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Abstract We prove a reverse Holder inequality by using the cartesian product of dyadic
rectangles and the dyadic cartesian product maximal function on Bergman space of polydisk.
Next, we further describe when for which square integrable analytic functions f and g on the
polydisk the densely defined products TyTy are bounded invertible Toeplitz operators.
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1. Introduction

Let D be the open unit disk in C. Its boundary is the circle T. The polydisk D™ and the
torus T™ are the subsets of C™ which are cartesian product of n copies D and T, respectively.

Let dA(z) be the normalized volume measure on D". For A € D, let ¢y be the fractional

linear transformation on D given by ¢y = 1’\__;\2. Each ¢, is an automorphism on the disk,

in fact, 30;1 = px. For w = (wy,...,w,) € D" the mapping ¢,, on the polydisk D™ given

by 0uw(2) = (0w, (21)s- -+, Puw, (2n)) is an automorphism on D". The Bergman space L2(D")
is the subspace of L?(D",dA) whose functions are holomorphic in D™. There is an orthogonal
projection P from L?(D",dA) onto L2(D"). The reproducing kernel in L2(D") is given by

n n oo

1 __
Ky(z) = H T2 H[E (k+ 1)wjkzjk]
s (1 —w,2) »
j=1 j=1 k=0

for z = (21,22,...,2n),w = (W1, wa,...,w,) € D". Let ¢ € L>°(D™). The Toeplitz operators
with symbol ¢ is the operator T, : LZ(D") — LZ(D") defined by

T, f = P(of) = / o (w) () Ko (@) dA(w).

n

The Berezin transform of a function f € L?*(D",dA) is defined on D" by

fwr= | rEk(E)PdAR)
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for w € D", where ki, (2) = []}_, (tlwijjz‘:) are the normalized reproducing kernels for L2(D").
The question for which f and g in L2(D") the Toeplitz operator T¢Ty is bounded on L2 (D")

was considered in [1]. The following result was proved in [1].

Theorem 1.1 Let f and g be in LZ(D").
(i) If the Toeplitz product T¢Ty is bounded on L?(D"), then

sup |f[?(w)|g]?(w) < oo,
webn

(ii) If

sup | f[?+e(w)lg|*+e(w) < oo
webhn

for some € > 0, then operator TyTy is bounded on L2(D").

In the above theorem the necessary condition is very close to being sufficient for bound-
edness. In [4], Stroethoff and Zheng proved the analogous results on L2?(D) and made the
conjecture that for f and g in L2(D) this product T4T; be bounded on LZ(D) if and only if
SUDep |Tf\|/2(w)|/g\|/2(w) < oo. The authors [2] showed that if f and g are in L2(D), then the
product 1Ty is bounded and invertible on L2 (D) if and only if sup,cp W(w)(gﬁ(w) < 0o and
infyep | f(w)g(w)| > 0. Next, in [3] the authors extended the results [2] to weighted Bergman
space of unit disk.

In this paper, we will be concerned with the question for which f and g in L2(D") the
Toeplitz operator product TfT} is invertible on L2(D™). In [2] and [3] the proof made use of
dyadic rectangles and dyadic maximal function. Our method is partially adapted from those in
[2] and [3]. Let d(Q) denote the distance between dyadic rectangles @ and unit circle OD. The
proof in [2] and [3] need two different methods in view of the distance d(Q) > 0 and d(Q) = 0.
We need consider the question on the dyadic rectangles cartesian product @1 X -+ X @,. In
our case, some d(Qx) = 0, for k € a, where a = {a1,...,a,,} is a subset of {1,...,n} with
ay < -+ < ayp, and o runs over all subsets of {1,...,n}; the other d(Qg) >0, k € {1,...,n}\c.
Therefore, the cases will be more complicated than on the unit disk. Our proof for Lemma 2.5
need use weighted condition (As). Thus, we cannot directly obtain the necessary and sufficient
condition for T¢Ty to be bounded and invertible on L2(D"). The theorems that we get have
more complicated forms. First, we are ready to prove the reverse Holder inequality. By means

of the inequality, we will get our main result.

