Invertible Toeplitz Operators Products on the Bergman Space of the Polydisk

Zhiling SUN ${ }^{1,2, *}$, Yufeng LU ${ }^{1}$
1. School of Mathematical Sciences, Dalian University of Technology, Liaoning 116024, P. R. China;
2. College of Mathematics, Inner Mongolia University for Nationalities, Inner Mongolia 028000, P. R. China

Abstract

We prove a reverse Hölder inequality by using the cartesian product of dyadic rectangles and the dyadic cartesian product maximal function on Bergman space of polydisk. Next, we further describe when for which square integrable analytic functions f and g on the polydisk the densely defined products $T_{f} T_{\bar{g}}$ are bounded invertible Toeplitz operators.

Keywords Toeplitz operators; Bergman space; polydisk; reverse Hölder inequality.
MR(2010) Subject Classification 47B35; 47B47

1. Introduction

Let \mathbb{D} be the open unit disk in \mathbb{C}. Its boundary is the circle \mathbb{T}. The polydisk \mathbb{D}^{n} and the torus \mathbb{T}^{n} are the subsets of \mathbb{C}^{n} which are cartesian product of n copies \mathbb{D} and \mathbb{T}, respectively. Let $d A(z)$ be the normalized volume measure on \mathbb{D}^{n}. For $\lambda \in \mathbb{D}$, let φ_{λ} be the fractional linear transformation on \mathbb{D} given by $\varphi_{\lambda}=\frac{\lambda-z}{1-\lambda z}$. Each φ_{λ} is an automorphism on the disk, in fact, $\varphi_{\lambda}^{-1}=\varphi_{\lambda}$. For $w=\left(w_{1}, \ldots, w_{n}\right) \in \mathbb{D}^{n}$ the mapping φ_{w} on the polydisk \mathbb{D}^{n} given by $\varphi_{w}(z)=\left(\varphi_{w_{1}}\left(z_{1}\right), \ldots, \varphi_{w_{n}}\left(z_{n}\right)\right)$ is an automorphism on \mathbb{D}^{n}. The Bergman space $L_{a}^{2}\left(\mathbb{D}^{n}\right)$ is the subspace of $L^{2}\left(\mathbb{D}^{n}, d A\right)$ whose functions are holomorphic in \mathbb{D}^{n}. There is an orthogonal projection P from $L^{2}\left(\mathbb{D}^{n}, d A\right)$ onto $L_{a}^{2}\left(\mathbb{D}^{n}\right)$. The reproducing kernel in $L_{a}^{2}\left(\mathbb{D}^{n}\right)$ is given by

$$
K_{w}(z)=\prod_{j=1}^{n} \frac{1}{\left(1-\bar{w}_{j} z_{j}\right)^{2}}=\prod_{j=1}^{n}\left[\sum_{k=0}^{\infty}(k+1){\overline{w_{j}}}^{k} z_{j}^{k}\right]
$$

for $z=\left(z_{1}, z_{2}, \ldots, z_{n}\right), w=\left(w_{1}, w_{2}, \ldots, w_{n}\right) \in \mathbb{D}^{n}$. Let $\varphi \in L^{\infty}\left(\mathbb{D}^{n}\right)$. The Toeplitz operators with symbol φ is the operator $T_{\varphi}: L_{a}^{2}\left(\mathbb{D}^{n}\right) \rightarrow L_{a}^{2}\left(\mathbb{D}^{n}\right)$ defined by

$$
T_{\varphi} f=P(\varphi f)=\int_{\mathbb{D}^{n}} \varphi(w) f(w) \overline{K_{z}(w)} \mathrm{d} A(w)
$$

The Berezin transform of a function $f \in L^{2}\left(\mathbb{D}^{n}, \mathrm{~d} A\right)$ is defined on \mathbb{D}^{n} by

$$
\tilde{f}(w)=\int_{\mathbb{D}^{n}} f(z)\left|k_{w}(z)\right|^{2} \mathrm{~d} A(z)
$$

Received May 4, 2011; Accepted August 31, 2011
Supported by the National Natural Science Foundation of China (Grant No. 10971020).

* Corresponding author

E-mail address: yusinmg@126.com (Zhiling SUN)
for $w \in \mathbb{D}^{n}$, where $k_{w}(z)=\prod_{j=1}^{n} \frac{1-\left|w_{j}\right|^{2}}{\left(1-\overline{w_{j}} z_{j}\right)}$ are the normalized reproducing kernels for $L_{a}^{2}\left(\mathbb{D}^{n}\right)$.
The question for which f and g in $L_{a}^{2}\left(\mathbb{D}^{n}\right)$ the Toeplitz operator $T_{f} T_{\bar{g}}$ is bounded on $L_{a}^{2}\left(\mathbb{D}^{n}\right)$ was considered in [1]. The following result was proved in [1].

Theorem 1.1 Let f and g be in $L_{a}^{2}\left(\mathbb{D}^{n}\right)$.
(i) If the Toeplitz product $T_{f} T_{\bar{g}}$ is bounded on $L_{a}^{2}\left(\mathbb{D}^{n}\right)$, then

$$
\sup _{w \in \mathbb{D}^{n}} \widetilde{|f|^{2}}(w) \widetilde{|g|^{2}}(w)<\infty
$$

(ii) If

$$
\sup _{w \in \mathbb{D}^{n}} \widetilde{|f|^{2+\varepsilon}}(w) \widetilde{|g|^{2+\varepsilon}}(w)<\infty
$$

for some $\varepsilon>0$, then operator $T_{f} T_{\bar{g}}$ is bounded on $L_{a}^{2}\left(\mathbb{D}^{n}\right)$.
In the above theorem the necessary condition is very close to being sufficient for boundedness. In [4], Stroethoff and Zheng proved the analogous results on $L_{a}^{2}(\mathbb{D})$ and made the conjecture that for f and g in $L_{a}^{2}(\mathbb{D})$ this product $T_{f} T_{\bar{g}}$ be bounded on $L_{a}^{2}(\mathbb{D})$ if and only if $\sup _{w \in \mathbb{D}} \widetilde{|f|^{2}}(w) \widetilde{|g|^{2}}(w)<\infty$. The authors [2] showed that if f and g are in $L_{a}^{2}(\mathbb{D})$, then the product $T_{f} T_{\bar{g}}$ is bounded and invertible on $L_{a}^{2}(\mathbb{D})$ if and only if $\sup _{w \in \mathbb{D}} \widetilde{|f|^{2}}(w) \widetilde{|g|^{2}}(w)<\infty$ and $\inf _{w \in \mathbb{D}}|f(w) g(w)|>0$. Next, in [3] the authors extended the results [2] to weighted Bergman space of unit disk.

