An initial point X(0), an initial vector P (0) are appropriately given.

Step 4. Compute the next iteation point.

Step 5. If the stopping criterion is satisfied, go to Step 7, else go to Step 6.

Step 6. If the condition of total reflection is satisfied, compute the next searching direction

according to law of reflection, else compute the next searching direction according to law of

refraction, go to Step 4.

Step 7. Stop optimal search and output extreme value.
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3. Related theorems of LRO algorithm

Theorem 1 Let f(x, y) be a positive continuous function. For any initial point (x(0), y(0)) and

initial direction P (0) 6= (0,±1), (±1, 0), if reflection does not occur, then variable quantity in the

horizontal direction |x(n) − x(0)| > h after finite iterations n according to LRO algorithm when

the grid lengths h and τ are sufficiently small.

Proof According to LRO iterative algorithm, the trend of two components of iteration point

does not change when refraction occurs on horizontal and vertical grids, that is, if refraction

occurs in the ith iteration and

x(i) > x(i−1)(x(i) < x(i−1)), y(i) > y(i−1)(y(i) < y(i−1)),

then

x(i+1) > x(i)(x(i+1) < x(i)), y(i+1) > y(i)(y(i+1) < y(i)).

Since reflection does not occur, all x(i)−x(i−1) have the same sign. Let us assume that refractions

occur in vertical direction. After k iterations, variable quantity in the horizontal direction is

|x(k) − x(0)| = |
k

∑

i=1

(x(i) − x(i−1))| =
k

∑

i=1

|x(i) − x(i−1)| =
k

∑

i=1

τ tanαi = τ

k
∑

i=1

tan αi. (4)

1) When the search proceeds to the direction in which function increases

Since αi > αi−1, tanαi > tan αi−1. Then

|x(k) − x(0)| = τ

k
∑

i=1

tanαi > kτ tan α1.

So, let n = [ h
τ tan α1

] + 1. Then we have

|x(n) − x(0)| > h. (5)

2) When the search proceeds to the direction in which function decreases

As f(x, y) is continuous, ∀ε > 0, ∃a, b > 0, such that when

|x − x′| < a, |y − y′| < b,

we have

|f(x, y) − f(x′, y′)| < ε.

Especially, for

εi =
1

N
f(x(i−1), y(i−1)), i = 1, 2, . . . , k,

∃τi, hi > 0, such that when

|x(i) − x(i−1)| < τi, |y(i) − y(i−1)| < hi,

we have

|f(x(i), y(i)) − f(x(i−1), y(i−1))| <
1

N
f(x(i−1), y(i−1)).
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Therefore,

f(x(i), y(i)) > f(x(i−1), y(i−1)) −
1

N
f(x(i−1), y(i−1)),

sin αi

sin αi−1
=

f(x(i), y(i))

f(x(i−1), y(i−1))
>

N − 1

N
. (6)

Let

τ = min(τ1, τ2, . . . , τk), h = min(h1, h2, . . . , hk),

p = [
h

τ tan α1
] + 3, s =

N − 1

N
.

Since sin αi−1 < 1,

p2 −
2p − 1

sin2 αi−1

< p2 − 2p + 1 = (p − 1)2,

p2 −
2p− 1

sin2 αi−1

(p − 1)2
< 1.

Since s2 → 1 when N → ∞ , ∃N∗ > 0, s.t. when N > N∗,

s2 >

p2 −
2p − 1

sin2 αi−1

(p − 1)2
,

(p − 1)2s2 sin2 αi−1 − (p − 1)2 > p2 sin2 αi−1 − p2,

1 − sin2 αi−1

1 − s2 sin2 αi−1

>
(p − 1)2

p2
.

Hence

cosαi−1

cosαi

=

√

1 − sin2 αi−1
√

1 − sin2 αi

>

√

1 − sin2 αi−1
√

1 − s2 sin2 αi−1

>

√

(p − 1)2

p2
=

p − 1

p
.