2. A reversed Holder inequallty

In this section we will prove a reverse Holder inequality for f(-,n) in L?(D") satisfying the
following invariant weight condition:
sup [f12(-, )| f72(-,m) < o0, (A2)
nebhe
We will prove that the above condition implies that

sup |fI2He(,n)|f|=FFO (-, ) < oo, (Aoye)
neb«
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for sufficiently small € > 0. Where n € D* =Dy, X -+ x Dy, , @« = {a1,...,an} is a nonempty
subset of {1,...,n} with a; < -+ < @, and « runs over all subsets of {1,...,n}; f(-,n) denotes
the function dependent on variables 1. Meanwhile, we can get f(-,n) € L%(D%) according to
f(m) € Ly(D™).

Theorem 2.1 Suppose that f(-,n) € L?(D") satisfies condition (Az) with

M = sup |fR(n)[f]2(n) < .
nebhe

Then there exist constants €; and Cy; which depend on M such that

__ (24¢)/2
R Com) < O (177G m)
for everyn € D* and 0 < & < gpy. WhereD® =D, x---xD,, ,a = {a1,...,qn} is a nonempty
subset of {1,...,n} with ay < --+ < aun, and « runs over all subsets of {1,...,n}.

As in [2], the proof of Theorem 2.1 will make use of the cartesian product of dyadic rectangles
and the dyadic cartesian product maximal function. We first discuss the dyadic rectangles and

prove some elementany properties related to these rectangles.

Dyadic rectangles Any set of the form
Quymy e, = {rie™® + (mj —1)275 <r; <m;275 and (k; — 1)27 5T r < 0; < k270 ),

where l;,m;, k; are positive integers such that m; < 2l kj < 2§ =1,2,...,n,is called a
dyadic rectangle. The center of the above dyadic rectangle Q; = Qi; m, , is the point zg, =
(m; — 3)275e™ with v; = (k; — 3)2'"%m. Let |E| denote the normalized area of measurable
set £ € D. If d(Q;) denotes the distance between @; and 0D, then a calculation shows that

Qs = 8l2q, 1(1 — |2q,| — d(@/))*. (2.1)
In view of the Lemma 2.2 of [2], we can obtain the following Lemma.

Lemma 2.2 Let Q; be a dyadic rectangle with center w; = zg,. For a subset o = {1, ..., }
of {1,...,n} with @y < --- < au, there is a constant C; > 0 such that
1

[Tk GOP = ] 77—

i Ha=n
for every z; € Qq,, where a runs over all subsets of {1,...,n}.

Let D(wj, s;j) denote the pseudohyperbolic disk with center w; € D; and radius 0 < s; < 1,

ie.,

D(wj, sj) = {zj € Dj : pw, (2j)] < s5}-

Lemma 2.3 Suppose that f(-,w) € L2(D") satisfies the invariant weight condition (As) and

let 0 < s; < 1. For a subset a = {au,...,am} of {1,...,n} with a1 < -+ < Qy, let w =
{wa, ..., Wa,, }. There is a constant Cs, > 0 such that
1 < |f(7€)| <

Osj o |f(7w)| -
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whenever £ € D(wq,,Sa,) X -+ X D(wa,, , Sa,, ), where « runs over all subsets of {1,...,n}.

Proof Let u be in D(0,84,) X -+ x D(0, 8q,,). Since f(-,&) € L2(D*), we have f(u) = (f, Ku.).
Applying the Cauchy-Schwarz inequality, for each u € D(O, Say) X -+ x D(0, s4,, ), we obtain

7600 < Il = 11 [T 7= < 11 1”_”52-

JEa JEa

Now if §; € D(wa,, 55), let [uj| = |pu,, (§)| < sj. Then for some u; € D(0,s;), uj = pu,, (&)
Le., Pu,, (uj) = P, © Pua, (&) = &;. Replacing f by f o ¢, in the above inequality gives

691 =1 o et ) < T 2202 = TT = 17w
JEQ JE« J

Since f(-,w) € L2(D%), by the Cauchy-Schwarz inequality, we can get
[fCw) ™ =1 opw) (4,0, 0)] < /D 1f7 0 pul(2)dA(2) < 1F 71 o pullz = [F 1P w) 2.
Combining these inequalities and the invariant weight condition (A3), we have

oy < L r=g PECu s 126 w)

for all £ € D(wa,, Sa;) X *++ X D(wa,, , Sa,, ). Replacing f by f~! gives the other inequality. OJ

=

S CS]‘7
JEa

Lemma 2.4 ([3]) There exists 0 < R; < 1 such that
Qj C D(zq;, R)
for every dyadic rectangle in D that has positive distance to 0D.