In this paper, we will be concerned with the question for which f and g in $L_{a}^{2}\left(\mathbb{D}^{n}\right)$ the Toeplitz operator product $T_{f} T_{\bar{g}}$ is invertible on $L_{a}^{2}\left(\mathbb{D}^{n}\right)$. In [2] and [3] the proof made use of dyadic rectangles and dyadic maximal function. Our method is partially adapted from those in [2] and [3]. Let $d(Q)$ denote the distance between dyadic rectangles Q and unit circle $\partial \mathbb{D}$. The proof in [2] and [3] need two different methods in view of the distance $d(Q)>0$ and $d(Q)=0$. We need consider the question on the dyadic rectangles cartesian product $Q_{1} \times \cdots \times Q_{n}$. In our case, some $d\left(Q_{k}\right)=0$, for $k \in \alpha$, where $\alpha=\left\{\alpha_{1}, \ldots, \alpha_{m}\right\}$ is a subset of $\{1, \ldots, n\}$ with $\alpha_{1}<\cdots<\alpha_{m}$, and α runs over all subsets of $\{1, \ldots, n\}$; the other $d\left(Q_{k}\right)>0, k \in\{1, \ldots, n\} \backslash \alpha$. Therefore, the cases will be more complicated than on the unit disk. Our proof for Lemma 2.5 need use weighted condition $\left(A_{2}\right)$. Thus, we cannot directly obtain the necessary and sufficient condition for $T_{f} T_{\bar{g}}$ to be bounded and invertible on $L_{a}^{2}\left(\mathbb{D}^{n}\right)$. The theorems that we get have more complicated forms. First, we are ready to prove the reverse Hölder inequality. By means of the inequality, we will get our main result.

2. A reversed Hölder inequallty

In this section we will prove a reverse Hölder inequality for $f(\cdot, \eta)$ in $L_{a}^{2}\left(\mathbb{D}^{n}\right)$ satisfying the following invariant weight condition:

$$
\begin{equation*}
\sup _{\eta \in \mathbb{D}^{\alpha}} \widetilde{|f|^{2}}(\cdot, \eta) \widetilde{|f|^{-2}}(\cdot, \eta)<\infty \tag{2}
\end{equation*}
$$

We will prove that the above condition implies that

$$
\sup _{\eta \in \mathbb{D}^{\alpha}} \widetilde{|f|^{2+\varepsilon}}(\cdot, \eta) \mid \widetilde{\left.f\right|^{-(2+\varepsilon)}}(\cdot, \eta)<\infty
$$

for sufficiently small $\varepsilon>0$. Where $\eta \in \mathbb{D}^{\alpha}=\mathbb{D}_{\alpha_{1}} \times \cdots \times \mathbb{D}_{\alpha_{m}}, \alpha=\left\{\alpha_{1}, \ldots, \alpha_{m}\right\}$ is a nonempty subset of $\{1, \ldots, n\}$ with $\alpha_{1}<\cdots<\alpha_{m}$, and α runs over all subsets of $\{1, \ldots, n\} ; f(\cdot, \eta)$ denotes the function dependent on variables η. Meanwhile, we can get $f(\cdot, \eta) \in L_{a}^{2}\left(\mathbb{D}^{\alpha}\right)$ according to $f(\cdot, \eta) \in L_{a}^{2}\left(\mathbb{D}^{n}\right)$.

Theorem 2.1 Suppose that $f(\cdot, \eta) \in L_{a}^{2}\left(\mathbb{D}^{n}\right)$ satisfies condition $\left(A_{2}\right)$ with

$$
M=\sup _{\eta \in \mathbb{D}^{\alpha}} \widetilde{|f|^{2}}(\cdot, \eta) \widetilde{|f|^{-2}}(\cdot, \eta)<\infty
$$

Then there exist constants ε_{M} and C_{M} which depend on M such that

$$
\widetilde{|f|^{2+\varepsilon}}(\cdot, \eta) \leq C_{M}\left(\widetilde{|f|^{2}}(\cdot, \eta)\right)^{(2+\varepsilon) / 2}
$$

for every $\eta \in \mathbb{D}^{\alpha}$ and $0<\varepsilon<\varepsilon_{M}$. Where $\mathbb{D}^{\alpha}=\mathbb{D}_{\alpha_{1}} \times \cdots \times \mathbb{D}_{\alpha_{m}}, \alpha=\left\{\alpha_{1}, \ldots, \alpha_{m}\right\}$ is a nonempty subset of $\{1, \ldots, n\}$ with $\alpha_{1}<\cdots<\alpha_{m}$, and α runs over all subsets of $\{1, \ldots, n\}$.

As in [2], the proof of Theorem 2.1 will make use of the cartesian product of dyadic rectangles and the dyadic cartesian product maximal function. We first discuss the dyadic rectangles and prove some elementany properties related to these rectangles.

Dyadic rectangles Any set of the form

$$
Q_{l_{j}, m_{j}, k_{j}}=\left\{r_{j} e^{i \theta_{j}}:\left(m_{j}-1\right) 2^{-l_{j}} \leq r_{j}<m_{j} 2^{-l_{j}} \text { and }\left(k_{j}-1\right) 2^{-l_{j}+1} \pi \leq \theta_{j}<k_{j} 2^{-l_{j}+1} \pi\right\}
$$

where l_{j}, m_{j}, k_{j} are positive integers such that $m_{j} \leq 2^{l_{j}}, k_{j} \leq 2^{l_{j}}, j=1,2, \ldots, n$, is called a dyadic rectangle. The center of the above dyadic rectangle $Q_{j}=Q_{l_{j}, m_{j}, k_{j}}$ is the point $z_{Q_{j}}=$ $\left(m_{j}-\frac{1}{2}\right) 2^{-l_{j}} e^{i v_{j}}$ with $v_{j}=\left(k_{j}-\frac{1}{2}\right) 2^{1-l_{j}} \pi$. Let $|E|$ denote the normalized area of measurable set $E \in \mathbb{D}$. If $d\left(Q_{j}\right)$ denotes the distance between Q_{j} and $\partial \mathbb{D}$, then a calculation shows that

$$
\begin{equation*}
\left|Q_{j}\right|=8\left|z_{Q_{j}}\right|\left(1-\left|z_{Q_{j}}\right|-d\left(Q_{j}\right)\right)^{2} \tag{2.1}
\end{equation*}
$$

In view of the Lemma 2.2 of [2], we can obtain the following Lemma.
Lemma 2.2 Let Q_{j} be a dyadic rectangle with center $w_{j}=z_{Q_{j}}$. For a subset $\alpha=\left\{\alpha_{1}, \ldots, \alpha_{m}\right\}$ of $\{1, \ldots, n\}$ with $\alpha_{1}<\cdots<\alpha_{m}$, there is a constant $C_{1}>0$ such that

$$
\prod_{j \in \alpha}\left|k_{w_{j}}\left(z_{j}\right)\right|^{2} \geq C_{1} \prod_{j \in \alpha} \frac{1}{\left(1-\left|w_{j}\right|\right)^{2}}
$$

for every $z_{j} \in Q_{\alpha_{j}}$, where α runs over all subsets of $\{1, \ldots, n\}$.
Let $D\left(w_{j}, s_{j}\right)$ denote the pseudohyperbolic disk with center $w_{j} \in \mathbb{D}_{j}$ and radius $0<s_{j}<1$, i.e.,

$$
D\left(w_{j}, s_{j}\right)=\left\{z_{j} \in \mathbb{D}_{j}:\left|\varphi_{w_{j}}\left(z_{j}\right)\right|<s_{j}\right\}
$$