And then
tanαi

tan αi−1
=

sin αi

sin αi−1
·
cosαi−1

cosαi

>
p − 1

p
·

sin αi

sinαi−1
>

p − 1

p
·
N − 1

N
,

tan αi >
p − 1

p
·
N − 1

N
· tan αi−1 > · · · > (

p − 1

p
·
N − 1

N
)i−1 · tan α1, (7)

|x(k) − x(0)| = τ

k
∑

i=1

tan αi > τ

k
∑

i=1

(
p − 1

p
·
N − 1

N
)i−1 · tan α1

= τ · tan α1 ·
1 − (p−1

p
· N−1

N
)k

− p−1
p

· N−1
N

= τ · tan α1 ·
pN

N + p − 1
· [1 − (

p − 1

p
·
N − 1

N
)k]. (8)

As pN

N+p−1 → p when N → ∞, ∃N∗∗ > 0 such that when N > N∗∗,

pN

N + p − 1
> p − 1.
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Since 1 − (p−1
p

· N−1
N

)k → 1 when k → ∞, ∃k∗ > 0 such that when k > k∗,

1 − (
p − 1

p
·
N − 1

N
)k >

p − 2

p − 1
.

Let N = max(N∗, N∗∗) + 1 and n = k∗ + 1. Then

|x(n) − x(0)| = τ · tanα1 ·
pN

N + p − 1
· [1 − (

p − 1

p
·
N − 1

N
)n] > τ · tan α1 · (p − 1) ·

p − 2

p − 1

= τ · tanα1 · (p − 2) = τ · tan α1 · ([
h

τ tan α1
] + 1) > h. (9)

�

The corresponding theorem is as follows:

Theorem 2 Let f(x, y) be a positive continuous function. For any initial point (x(0), y(0)) and

initial direction P (0) 6= (0,±1), (±1, 0), if reflection does not occur, then variable quantity in

vertical direction |y(n) − y(0)| > τ after finite iterations n according to LRO algorithm when the

grid lengths h and τ are sufficiently small.

Theorems 1 and 2 show that refraction occurs in two directions in LRO algorithm, that is the

setting of rectangular grids is meanful. In general, initial search direction P (0) 6= (0,±1), (±1, 0).

This is because if P (0) = (0,±1), (±1, 0), the sine of the angle of incidence sinαi = 0, which

leads to vi+1

vi

sin αi = 0 ≤ 1. Refraction occurs and reflection does not occur, and the sine of the

angle of refraction sinαi+1 = 0. Iteration points extend to infinity because search directions are

not changed in iterations.

Theorem 3 Let f(x, y) be a positive continuous function. In the ith iteration, X(i) is on the

horizontal grid and iteration point X(i+1) is on the vertical grid. X ′(i+1) is the iteration point

when refraction does not occur and the direction is not changed. f(X(i+1)) < f(X ′(i+1)) when

grid lengths h and τ are sufficiently small.

Proof It can be guaranteed that monotonicity of the value of contour line is satisfied when

grid lengths h and τ are sufficiently small. In Figure 8, the values of contour lines line1, line2,

line3 and line4 are f(X(i−1)), f(X(i)), f(X ′(i+1)) and f(X(i+1)), respectively. When the value

of function decreases, the value of line1 is more than that of line2. Because

sin αi

sin αi+1
=

vi

vi+1
, vi > vi+1,

we get

αi+1 < αi = α′

i+1, X(i+1)F =
X(i)F

tan(αi+1)
, X ′(i+1)F =

X(i)F

tan(α′

i+1)
, X(i+1)F > X ′(i+1)F.

f(X(i+1)) < f(X ′(i+1)) because of the monotonicity of contour line.
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Figure 8 The function value decreases

Similarily, in Figure 9, the values of contour lines line1, line2, line3 and line4 are f(X(i−1)),

f(X(i)), f(X(i+1)) and f(X ′(i+1)), respectively. the value of line1 is less than that of line2 when

the value of function increases. Since

sin αi

sin αi+1
=

vi

vi+1
, vi < vi+1,

we have

αi+1 > αi = α′

i+1, X(i+1)F =
X(i)F

tan(αi+1)
, X ′(i+1)F =

X(i)F

tan(α′

i+1)
, X(i+1)F < X ′(i+1)F.

f(X(i+1)) < f(X ′(i+1)) because of the monotonicity of contour line. �
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Figure 9 The function value increases

The corresponding theorem is as follows:

Theorem 4 Let f(x, y) be a positive continuous function. In the ith iteration, X(i) is on the

vertical grid and iteration point X(i+1) is on the horizontal grid. X ′(i+1) is the iteration point

when refraction does not occur and the direction is not changed. f(X(i+1)) < f(X ′(i+1)) when

grid lengths h and τ are sufficiently small.

Theorems 3 and 4 show that search direction will deflect to the direction that is relatively

small by one refraction in LRO algorithm. If the next directional value decreases, then the

decrease of function value of iteration point after refraction is larger, that is, the decrease is

accelerated. If the next directional value increases, then the increase of function value of iteration

point after refraction is smaller, that is, the increase is reduced.