Lemma 2.5 If f(-,n) € L2(D") satisfies the invariant weight condition (As), then there is a
constant C'(M) depending on M such that

(a1 e maan) (g 117 maac) < e

for every n € Q, where Q = Q¢, X Q¢, X -+ X Q¢,, is the cartesian product of dyadic rectangles,
¢ ={G,.--,Gn} is a nonempty subset of {1,...,n} with {1 < -+- < (;, and ¢ runs over all
subsets of {1,...,n}.

Proof Now suppose that a = {a1,@9,...,a¢} is a subset of {(1,{2,...,{m} With a1 < ag <
- < Oy, 6 = {ClaCQa s aC’m} \ = {615627 s 76m7t}' Next assume that
dQ;) =0, ifjew
d(Q;) >0, ifjep.
First we fix j € 8, d(Q;) > 0. By Lemma 2.4, Q; C D(zq,, R;), where 0 < R; < 1. By Lemma

2.3, there exists a positive constant C such that

1
5|f('7ZQ515' . 'aZQBmft” < |f(5€)| < O|f('aZlea' . '7ZQ5mft)|
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for all £ € Qp, x Qp, X -+ X Qg,, ,. Therefore for f(-,n) € L2(D*), we have

|Q|/|f| An)
Q1| X |Q2| X o X | Qul /Q1 /Q2 /m (61, v, Em)2dErdEs - - dénm

T
= 7771 / / 1FCobars o CansMBrs - 318 )P e, - d€a, dna, ... d1g,, _,
Hj:l |Qg| hHBQh 1;[ Q1
S tEax

C
<
|Qa1| X |QO¢2| Xooee |Qat| 1 Qn

h€a

|f('a€0117" ')fat52Q51)' "7ZQ5m7t)|2d§Oé1 o 'dgﬂtt'

Next assume that j € o and d(Q;) = 0, then we have |2q,| > 1, and it follows from (2.1) that

Q)1 = 8l2q,1(1 — lzq,| — d(Q;))* = 8l2q, (1 — 2q,)* = 4(1 — [2q,])*.

Using Lemma 2.2 gives

C
J: |f(7§0¢ 7'--7501“2 4 )|2d€a ...dé’at
Qo | X |Qasl X Qo | J 1 00 1 Qs Qs s .
hea
Ch / ,

ST =702 |f(o€ars e €anr 2Qpy s -0 2 )|?dey, - - - déa,

H (|1_|2Qj|)2 II @n ' Qo Qbm_s 1

JjEa h€a
SCQ/ |f(',€al7'."gaﬁzQBl,”.,ZQBm—t”QH|kZQj(€o¢j)|2d€al...d€at

1T Qn o

S CQ/H D |f('5€0117"'afﬂttszgla'"7ZQ5m,t)|2H |kZQj(€0¢j)|2d€0¢1 "'dgﬂtt

Jjea
= C2|f|2('7 BQay > *FQagr ZQat)'

A similar inequality holds for f~!. Thus we have

|Q|/'f' i) |Q|/|f|2 i)

< CEIIP( 2Qu, - 2@ NIFIT2 (s 2Qu, - 204,)] < MCE. OO
Lemma 2.6 Suppose that f(-,n) € L?(D") satisfies the invariant weighted condition (As). For
every n, w € D%, let du, = |foww|?(-,n)dA(n). If0 < v < 1, then there exists a0 < §(y, M) < 1
such that
faw (E) < 6(7, M) (Q%)
whenever E is a subset of Q% = Qq, X +++ X Qq,, with |E| < v|Q%|, where o = {1, ..., } Is
a nonempty subset of {1,...,n} with a1 < --- < @, and 6(y, M) depends on v and M.