Lemma 2.3 Suppose that $f(\cdot, w) \in L_{a}^{2}\left(\mathbb{D}^{n}\right)$ satisfies the invariant weight condition $\left(A_{2}\right)$ and let $0<s_{j}<1$. For a subset $\alpha=\left\{\alpha_{1}, \ldots, \alpha_{m}\right\}$ of $\{1, \ldots, n\}$ with $\alpha_{1}<\cdots<\alpha_{m}$, let $w=$ $\left\{w_{\alpha_{1}}, \ldots, w_{\alpha_{m}}\right\}$. There is a constant $C_{s_{j}}>0$ such that

$$
\frac{1}{C_{s_{j}}} \leq \frac{|f(\cdot, \xi)|}{|f(\cdot, w)|} \leq C_{s_{j}}
$$

whenever $\xi \in D\left(w_{\alpha_{1}}, s_{\alpha_{1}}\right) \times \cdots \times D\left(w_{\alpha_{m}}, s_{\alpha_{m}}\right)$, where α runs over all subsets of $\{1, \ldots, n\}$.
Proof Let u be in $D\left(0, s_{\alpha_{1}}\right) \times \cdots \times D\left(0, s_{\alpha_{m}}\right)$. Since $f(\cdot, \xi) \in L_{a}^{2}\left(\mathbb{D}^{\alpha}\right)$, we have $f(u)=\left\langle f, K_{u}\right\rangle$. Applying the Cauchy-Schwarz inequality, for each $u \in D\left(0, s_{\alpha_{1}}\right) \times \cdots \times D\left(0, s_{\alpha_{m}}\right)$, we obtain

$$
|f(\cdot, \xi)| \leq\|f\|_{2}\left\|K_{u}\right\|_{2}=\|f\|_{2} \prod_{j \in \alpha} \frac{1}{1-\left|u_{j}\right|^{2}} \leq \prod_{j \in \alpha} \frac{\|f\|_{2}}{1-s_{j}^{2}}
$$

Now if $\xi_{j} \in D\left(w_{\alpha_{j}}, s_{j}\right)$, let $\left|u_{j}\right|=\left|\varphi_{w_{\alpha_{j}}}\left(\xi_{j}\right)\right|<s_{j}$. Then for some $u_{j} \in D\left(0, s_{j}\right), u_{j}=\varphi_{w_{\alpha_{j}}}\left(\xi_{j}\right)$, i.e., $\varphi_{w_{\alpha_{j}}}\left(u_{j}\right)=\varphi_{w_{\alpha_{j}}} \circ \varphi_{w_{\alpha_{j}}}\left(\xi_{j}\right)=\xi_{j}$. Replacing f by $f \circ \varphi_{w}$ in the above inequality gives

$$
|f(\cdot, \xi)|=\left|\left(f \circ \varphi_{w}\right)(\cdot, u)\right| \leq \prod_{j \in \alpha} \frac{\left\|f \circ \varphi_{w}\right\|_{2}}{1-s_{j}^{2}}=\prod_{j \in \alpha} \frac{1}{1-s_{j}^{2}} \widetilde{|f|^{2}}(\cdot, w)^{\frac{1}{2}}
$$

Since $f(\cdot, w) \in L_{a}^{2}\left(\mathbb{D}^{\alpha}\right)$, by the Cauchy-Schwarz inequality, we can get
$|f(\cdot, w)|^{-1}=\left|\left(f^{-1} \circ \varphi_{w}\right)(\cdot, 0, \ldots, 0)\right| \leq \int_{\mathbb{D}^{\alpha}}\left|f^{-1} \circ \varphi_{w}\right|(\cdot, z) \mathrm{d} A(z) \leq\left\|f^{-1} \circ \varphi_{w}\right\|_{2}=\left|\widetilde{f^{-1}}\right|^{2}(\cdot, w)^{1 / 2}$.
Combining these inequalities and the invariant weight condition $\left(\mathrm{A}_{2}\right)$, we have

$$
\frac{f(\cdot, \xi)}{f(\cdot, w)} \leq \prod_{j \in \alpha} \frac{1}{1-s_{j}^{2}} \widetilde{|f|^{2}}(\cdot, w)^{\frac{1}{2}} \widetilde{|f|^{-2}}(\cdot, w)^{\frac{1}{2}} \leq C_{s_{j}}
$$

for all $\xi \in D\left(w_{\alpha_{1}}, s_{\alpha_{1}}\right) \times \cdots \times D\left(w_{\alpha_{m}}, s_{\alpha_{m}}\right)$. Replacing f by f^{-1} gives the other inequality.
Lemma 2.4 ([3]) There exists $0<R_{j}<1$ such that

$$
Q_{j} \subset D\left(z_{Q_{j}}, R\right)
$$

for every dyadic rectangle in \mathbb{D} that has positive distance to $\partial \mathbb{D}$.
Lemma 2.5 If $f(\cdot, \eta) \in L_{a}^{2}\left(\mathbb{D}^{n}\right)$ satisfies the invariant weight condition $\left(A_{2}\right)$, then there is a constant $C(M)$ depending on M such that

$$
\left(\frac{1}{|Q|} \int_{Q}|f|^{2}(\cdot, \eta) \mathrm{d} A(\eta)\right)\left(\frac{1}{|Q|} \int_{Q}|f|^{-2}(\cdot, \eta) \mathrm{d} A(\eta)\right) \leq C(M)
$$

for every $\eta \in Q$, where $Q=Q_{\zeta_{1}} \times Q_{\zeta_{2}} \times \cdots \times Q_{\zeta_{m}}$ is the cartesian product of dyadic rectangles, $\zeta=\left\{\zeta_{1}, \ldots, \zeta_{m}\right\}$ is a nonempty subset of $\{1, \ldots, n\}$ with $\zeta_{1}<\cdots<\zeta_{m}$, and ζ runs over all subsets of $\{1, \ldots, n\}$.

Proof Now suppose that $\alpha=\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{t}\right\}$ is a subset of $\left\{\zeta_{1}, \zeta_{2}, \ldots, \zeta_{m}\right\}$ with $\alpha_{1}<\alpha_{2}<$ $\cdots<\alpha_{t}, \beta=\left\{\zeta_{1}, \zeta_{2}, \ldots, \zeta_{m}\right\} \backslash \alpha=\left\{\beta_{1}, \beta_{2}, \ldots, \beta_{m-t}\right\}$. Next assume that

$$
\begin{cases}d\left(Q_{j}\right)=0, & \text { if } j \in \alpha \\ d\left(Q_{j}\right)>0, & \text { if } j \in \beta\end{cases}
$$