Theorem 5 Let f(x, y) be a positive continuous function. α is the angle between the vertical



538 Jihong SHEN, Jialian LI and Bin WEI

and diagonal lines, β is the angle between the horizontal and diagonal lines, and

max{sinα, sin β} <
10

11
.

If the value of f(x, y) increases constantly after the mth iteration and

lim
i→∞

f(x(i), y(i))

ci
= ∞(c > 1), f

then there exists a limited positive integer N > m such that reflection occurs in the Nth iteration

when grid lengths h and τ are sufficiently small.

Proof It is assumed that reflection does not occur after the mth iteration. As shown in Figure

10, suppose refraction occurs in vertical direction, we have

sin αm

f(x(m), y(m))
= · · · =

sin αn1−1

f(x(n1−1), y(n1−1))
=

sin αn1

f(x(n1), y(n1))
. (10)

The above refraction process occurs in vertical direction constantly and then turns to horizontal

direction, and we get

sin(π
2 − αn1)

f(x(n1), y(n1))
= · · ·

sin(αn2−1)

f(x(n2−1), y(n2−1))
=

sin(αn2)

f(x(n2), y(n2))
. (11)

Then the process turns to vertical direction, we have

sin(π
2 − αn2)

f(x(n2), y(n2))
= · · ·

sin(αn3−1)

f(x(n3−1), y(n3−1))
=

sin(αn3)

f(x(n3), y(n3))
. (12)

After the kth refraction turn, we get

sin(π
2 − αnk

)

f(x(nk), y(nk))
= · · ·

sin(αnk+1−1)

f(x(nk+1−1), y(nk+1−1))
=

sin(αnk+1
)

f(x(nk+1), y(nk+1))
. (13)

According to (10)–(13), we have

sin αnk+1
=

sin αm

f(x(m), y(m))
· f(x(nk+1), y(nk+1)) · cotαn1 cotαn2 · · · cotαnk

. (14)

According to (10) and the condition that the value of function increases constantly after the mth

iteration, we get

0 < αm < αn1−1 < α <
π

2
. (15)

As limh,τ→0
f(x(n1),y(n1))

f(x(n1−1),y(n1−1))
= 1, there exist sufficiently small h1, τ1 that make

1 <
f(x(n1), y(n1))

f(x(n1−1), y(n1−1))
< 1.1. (16)

From (10), we get

sin αn1 = sin αn1−1 ·
f(x(n1), y(n1))

f(x(n1−1), y(n1−1))
. (17)

From (15)–(17), we have

sin αm < sin αn1 < 1.1 sinα.

As max{sinα, sin β} <
10

11
, 1.1 sinα < 1,

0 < αm < αn1 < arc sin(1.1 sinα) <
π

2
. (18)
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Similarily, according to (18) and (11)

0 <
π

2
− arcsin(1.1 sinα) <

π

2
− αn1 < αn2−1 < β <

π

2
,

there exist sufficiently small h2, τ2 that make

1 <
f(x(n2), y(n2))

f(x(n2−1), y(n2−1))
< 1.1.

We have
π

2
− arcsin(1.1 sinα) < αn2 < arcsin(1.1 sinβ),

similarily,
π

2
− arcsin(1.1 sinβ) < αn3 < arcsin(1.1 sinα),

π

2
− arcsin(1.1 sinα) < αn4 < arcsin(1.1 sinβ).

Let

ᾱ = min{αm,
π

2
− arcsin(1.1 sinα),

π

2
− arcsin(1.1 sinβ)},

β̄ = max{arcsin(1.1 sinα), arcsin(1.1 sinβ)}. (19)

Then for ∀k, we get

0 < ᾱ < αnk
< β̄ <

π

2
, cot ᾱ > cotαnk

> cot β̄.

From (14),

sinαnk+1
>

sinαm

f(x(m), y(m))
· f(x(nk+1), y(nk+1)) · cotk β̄ =

sin αm

f(x(m), y(m))
·
f(x(nk+1), y(nk+1))

tank β̄
. (20)

According to (19) and α + β =
π

2
,

β̄ > max{arcsin(sin α), arcsin(sin β)} = max{α, β} ≥
π

4
.

Therefore,

tan β̄ > 1, lim
k→∞

f(x(nk+1), y(nk+1))

tannk+1 β̄
= ∞.

tannk+1 β̄ > tank β̄ as nk+1 > k, then

f(x(nk+1), y(nk+1))

tank β̄
>

f(x(nk+1), y(nk+1))

tannk+1 β̄
, lim

k→∞

f(x(nk+1), y(nk+1))

tank β̄
= ∞.