Proof Suppose that W(-,n)|ﬂ3(~,n) < M, for all n € D*. Let E be a subset of Q% with
|E| <~|Q%. Applying the inequality of Cauchy-Schwarz and Lemma 2.5, we have

(@1 =180 = ([ \owullfopul(miawm)



548 Zhiling SUN and Yufeng LU

L el Cmaam) ([ 1ol miam)

=( (
<( [ reeel )(/ 7 o pul Z(mdAW))
< (/Qa\Elfwwl (.mdA(m) ) CDIQ" P (/alfosﬁwl’Q(-,n)dA(n)l)_
. wlE)
= CONIQP[1 - =os ]
It follows that () . B \2
i@ <1~ eon (1 fguy) <9020

if we put §(y, M) =1— (1 —v)?/C(M). O

The dyadic cartesian product maximal function The dyadic cartesian product maximal
operator M* is defined by

(M2 f)(w) = sup Tclm /Q £ldA

weR

where the supremum is over all the cartesian product of dyadic rectangles Q = Q1 X Q2 X -+ - Q,
that contain w. The maximal function is greater than the dyadic cartesian products maximal
function, so the dyadic cartesian product maximal function of any continuous function is finite
on D". In particular, if f € L?(D") satisfies the invariant condition (Az), then the dyadic
cartesian product maximal function M?|f|? is always finite. This can also be seen directly as
follows. Given a point w = (w1,...,wy) € D", there is a number R = {R1,...,R,}, 0 < R; < 1,
1 < j < n such that all but a finite number of the cartesian product of dyadic rectangles
containing the point w lie inside the closed disk D(0,R) = {z = (21,...,2n) : |z| < Ri}.
If f € L2(D") and Q is a cartesian product of dyadic rectangle containing w inside the disk
D(0, R), then

1 2 2.0, .
el /Q F()PdA() < max{[f(2)? : |21 < Ry}

If Qq1y,--.,Qysy are the cartesian product of dyadic rectangles containing w not contained in
the disk D(0, R), then

MA[fP(w) < max{|f(2)]” : |2j] < Rj} + max ———
J 1<i<s |Q{z}| Qi

[f(2)PdA(z) < oo
This proves that the dyadic cartesian product maximal function of |f|? is finite on D".

The principal fact about the dyadic cartesian product maximal function is the Calderon-
Zygmund decomposition formulated in the next theorem. We will need the notion of “doubling”
of the dyadic rectangles in its proof. Suppose that [; > 1 and m,, k; are positive integers such

that m;, k; < 2. The double of Qj = Qi;,m, k; denoted by 2Q);, is defined by

2@]— = Qlj_17[(mj+l)/2]7[(kj+1)/2]7

where [k] denotes the greatest integer less than or equal to k. An elementary calculation shows
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that
12Q;1/1Q;| < 8,

for every dyadic rectangle @); in the unit disk.
Calderon-Zygmund decomposition theorem Let f be locally integrable on D", and t > 0.

Suppose that Q = {z € D" : M2 f(z) > t} is not to D". Then Q may be written as disjoint

union of cartesian product of dyadic rectangles Q;; with

1
t< —— |f|dA < 8"t.
|Q{i}| Qiy

Proof Suppose that w € Q, then M f(w) > t. Then there exists a cartesian product of dyadic

rectangles ) containing w such that

1
L At
|Q|/Q|f|d St

AN
M2f(z |Q|/|f|dA>t

Now, if z € @, then

It follows z € §2. Thus proves that @ C 2. We may assume that the Qg;; are the maximal
cartesian product of dyadic rectangles. It follows that Q = (J, Q;;. Since Q = Qy;y is not equal
to D™, by maximality its double 2@ is not contained in 2. This means that 2Q) contains a point
z which is not in €. Since M2 f(z) > t, we obtain

1 A
w/QQ|f|dA§M flz) <t

Hence, it follows that

12Qf _
o

Before we prove the reverse Holder mequahty, we need one more preliminary result for the

dA dA .o O
|Q|/|f| <IQ| fldd < g =8

dyadic maximal function:

Proposition 2.7 If f(-,n) € L2(D"), D* =D,, X --- x D,,,, then
(i) 1f1?(;n) < M2[f*(-,n) on D, and
(i) ||fII3 < MA[f2(-,0,...,0) < 2| fI3.