First we fix $j \in \beta, d\left(Q_{j}\right)>0$. By Lemma 2.4, $Q_{j} \subset D\left(z_{Q_{j}}, R_{j}\right)$, where $0<R_{j}<1$. By Lemma 2.3 , there exists a positive constant C such that

$$
\frac{1}{C}\left|f\left(\cdot, z_{Q_{\beta_{1}}}, \ldots, z_{Q_{\beta_{m-t}}}\right)\right|<|f(\cdot, \xi)|<C\left|f\left(\cdot, z_{Q_{\beta_{1}}}, \ldots, z_{Q_{\beta_{m}-t}}\right)\right|
$$

for all $\xi \in Q_{\beta_{1}} \times Q_{\beta_{2}} \times \cdots \times Q_{\beta_{m-t}}$. Therefore for $f(\cdot, \eta) \in L_{a}^{2}\left(\mathbb{D}^{\alpha}\right)$, we have

$$
\begin{aligned}
\mathbb{I} & =\frac{1}{|Q|} \int_{Q}|f|^{2}(\cdot, \eta) \mathrm{d} A(\eta) \\
& =\frac{1}{\left|Q_{1}\right| \times\left|Q_{2}\right| \times \cdots \times\left|Q_{m}\right|} \int_{Q_{1}} \int_{Q_{2}} \cdots \int_{Q_{m}}\left|f\left(\cdot, \xi_{1}, \xi_{2}, \ldots, \xi_{m}\right)\right|^{2} \mathrm{~d} \xi_{1} \mathrm{~d} \xi_{2} \cdots \mathrm{~d} \xi_{m} \\
& =\frac{1}{\prod_{j=1}^{m}\left|Q_{j}\right|} \int_{\prod_{h \in \beta} Q_{h}} \int_{\prod_{t \in \alpha} Q_{t}}\left|f\left(\cdot, \xi_{\alpha_{1}}, \ldots, \xi_{\alpha_{t}}, \eta_{\beta_{1}}, \ldots, \eta_{\beta_{m-t}}\right)\right|^{2} \mathrm{~d} \xi_{\alpha_{1}} \ldots \mathrm{~d} \xi_{\alpha_{t}} \mathrm{~d} \eta_{\beta_{1}} \ldots \mathrm{~d} \eta_{\beta_{m-t}} \\
& \leq \frac{C}{\left|Q_{\alpha_{1}}\right| \times\left|Q_{\alpha_{2}}\right| \times \cdots\left|Q_{\alpha_{t}}\right|} \int_{\prod_{h \in \alpha} Q_{h}}\left|f\left(\cdot, \xi_{\alpha_{1}}, \ldots, \xi_{\alpha_{t}}, z_{Q_{\beta_{1}}}, \ldots, z_{Q_{\beta_{m-t}}}\right)\right|^{2} \mathrm{~d} \xi_{\alpha_{1}} \cdots \mathrm{~d} \xi_{\alpha_{t}} .
\end{aligned}
$$

Next assume that $j \in \alpha$ and $d\left(Q_{j}\right)=0$, then we have $\left|z_{Q_{j}}\right| \geq \frac{1}{2}$, and it follows from (2.1) that

$$
\left|Q_{j}\right|=8\left|z_{Q_{j}}\right|\left(1-\left|z_{Q_{j}}\right|-d\left(Q_{j}\right)\right)^{2}=8\left|z_{Q_{j}}\right|\left(1-\left|z_{Q_{j}}\right|\right)^{2} \geq 4\left(1-\left|z_{Q_{j}}\right|\right)^{2} .
$$

Using Lemma 2.2 gives

$$
\begin{aligned}
\mathbb{J} & =\frac{C}{\left|Q_{\alpha_{1}}\right| \times\left|Q_{\alpha_{2}}\right| \times \cdots\left|Q_{\alpha_{m}}\right|} \int_{\prod_{h \in \alpha}}\left|f\left(\cdot, \xi_{\alpha_{1}}, \ldots, \xi_{\alpha_{t}}, z_{Q_{\beta_{1}}}, \ldots, z_{Q_{\beta_{m-t}}}\right)\right|^{2} \mathrm{~d} \xi_{\alpha_{1}} \cdots \mathrm{~d} \xi_{\alpha_{t}} \\
& \leq \frac{C_{1}}{\prod_{j \in \alpha}\left(\left|1-\left|z_{Q_{j}}\right|\right)^{2}\right.} \int_{\prod_{h \in \alpha} Q_{h}}\left|f\left(\cdot, \xi_{\alpha_{1}}, \ldots, \xi_{\alpha_{t}}, z_{Q_{\beta_{1}}}, \ldots, z_{Q_{\beta_{m-t}}}\right)\right|^{2} \mathrm{~d} \xi_{\alpha_{1}} \cdots \mathrm{~d} \xi_{\alpha_{t}} \\
& \leq C_{2} \int_{\prod_{h \in \alpha} Q_{h}}\left|f\left(\cdot, \xi_{\alpha_{1}}, \ldots, \xi_{\alpha_{t}}, z_{Q_{\beta_{1}}}, \ldots, z_{Q_{\beta_{m-t}}}\right)\right|^{2} \prod_{j \in \alpha}\left|k_{z_{Q_{j}}}\left(\xi_{\alpha_{j}}\right)\right|^{2} \mathrm{~d} \xi_{\alpha_{1}} \ldots \mathrm{~d} \xi_{\alpha_{t}} \\
& \leq C_{2} \int_{\prod_{h \in \alpha} \mathbb{D}_{h}}\left|f\left(\cdot, \xi_{\alpha_{1}}, \ldots, \xi_{\alpha_{t}}, z_{Q_{\beta_{1}}}, \ldots, z_{Q_{\beta_{m-t}}}\right)\right|^{2} \prod_{j \in \alpha}\left|k_{z_{Q_{j}}}\left(\xi_{\alpha_{j}}\right)\right|^{2} \mathrm{~d} \xi_{\alpha_{1}} \ldots \mathrm{~d} \xi_{\alpha_{t}} \\
& =C_{2}|f|^{2}\left(\cdot,, z_{Q_{\alpha_{1}}}, z_{Q_{\alpha_{2}}}, \ldots, z_{Q_{\alpha_{t}}}\right) .
\end{aligned}
$$

A similar inequality holds for f^{-1}. Thus we have

$$
\begin{aligned}
& \left(\frac{1}{|Q|} \int_{Q}|f|^{2}(\cdot, \eta) \mathrm{d} A\right)\left(\frac{1}{|Q|} \int_{Q}|f|^{-2}(\cdot, \eta) \mathrm{d} A\right) \\
& \quad \leq C_{2}^{2}\left[\mid \widetilde{\left.\right|^{2}}\left(\cdot, z_{Q_{\alpha_{1}}}, \ldots, z_{Q_{\alpha_{t}}}\right)\right]\left[\widetilde{|f|^{-2}}\left(\cdot, z_{Q_{\alpha_{1}}}, \ldots, z_{Q_{\alpha_{t}}}\right)\right] \leq M C_{2}^{2}
\end{aligned}
$$