There exists a positive integer N such that

f(x(nN+1), y(nN+1))

tanN β̄
>

f(x(m), y(m))

sin αm

.

Let

h = min{h1, h2, . . . , hN}, τ = min{τ1, τ2, . . . , τN}.

According to (20),

sin αnN+1 >
sin αm

f(x(m), y(m))
·
f(x(nN+1), y(nN+1))

tanN β̄
> 1 (21)

which is a contradiction. The assumption is not true and the theorem is proved. �
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Figure 10 The search path of LRO algorithm

Theorem 5 shows that, the search along the directions that make the value of function

increase will not keep going, and search direction will be changed by reflection algorithm in

LRO.

4. Numerical experiments

Seven standard test functions in literature [14] are chosen to test the performance of LRO

algorithm. As the paper mainly analyzed some basic theory of LRO used for two dimensional

optimization problems, the chosen test functions are set to be of two dimensions. The size of grid

and precision are both 0.1, and the maximum iteration times is 10000. Run LRO independently

50 times for different test functions. If the maximum iteration number is reached and the

approximate minimum point in a certain precision range is not found in an experiment, then it is

considered to be a failed experiment. The average iteration times (AVEIT), maximum iteration

times (MAXIT), minimum iteration times (MINIT) over successful runs and the success rate

(RATE) are listed in Table 1.

Function AVEIT MAXIT MINIT RATE(%)

Sphere 1657 5450 506 100

Rosenbrock 2434 8277 105 100

Six-hump Camel-Back 216 1172 19 100

Goldstein-Price 2125 8733 45 60

Branin 186 636 30 100

Schwefel 2.22 2708 9445 165 100

Schwefel 1.2 1817 3246 530 100

Table1 The results of numerical experimets

As shown in Table 1, the success rate of Goldstein-Price function is lower. Through the

analysis of the property of this function, it can be seen that it is a highly oscillatory function at

the adjacency of the global minimum point. As the media in the the same grid are assumed to

be uniform in LRO, a rather large error can be caused when a test function is highly oscillatory.

Therefore, the optimization effect is not ideal and success rate is low. According to this situation,

the authors set the size of grid 0.01 and MAXIT 50000. 50 times experiments were carried
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out for Goldstein-Price function, which made the success rate be increased to 100% from 60%.

The corresponding iteration times increases, so selecting the appropriate gird size according to

precision range is a key of LRO algorithm.

The maximum and minimum iteration times for each text function have larger difference

because of the differences of initial points and directions. As 50 points are chosen randomly in the

domain of each function, some points are far away from the minimum point and others are close

to it. Moreover, the iterations times have larger difference even for the same initial point and the

different inital directions. The Figure 11 shows the searching paths A and B of two experiments

for Sphere function with iteration times 771 and 1427, respectively. As the direction in LRO is

needed to be adjusted slowly, the iteration times is more when the initial direction deflected its

way from pointing to minimum point. The situation of Figure 12 may occur, where a certain

iteration times adjusting searching direction are required to find the appropriate minimum point

in the precision range. The convergence rate of LRO is slow in some cases for the above reasons,

but LRO can jump out local minimum point easily and has great ability of global optimization.

Figure 11 The searching paths A and B Figure 12 A particular situation

5. Conclusion

LRO algorithm is an intelligent optimization algorithm based on Fermat’s principle. Deriva-

tive operation and other complex operations are not needed in this algorithm. LRO, which com-

pletely simulates the refraction and reflection phenomena of light, is an algorithm following the

natural law. A large number of numerical experiments show that LRO will find the appropriate

minimum point in a certain precision range for different test functions, initial points, initial direc-

tions. The performance study shows LRO is effective and is a very potential global optimization

algorithm. Theoretical analysis and some conclusions of the optimal search mechanism of LRO

are given in this paper. These theoretical results, which have been proved, are presented in form

of theorems. In Theorems 1 and 2, we have proved that refractions in LRO algorithm alterna-

tively occur in both horizontal and vertical directions. In Theorems 3 and 4, we have proved

that the decrease of function is accelerated and the increase of function is reduced by refractions

in algorithm. In Theorem 5, we have proved that reflection will inevitably occur if the search

along the directions that make the value of function increase keeps going. These theoretical
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results lay a foundation for convergence proof, and provide theoretical basis for improvement

and applications of LRO.
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