Here o = {a1,...,a,} Is a nonempty subset of {1,...,n} with a1 < -+ < app,.

Proof (i) We will prove that if g is continuous on D%, then |g(-,w)| < M%g(-,w) for every
w € DY Fix w € D* Let Qo = Qo1 X -+ X Qom be any cartesian product of dyadic
rectangles containing w such that QQg; C D;. Since function g is uniformly continuous on Qqo;,
given £ > 0, there is a § > 0, such that |g(-,2) — g(-,w)| < &, whenever z,w € Q¢ are such
that |z — w| = maxi<j<m |2 — wj| < 6. Subdivide Qoy a number of times, then there exists a

cartesian product of dyadic rectangles () containing w with diameter less than ¢. Then

|g(-,w)| < |g(72)| + |g(-,2’) —g(-,w)| < |g(72)| +e
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for all z € @. This implies that
1
o)l < 7 [l )AAG) 42 < M3g(w) e

Therefore, we can obtain
l9(,w)| < M2g(,w).

(if) Since D® is a cartesian product dyadic rectangles, we have

1

o L 1FECndam = 1715

for f(-,n) € L2(D®). If Q; is a dyadic rectangle other than D containing 0, then Q; C D;(0,1/2),
j € a. For each z € D*, we have f(-,z) = (f, K.) and the inequality of Cauchy-Schwarz implies

MA|f2(-,0,...,0) >

m

1

FEAP < IAPIE:N? = 1] 7 17113
U=l
for all z € D1(0,1/2) x - -+ x Dy, (0,1/2). Since Q; C D;(0,1/2), it follows that

S
Q)

We are now ready to prove the reversed Holder inequality contained in Theorem 2.1.

/Q FPAA < (4/3)" £ < 27| f2. O

Proof of Theorem 2.1 First we prove that for some constant C'y; > 0,

/ IFC)FEAAR) < Ou( /D |/ IQdA(z))mE)/Q.

For each integer k > 0, set
Ep ={z €D : M2|fP(,,2) > 2°™ ™| |3}

Since M2|f|?(-,0,...,0) < 27| f||3 < 23™k+m| f||2, it follows from proposition 2.7 (ii) that for
every positive integer k set Ej is not equal to D*. Fix k > 1. By the Calderon-Zygmund
decomposition theorem, Ej = |J; @y, where Qg are disjoint cartesian product of dyadic
rectangles in Ej, that satisfy

1
P < o [ 11 AAG) < 87 xR
Qir] Jo,
thus

Q] < 275 752 /Q I£ldA, and /Q [FIAA < 8™ x 254 F210,,y .
{i} {i}

Let @ be a maximal cartesian product of dyadic rectangle in Ejx_;. Summing over all such
Qi) C Q gives that
BNG= X Qwl<2 s [ 1
Qi) CQ Q
since the Qy;; are disjoint and their union is Ej. On the other hand, by maximality the double 2Q)

is not contained in Ej_1, and as in the proof of the Calderon-Zygmund decomposition theorem
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it follows that
/ FPdA < 29m=Dgm | £|20).
Q

Hence
|Er N Q| <1/2™|Q).

By Lemma 2.6 there exists a 0 < § < 1 such that

u(Er N Q) < 6p(Q),

where du = |f|?(-,2)dA(z). Taking the union over all maximal cartesian product of dyadic
rectangles @ in Ej_; gives
H(Ex) < 6By 1),

and therefore
p(Ey) < 6% p(Eo) < 6%||f1l3-

Using Proposition 2.7, we have
/ [FIPF2(, 2)dA(2) < / (M2[F1%)7?|f1?dA(2)
Do De

(MAFP)2fPdA+) (MA]f[%)=/2| f|*d A
k=0

/{MAf|2§2’"|f||§} E\Erq1

< 27| flISI 15 + D 20D £l Ey)
k=0

< o fIge 4 30 2 esgl g
k=0
m 2(3m+1)€/2 ot
<@+ m)”f”z 5
if 257m2/2§ < 1. We let 23™=M/25 = 25/(1 + 6), then it follows that e = In(2/(1 + §))/(3minv/2).
If 0 < & < e, then 23m/25 < 25/(1+6) < 1, so that
(3m+1)e/2 (1/3m+1) (1/3m+2)
2 - (2/(1+9)) 2
1_2me25 ~ 1-25/(1+0) — 1-0