Lemma 2.6 Suppose that $f(\cdot, \eta) \in L_{a}^{2}\left(\mathbb{D}^{n}\right)$ satisfies the invariant weighted condition $\left(A_{2}\right)$. For every η, $w \in \mathbb{D}^{\alpha}$, let $d \mu_{w}=\left|f \circ \varphi_{w}\right|^{2}(\cdot, \eta) \mathrm{d} A(\eta)$. If $0<\gamma<1$, then there exists a $0<\delta(\gamma, M)<1$ such that

$$
\mu_{w}(E) \leq \delta(\gamma, M) \mu_{w}\left(Q^{\alpha}\right)
$$

whenever E is a subset of $Q^{\alpha}=Q_{\alpha_{1}} \times \cdots \times Q_{\alpha_{m}}$ with $|E| \leq \gamma\left|Q^{\alpha}\right|$, where $\alpha=\left\{\alpha_{1}, \ldots, \alpha_{m}\right\}$ is a nonempty subset of $\{1, \ldots, n\}$ with $\alpha_{1}<\cdots<\alpha_{m}$, and $\delta(\gamma, M)$ depends on γ and M.
 $|E| \leq \gamma\left|Q^{\alpha}\right|$. Applying the inequality of Cauchy-Schwarz and Lemma 2.5, we have

$$
\left(\left|Q^{\alpha}\right|-|E|\right)^{2}=\left(\int_{Q^{\alpha} \backslash E}\left|f \circ \varphi_{w}\right|\left|f \circ \varphi_{w}\right|^{-1}(\cdot, \eta) \mathrm{d} A(\eta)\right)^{2}
$$

$$
\begin{aligned}
& \leq\left(\int_{Q^{\alpha} \backslash E}\left|f \circ \varphi_{w}\right|^{2}(\cdot, \eta) \mathrm{d} A(\eta)\right)\left(\int_{Q^{\alpha} \backslash E}\left|f \circ \varphi_{w}\right|^{-2}(\cdot, \eta) \mathrm{d} A(\eta)\right) \\
& \leq\left(\int_{Q^{\alpha} \backslash E}\left|f \circ \varphi_{w}\right|^{2}(\cdot, \eta) \mathrm{d} A(\eta)\right)\left(\int_{Q^{\alpha}}\left|f \circ \varphi_{w}\right|^{-2}(\cdot, \eta) \mathrm{d} A(\eta)\right) \\
& \leq\left(\int_{Q^{\alpha} \backslash E}\left|f \circ \varphi_{w}\right|^{2}(\cdot, \eta) \mathrm{d} A(\eta)\right) C(M)\left|Q^{\alpha}\right|^{2}\left(\int_{Q^{\alpha}}\left|f \circ \varphi_{w}\right|^{-2}(\cdot, \eta) \mathrm{d} A(\eta) \mid\right)^{-1} \\
& =C(M)\left|Q^{\alpha}\right|^{2}\left[1-\frac{\mu_{w}(E)}{\mu_{w}\left(Q^{\alpha}\right)}\right]
\end{aligned}
$$

It follows that

$$
\frac{\mu_{w}(E)}{\mu_{w}\left(Q^{\alpha}\right)} \leq 1-\frac{1}{C(M)}\left(1-\frac{|E|}{\left|Q^{\alpha}\right|}\right)^{2} \leq \delta(\gamma, M)
$$

if we put $\delta(\gamma, M)=1-(1-\gamma)^{2} / C(M)$.
The dyadic cartesian product maximal function The dyadic cartesian product maximal operator M^{Δ} is defined by

$$
\left(M^{\Delta} f\right)(w)=\sup _{w \in Q} \frac{1}{|Q|} \int_{Q}|f| \mathrm{d} A
$$

where the supremum is over all the cartesian product of dyadic rectangles $Q=Q_{1} \times Q_{2} \times \cdots Q_{n}$ that contain w. The maximal function is greater than the dyadic cartesian products maximal function, so the dyadic cartesian product maximal function of any continuous function is finite on \mathbb{D}^{n}. In particular, if $f \in L_{a}^{2}\left(\mathbb{D}^{n}\right)$ satisfies the invariant condition $\left(\mathrm{A}_{2}\right)$, then the dyadic cartesian product maximal function $M^{\Delta}|f|^{2}$ is always finite. This can also be seen directly as follows. Given a point $w=\left(w_{1}, \ldots, w_{n}\right) \in \mathbb{D}^{n}$, there is a number $R=\left\{R_{1}, \ldots, R_{n}\right\}, 0<R_{j}<1$, $1 \leq j \leq n$ such that all but a finite number of the cartesian product of dyadic rectangles containing the point w lie inside the closed disk $\bar{D}(0, R)=\left\{z=\left(z_{1}, \ldots, z_{n}\right):\left|z_{i}\right| \leq R_{i}\right\}$. If $f \in L_{a}^{2}\left(\mathbb{D}^{n}\right)$ and Q is a cartesian product of dyadic rectangle containing w inside the disk $\bar{D}(0, R)$, then

$$
\frac{1}{|Q|} \int_{Q}|f(z)|^{2} \mathrm{~d} A(z) \leq \max \left\{|f(z)|^{2}:\left|z_{j}\right| \leq R_{j}\right\}
$$

If $Q_{\{1\}}, \ldots, Q_{\{s\}}$ are the cartesian product of dyadic rectangles containing w not contained in the disk $\bar{D}(0, R)$, then

$$
M^{\Delta}|f|^{2}(w) \leq \max \left\{|f(z)|^{2}:\left|z_{j}\right| \leq R_{j}\right\}+\max _{1 \leq i \leq s} \frac{1}{\left|Q_{\{i\}}\right|} \int_{Q_{\{i\}}}|f(z)|^{2} \mathrm{~d} A(z)<\infty
$$

This proves that the dyadic cartesian product maximal function of $|f|^{2}$ is finite on \mathbb{D}^{n}.
The principal fact about the dyadic cartesian product maximal function is the CalderonZygmund decomposition formulated in the next theorem. We will need the notion of "doubling" of the dyadic rectangles in its proof. Suppose that $l_{j} \geq 1$ and m_{j}, k_{j} are positive integers such that $m_{j}, k_{j} \leq 2^{l_{j}}$. The double of $Q_{j}=Q_{l_{j}, m_{j}, k_{j}}$ denoted by $2 Q_{j}$, is defined by

$$
2 Q_{j}=Q_{l_{j}-1,\left[\left(m_{j}+1\right) / 2\right],\left[\left(k_{j}+1\right) / 2\right]}
$$

where $[k]$ denotes the greatest integer less than or equal to k. An elementary calculation shows
that

$$
\left|2 Q_{j}\right| /\left|Q_{j}\right| \leq 8
$$

for every dyadic rectangle Q_{j} in the unit disk.
Calderon-Zygmund decomposition theorem Let f be locally integrable on \mathbb{D}^{n}, and $t>0$. Suppose that $\Omega=\left\{z \in \mathbb{D}^{n}: M^{\Delta} f(z)>t\right\}$ is not to \mathbb{D}^{n}. Then Ω may be written as disjoint union of cartesian product of dyadic rectangles $Q_{\{i\}}$ with

$$
t<\frac{1}{\left|Q_{\{i\}}\right|} \int_{Q_{\{i\}}}|f| \mathrm{d} A<8^{n} t
$$

Proof Suppose that $w \in \Omega$, then $M^{\Delta} f(w)>t$. Then there exists a cartesian product of dyadic rectangles Q containing w such that

$$
\frac{1}{|Q|} \int_{Q}|f| \mathrm{d} A>t
$$

Now, if $z \in Q$, then

$$
M^{\triangle} f(z) \geq \frac{1}{|Q|} \int_{Q}|f| \mathrm{d} A>t
$$

It follows $z \in \Omega$. Thus proves that $Q \subset \Omega$. We may assume that the $Q_{\{i\}}$ are the maximal cartesian product of dyadic rectangles. It follows that $\Omega=\bigcup_{i} Q_{\{i\}}$. Since $Q=Q_{\{i\}}$ is not equal to \mathbb{D}^{n}, by maximality its double $2 Q$ is not contained in Ω. This means that $2 Q$ contains a point z which is not in Ω. Since $M^{\Delta} f(z)>t$, we obtain

$$
\frac{1}{|2 Q|} \int_{2 Q}|f| \mathrm{d} A \leq M^{\triangle} f(z) \leq t
$$

Hence, it follows that

$$
\frac{1}{|Q|} \int_{Q}|f| \mathrm{d} A \leq \frac{1}{|Q|} \int_{2 Q}|f| \mathrm{d} A \leq \frac{t|2 Q|}{|Q|} \leq 8^{n} t
$$

Before we prove the reverse Hölder inequality, we need one more preliminary result for the dyadic maximal function:

Proposition 2.7 If $f(\cdot, \eta) \in L_{a}^{2}\left(\mathbb{D}^{n}\right), \mathbb{D}^{\alpha}=\mathbb{D}_{\alpha_{1}} \times \cdots \times \mathbb{D}_{\alpha_{m}}$, then
(i) $|f|^{2}(\cdot, \eta) \leq M^{\Delta}|f|^{2}(\cdot, \eta)$ on \mathbb{D}^{α}, and
(ii) $\|f\|_{2}^{2} \leq M^{\Delta}|f|^{2}(\cdot, 0, \ldots, 0) \leq 2^{m}\|f\|_{2}^{2}$.

Here $\alpha=\left\{\alpha_{1}, \ldots, \alpha_{m}\right\}$ is a nonempty subset of $\{1, \ldots, n\}$ with $\alpha_{1}<\cdots<\alpha_{m}$.
Proof (i) We will prove that if g is continuous on \mathbb{D}^{α}, then $|g(\cdot, w)| \leq M^{\Delta} g(\cdot, w)$ for every $w \in \mathbb{D}^{\alpha}$. Fix $w \in \mathbb{D}^{\alpha}$. Let $Q_{\{0\}}=Q_{01} \times \cdots \times Q_{0 m}$ be any cartesian product of dyadic rectangles containing w such that $Q_{0 j} \subset \mathbb{D}_{j}$. Since function g is uniformly continuous on $Q_{\{0\}}$, given $\varepsilon>0$, there is a $\delta>0$, such that $|g(\cdot, z)-g(\cdot, w)|<\varepsilon$, whenever $z, w \in Q_{\{0\}}$ are such that $|z-w|=\max _{1 \leq j \leq m}\left|z_{j}-w_{j}\right|<\delta$. Subdivide $Q_{\{0\}}$ a number of times, then there exists a cartesian product of dyadic rectangles Q containing w with diameter less than δ. Then

$$
|g(\cdot, w)| \leq|g(\cdot, z)|+|g(\cdot, z)-g(\cdot, w)| \leq|g(\cdot, z)|+\varepsilon
$$

for all $z \in Q$. This implies that

$$
|g(\cdot, w)| \leq \frac{1}{|Q|} \int_{Q}|g(\cdot, z)| \mathrm{d} A(z)+\varepsilon \leq M^{\Delta} g(\cdot, w)+\varepsilon
$$

Therefore, we can obtain

$$
|g(\cdot, w)| \leq M^{\Delta} g(\cdot, w)
$$

(ii) Since \mathbb{D}^{α} is a cartesian product dyadic rectangles, we have

$$
M^{\Delta}|f|^{2}(\cdot, 0, \ldots, 0) \geq \frac{1}{|\mathbb{D}|^{\alpha}} \int_{\mathbb{D}^{\alpha}}|f|^{2}(\cdot, \eta) \mathrm{d} A(\eta)=\|f\|_{2}^{2}
$$

for $f(\cdot, \eta) \in L_{a}^{2}\left(\mathbb{D}^{\alpha}\right)$. If Q_{j} is a dyadic rectangle other than \mathbb{D} containing 0 , then $Q_{j} \subset D_{j}(0,1 / 2)$, $j \in \alpha$. For each $z \in \mathbb{D}^{\alpha}$, we have $f(\cdot, z)=\left\langle f, K_{z}\right\rangle$ and the inequality of Cauchy-Schwarz implies

$$
|f(\cdot, z)|^{2} \leq\|f\|^{2}\left\|K_{z}\right\|^{2}=\prod_{j=1}^{m} \frac{1}{\left(1-\left|z_{j}\right|^{2}\right)}\|f\|_{2}^{2}
$$

for all $z \in D_{1}(0,1 / 2) \times \cdots \times D_{m}(0,1 / 2)$. Since $Q_{j} \subset D_{j}(0,1 / 2)$, it follows that

$$
\frac{1}{|Q|} \int_{Q}|f|^{2} \mathrm{~d} A \leq(4 / 3)^{m}\|f\|_{2}^{2} \leq 2^{m}\|f\|_{2}^{2}
$$

We are now ready to prove the reversed Hölder inequality contained in Theorem 2.1.
Proof of Theorem 2.1 First we prove that for some constant $C_{M}>0$,

$$
\int_{\mathbb{D}^{\alpha}}|f(\cdot, z)|^{2+\varepsilon} \mathrm{d} A(z) \leq C_{M}\left(\int_{\mathbb{D}^{\alpha}}|f|^{2} \mathrm{~d} A(z)\right)^{(2+\varepsilon) / 2}
$$

For each integer $k \geq 0$, set

$$
E_{k}=\left\{z \in \mathbb{D}^{\alpha}: M^{\Delta}|f|^{2}(\cdot, z)>2^{3 m k+m}\|f\|_{2}^{2}\right\}
$$

Since $M^{\Delta}|f|^{2}(\cdot, 0, \ldots, 0) \leq 2^{m}\|f\|_{2}^{2} \leq 2^{3 m k+m}\|f\|_{2}^{2}$, it follows from proposition 2.7 (ii) that for every positive integer k set E_{k} is not equal to \mathbb{D}^{α}. Fix $k \geq 1$. By the Calderon-Zygmund decomposition theorem, $E_{k}=\bigcup_{i} Q_{\{i\}}$, where $Q_{\{i\}}$ are disjoint cartesian product of dyadic rectangles in E_{k} that satisfy

$$
2^{3 m k+m}\|f\|_{2}^{2}<\frac{1}{\left|Q_{\{i\}}\right|} \int_{Q_{\{i\}}}|f|(\cdot, z) \mathrm{d} A(z)<8^{m} \times 2^{3 m k+m}\|f\|_{2}^{2}
$$

thus

$$
\left|Q_{\{i\}}\right| \leq 2^{-3 m k-m}\|f\|_{2}^{-2} \int_{Q_{\{i\}}}|f| \mathrm{d} A, \text { and } \int_{Q_{\{i\}}}|f| \mathrm{d} A<8^{m} \times 2^{3 m k+m}\|f\|_{2}^{2}\left|Q_{\{i\}}\right|
$$