So, if Cpy =2™ + 2(1/1?f;+2), then for 0 < € < g37 we have shown that

/Da A1, 2)dA < O /D 7 2aa)

For a fixed w € D%, by Mobius invariance of Berezin transform we also have
M = sup |fopul*(-,2)|f o pul (-, 2).
zehe
Applying the above argument to the function |f o ¢, |2, we obtain
(24€)/2

L ireeulrecauae < ou( [ 1feopleaam)
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that is,

G < o (IPCw) 7 o

3. Invertible Toeplitz product

In this section, we will completely characterize the bounded invertible Toeplitz products
TsTy on L2(D"). We have the fellowing result:

Theorem 3.1 Let f(-,n) and g(-,n) be in L2(D"). Then T¢Ty(-,n) is bounded and invertible
on L2(D?) if and only if
sup{[f[*(; w)lg|* (-, w) : w € D*} < o0

and

inf{[f(, w)llg(;w)| : w e D} > 0.
Here D* = Dy, X -+ X Dy, , @« = {aq,...,amy} is a nonempty subset of {1,...,n} with oy <
-+ < Qun, and « runs over all subsets of {1,...,n}.

Proof “=”. Suppose that T¢Ty(-,n) is bounded and invertible on L2(D®). By Theorem 1.1

there exists a constant M such that
L2 (s w)lgl (- w) < M, (3.2)

for all w € D®. Note that

TiTgkyw = g(-,w) fkuw.

Thus
HTfTékw”% = |g(7w)|2|f|2(7w)7

so the invertibility of TyT5 yields
l9(, W) PIFI2(w) 2 61 > 0, (3.3)

for some constant d; and for all w € D*. Since T,T; = (TTy)* is bounded and invertible, there

is also a constant d2 such that
£ w)PlglPCow) = 62 >0, (3.4)
for all w € D*. Put = d102, then it follows from (3.2), (3.3) and (3.4) that
5 < 1F(,w)PlgCw)PIARC, w)lgPew) < MIFC w)Plglw)l?,

and thus

for all w € D*.
“«<”. Suppose that

M = sup{| f(-,w)|g]2(-,w) : w € D} < 0o, 1= inf | f(-,w)||g(-,w)| > 0.
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Since f,g € L2(D%), we have
|f(,’LU)|2 = |fo (p’w('vou o '70)|2 < /]DD‘ |fo (pw|2(,Z)dA(Z) = |/f\|§('7w)7

for all w € D*. Thus, |f(-,w)||g(-,w)| < M2, for all w € D*. So, fg is a bounded function on
D® and f and g cannot have zeros in D®. Since |g(-, 2)|*> > n?|f(-, 2)| 72, for all z € D*, we have

|912(sw) = 7P[ 172 w),
for all w € D®. Consequently,
M = [fR(w)|gl(w) = P20, w)| £172(,w),
so that
[FRCw) 172 w) < M/n?,

for all w € D®. This means that f satisfies the condition (Az). By the reverse Holder inequality,

for some € > 0,

sup [ f[2+e(-, w)] f|7EF (- w) < oo,
webD™

for all w € D*. By Theorem 1.1, Ty T7=y is bounded on L2(D®). Since fg is bounded on (D), the
operator T is bounded on L7 (D*). It follows that TyT; = TyT5—T5; is bounded on LZ(D?).
The function ¢ = 1/(fg) is bounded on D®, so that the operator T} is bounded on LZ(D?).
Using that

TyTsTy = I = TyTyTy,

we conclude that TyT} is invertible on L2(D%). O
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