Let Q be a maximal cartesian product of dyadic rectangle in E_{k-1}. Summing over all such $Q_{\{i\}} \subset Q$ gives that

$$
\left|E_{k} \bigcap Q\right|=\sum_{i: Q_{\{i\}} \subset Q}\left|Q_{\{i\}}\right| \leq 2^{-3 m k-m}\|f\|_{2}^{-2} \int_{Q}|f|^{2} \mathrm{~d} A
$$

since the $Q_{\{i\}}$ are disjoint and their union is E_{k}. On the other hand, by maximality the double $2 Q$ is not contained in E_{k-1}, and as in the proof of the Calderon-Zygmund decomposition theorem
it follows that

$$
\int_{Q}|f|^{2} \mathrm{~d} A \leq 2^{3 m(k-1)} 8^{m}\|f\|_{2}^{2}|Q|
$$

Hence

$$
\left|E_{k} \cap Q\right| \leq 1 / 2^{m}|Q|
$$

By Lemma 2.6 there exists a $0<\delta<1$ such that

$$
\mu\left(E_{k} \cap Q\right) \leq \delta \mu(Q)
$$

where $\mathrm{d} \mu=|f|^{2}(\cdot, z) \mathrm{d} A(z)$. Taking the union over all maximal cartesian product of dyadic rectangles Q in E_{k-1} gives

$$
\mu\left(E_{k}\right) \leq \delta \mu\left(E_{k-1}\right)
$$

and therefore

$$
\mu\left(E_{k}\right) \leq \delta^{k} \mu\left(E_{0}\right) \leq \delta^{k}\|f\|_{2}^{2}
$$

Using Proposition 2.7, we have

$$
\begin{aligned}
\int_{\mathbb{D} \alpha}|f|^{2+\varepsilon}(\cdot, z) \mathrm{d} A(z) & \leq \int_{\mathbb{D}^{\alpha}}\left(M^{\Delta}|f|^{2}\right)^{\varepsilon / 2}|f|^{2} \mathrm{~d} A(z) \\
& =\int_{\left\{M^{\Delta}|f|^{2} \leq 2^{m}\|f\|_{2}^{2}\right\}}\left(M^{\Delta}|f|^{2}\right)^{\varepsilon / 2}|f|^{2} \mathrm{~d} A+\sum_{k=0}^{\infty} \int_{E_{k} \backslash E_{k+1}}\left(M^{\Delta}|f|^{2}\right)^{\varepsilon / 2}|f|^{2} \mathrm{~d} A \\
& \leq 2^{m}\|f\|_{2}^{\varepsilon}\|f\|_{2}^{2}+\sum_{k=0}^{\infty} 2^{(3 m(k+1)+1) \varepsilon / 2}\|f\|_{2}^{\varepsilon} \mu\left(E_{k}\right) \\
& \leq 2^{m}\|f\|_{2}^{2+\varepsilon}+\sum_{k=0}^{\infty} 2^{(3 m(k+1)+1) \varepsilon / 2} \delta^{k}\|f\|_{2}^{2+\varepsilon} \\
& \leq\left(2^{m}+\frac{2^{(3 m+1) \varepsilon / 2}}{1-2^{3 m \varepsilon / 2} \delta}\right)\|f\|_{2}^{2+\varepsilon}
\end{aligned}
$$

if $2^{3 m \varepsilon / 2} \delta<1$. We let $2^{3 m \varepsilon_{M} / 2} \delta=2 \delta /(1+\delta)$, then it follows that $\varepsilon_{M}=\ln (2 /(1+\delta)) /(3 m \ln \sqrt{2})$. If $0<\varepsilon<\varepsilon_{M}$, then $2^{3 m \varepsilon / 2} \delta<2 \delta /(1+\delta)<1$, so that

$$
\frac{2^{(3 m+1) \varepsilon / 2}}{1-2^{3 m \varepsilon / 2} \delta}<\frac{(2 /(1+\delta))^{(1 / 3 m+1)}}{1-2 \delta /(1+\delta)} \leq \frac{2^{(1 / 3 m+2)}}{1-\delta}
$$

So, if $C_{M}=2^{m}+\frac{2^{(1 / 3 m+2)}}{1-\delta}$, then for $0<\varepsilon<\varepsilon_{M}$ we have shown that

$$
\int_{\mathbb{D}^{\alpha}}|f|^{2+\varepsilon}(\cdot, z) \mathrm{d} A \leq C_{M}\left(\int_{\mathbb{D}^{\alpha}}|f|^{2}(\cdot, z) \mathrm{d} A\right)^{(2+\varepsilon) / 2}
$$

For a fixed $w \in \mathbb{D}^{\alpha}$, by Möbius invariance of Berezin transform we also have

$$
M=\sup _{z \in \mathbb{D}^{\alpha}}\left|\widetilde{f \circ \varphi_{w}}\right|^{2}(\cdot, z)\left|\widetilde{f \circ \varphi_{w}}\right|^{-2}(\cdot, z)
$$

Applying the above argument to the function $\left|f \circ \varphi_{w}\right|^{2}$, we obtain

$$
\int_{\mathbb{D}^{\alpha}}\left|f \circ \varphi_{w}\right|^{2+\varepsilon}(\cdot, z) \mathrm{d} A(z) \leq C_{M}\left(\int_{\mathbb{D}^{\alpha}}\left|f \circ \varphi_{w}\right|^{2}(\cdot, z) \mathrm{d} A(z)\right)^{(2+\varepsilon) / 2}
$$

that is,

$$
\widetilde{|f|^{2+\varepsilon}}(\cdot, w) \leq C_{M}\left(\widetilde{|f|^{2}}(\cdot, w)\right)^{(2+\varepsilon) / 2}
$$

3. Invertible Toeplitz product

In this section, we will completely characterize the bounded invertible Toeplitz products $T_{f} T_{\bar{g}}$ on $L_{a}^{2}\left(\mathbb{D}^{n}\right)$. We have the fellowing result:

Theorem 3.1 Let $f(\cdot, \eta)$ and $g(\cdot, \eta)$ be in $L_{a}^{2}\left(\mathbb{D}^{n}\right)$. Then $T_{f} T_{\bar{g}}(\cdot, \eta)$ is bounded and invertible on $L_{a}^{2}\left(\mathbb{D}^{\alpha}\right)$ if and only if

$$
\sup \left\{\widetilde{|f|^{2}}(\cdot, w) \widetilde{|g|^{2}}(\cdot, w): w \in \mathbb{D}^{\alpha}\right\}<\infty
$$

and

$$
\inf \left\{|f(\cdot, w) \| g(\cdot, w)|: w \in \mathbb{D}^{\alpha}\right\}>0
$$

Here $\mathbb{D}^{\alpha}=\mathbb{D}_{\alpha_{1}} \times \cdots \times \mathbb{D}_{\alpha_{m}}, \alpha=\left\{\alpha_{1}, \ldots, \alpha_{m}\right\}$ is a nonempty subset of $\{1, \ldots, n\}$ with $\alpha_{1}<$ $\cdots<\alpha_{m}$, and α runs over all subsets of $\{1, \ldots, n\}$.

Proof " \Rightarrow ". Suppose that $T_{f} T_{\bar{g}}(\cdot, \eta)$ is bounded and invertible on $L_{a}^{2}\left(\mathbb{D}^{\alpha}\right)$. By Theorem 1.1 there exists a constant M such that

$$
\begin{equation*}
\widetilde{|f|^{2}}(\cdot, w) \widetilde{|g|^{2}}(\cdot, w) \leq M \tag{3.2}
\end{equation*}
$$

for all $w \in \mathbb{D}^{\alpha}$. Note that

$$
T_{f} T_{\bar{g}} k_{w}=\overline{g(\cdot, w)} f k_{w}
$$

Thus

$$
\left\|T_{f} T_{\bar{g}} k_{w}\right\|_{2}^{2}=|g(\cdot, w)|^{2} \widetilde{|f|^{2}}(\cdot, w)
$$

so the invertibility of $T_{f} T_{\bar{g}}$ yields

$$
\begin{equation*}
|g(\cdot, w)|^{2} \widetilde{|f|^{2}}(\cdot, w) \geq \delta_{1}>0 \tag{3.3}
\end{equation*}
$$

for some constant δ_{1} and for all $w \in \mathbb{D}^{\alpha}$. Since $T_{g} T_{\bar{f}}=\left(T_{f} T_{\bar{g}}\right)^{*}$ is bounded and invertible, there is also a constant δ_{2} such that

$$
\begin{equation*}
|f(\cdot, w)|^{2} \widetilde{|g|^{2}}(\cdot, w) \geq \delta_{2}>0 \tag{3.4}
\end{equation*}
$$

for all $w \in \mathbb{D}^{\alpha}$. Put $\delta=\delta_{1} \delta_{2}$, then it follows from (3.2), (3.3) and (3.4) that

$$
\delta \leq|f(\cdot, w)|^{2}|g(\cdot, w)|^{2} \widetilde{|f|^{2}}(\cdot, w) \widetilde{|g|^{2}}(\cdot, w) \leq M|f(\cdot, w)|^{2}|g(\cdot, w)|^{2}
$$

and thus

$$
|f(\cdot, w)||g(\cdot, w)| \geq \frac{\delta^{1 / 2}}{M^{1 / 2}}
$$

for all $w \in \mathbb{D}^{\alpha}$.
" \Leftarrow ". Suppose that

$$
M=\sup \left\{\widetilde{|f|^{2}}(\cdot, w) \widetilde{|g|^{2}}(\cdot, w): w \in \mathbb{D}^{\alpha}\right\}<\infty, \eta=\inf |f(\cdot, w)||g(\cdot, w)|>0
$$

Since $f, g \in L_{a}^{2}\left(\mathbb{D}^{\alpha}\right)$, we have

$$
|f(\cdot, w)|^{2}=\left|f \circ \varphi_{w}(\cdot, 0, \ldots, 0)\right|^{2} \leq \int_{\mathbb{D}^{\alpha}}\left|f \circ \varphi_{w}\right|^{2}(\cdot, z) \mathrm{d} A(z)=\widetilde{|f|^{2}}(\cdot, w),
$$

for all $w \in \mathbb{D}^{\alpha}$. Thus, $|f(\cdot, w)||g(\cdot, w)| \leq M^{1 / 2}$, for all $w \in \mathbb{D}^{\alpha}$. So, $f g$ is a bounded function on \mathbb{D}^{α} and f and g cannot have zeros in \mathbb{D}^{α}. Since $|g(\cdot, z)|^{2} \geq \eta^{2}|f(\cdot, z)|^{-2}$, for all $z \in \mathbb{D}^{\alpha}$, we have

$$
\widetilde{|g|^{2}}(\cdot, w) \geq \eta^{2} \widetilde{|f|^{-2}}(\cdot, w)
$$

for all $w \in \mathbb{D}^{\alpha}$. Consequently,

$$
M \geq \widetilde{|f|^{2}}(\cdot, w) \widetilde{|g|^{2}}(\cdot, w) \geq \eta^{2} \widetilde{|f|^{2}}(\cdot, w) \mid \widetilde{\left.f\right|^{-2}}(\cdot, w),
$$

so that

$$
\widetilde{|f|^{2}}(\cdot, w) \mid \widetilde{\mid f^{-2}}(\cdot, w) \leq M / \eta^{2},
$$

for all $w \in \mathbb{D}^{\alpha}$. This means that f satisfies the condition $\left(A_{2}\right)$. By the reverse Hölder inequality, for some $\varepsilon>0$,

$$
\sup _{w \in \mathbb{D}^{\alpha}} \widetilde{|f|^{2+\varepsilon}}(\cdot, w) \mid \widetilde{|f|^{-(2+\varepsilon)}}(\cdot, w)<\infty
$$

for all $w \in \mathbb{D}^{\alpha}$. By Theorem 1.1, $T_{f} T_{\overline{f-1}}$ is bounded on $L_{a}^{2}\left(\mathbb{D}^{\alpha}\right)$. Since $f g$ is bounded on $\left(\mathbb{D}^{\alpha}\right)$, the operator $T_{\overline{f g}}$ is bounded on $L_{a}^{2}\left(\mathbb{D}^{\alpha}\right)$. It follows that $T_{f} T_{\bar{g}}=T_{f} T_{\overline{f-1}} T_{\overline{f g}}$ is bounded on $L_{a}^{2}\left(\mathbb{D}^{\alpha}\right)$. The function $\psi=1 /(f \bar{g})$ is bounded on \mathbb{D}^{α}, so that the operator T_{ψ} is bounded on $L_{a}^{2}\left(\mathbb{D}^{\alpha}\right)$. Using that

$$
T_{f} T_{\bar{g}} T_{\psi}=I=T_{\psi} T_{f} T_{\bar{g}},
$$

we conclude that $T_{f} T_{\bar{g}}$ is invertible on $L_{a}^{2}\left(\mathbb{D}^{\alpha}\right)$.

References

[1] K. STROETHOFF, Dechao ZHENG. Bounded Toeplitz products on the Bergman space of the polydisk. J. Math. Anal. Appl., 2003, 278(1): 125-135.
[2] K. STROETHOFF, Dechao ZHENG. Invertible Toeplitz products. J. Funct. Anal., 2002, 195(1): 48-70.
[3] K. STROETHOFF, Dechao ZHENG. Bounded Toeplitz products on weighted Bergman spaces. J. Operator Theory, 2008, 59(2): 277-308.
[4] K. STROETHOFF, Dechao ZHENG. Products of Hankel and Toeplitz operators on the Bergman space. J. Funct. Anal., 1999, 169(1): 289-313.
[5] B. R. CHOE, H. KOO, Y. J. LEE. Commuting Toeplitz operators on the polydisk. Trans. Amer. Math. Soc., 2004, 356(5): 1727-1749.
[6] Kehe ZHU. Operator Theory in Function Spaces. American Mathematical Society, Providence, RI, 2007.

