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Abstract We prove a reverse Hölder inequality by using the cartesian product of dyadic

rectangles and the dyadic cartesian product maximal function on Bergman space of polydisk.

Next, we further describe when for which square integrable analytic functions f and g on the

polydisk the densely defined products TfTḡ are bounded invertible Toeplitz operators.
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1. Introduction

Let D be the open unit disk in C. Its boundary is the circle T. The polydisk Dn and the

torus Tn are the subsets of Cn which are cartesian product of n copies D and T, respectively.

Let dA(z) be the normalized volume measure on Dn. For λ ∈ D, let ϕλ be the fractional

linear transformation on D given by ϕλ = λ−z
1−λ̄z

. Each ϕλ is an automorphism on the disk,

in fact, ϕ−1
λ = ϕλ. For w = (w1, . . . , wn) ∈ Dn the mapping ϕw on the polydisk Dn given

by ϕw(z) = (ϕw1(z1), . . . , ϕwn(zn)) is an automorphism on Dn. The Bergman space L2
a(D

n)

is the subspace of L2(Dn, dA) whose functions are holomorphic in Dn. There is an orthogonal

projection P from L2(Dn, dA) onto L2
a(D

n). The reproducing kernel in L2
a(D

n) is given by

Kw(z) =

n∏

j=1

1

(1 − wjzj)2
=

n∏

j=1

[

∞∑

k=0

(k + 1)wj
kzj

k]

for z = (z1, z2, . . . , zn), w = (w1, w2, . . . , wn) ∈ Dn. Let ϕ ∈ L∞(Dn). The Toeplitz operators

with symbol ϕ is the operator Tϕ : L2
a(D

n) → L2
a(D

n) defined by

Tϕf = P (ϕf) =

∫

Dn

ϕ(w)f(w)Kz(w)dA(w).

The Berezin transform of a function f ∈ L2(Dn, dA) is defined on Dn by

f̃(w) =

∫

Dn

f(z)|kw(z)|2dA(z)
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for w ∈ Dn, where kw(z) =
∏n
j=1

1−|wj |
2

(1−wjzj)
are the normalized reproducing kernels for L2

a(D
n).

The question for which f and g in L2
a(D

n) the Toeplitz operator TfTḡ is bounded on L2
a(D

n)

was considered in [1]. The following result was proved in [1].

Theorem 1.1 Let f and g be in L2
a(D

n).

(i) If the Toeplitz product TfTḡ is bounded on L2
a(D

n), then

sup
w∈Dn

|̃f |2(w)|̃g|2(w) <∞,

(ii) If

sup
w∈Dn

|̃f |2+ε(w)|̃g|2+ε(w) <∞

for some ε > 0, then operator TfTḡ is bounded on L2
a(D

n).

In the above theorem the necessary condition is very close to being sufficient for bound-

edness. In [4], Stroethoff and Zheng proved the analogous results on L2
a(D) and made the

conjecture that for f and g in L2
a(D) this product TfTḡ be bounded on L2

a(D) if and only if

supw∈D
|̃f |2(w)|̃g|2(w) < ∞. The authors [2] showed that if f and g are in L2

a(D), then the

product TfTḡ is bounded and invertible on L2
a(D) if and only if supw∈D

|̃f |2(w)|̃g|2(w) <∞ and

infw∈D |f(w)g(w)| > 0. Next, in [3] the authors extended the results [2] to weighted Bergman

space of unit disk.

In this paper, we will be concerned with the question for which f and g in L2
a(D

n) the

Toeplitz operator product TfTḡ is invertible on L2
a(D

n). In [2] and [3] the proof made use of

dyadic rectangles and dyadic maximal function. Our method is partially adapted from those in

[2] and [3]. Let d(Q) denote the distance between dyadic rectangles Q and unit circle ∂D. The

proof in [2] and [3] need two different methods in view of the distance d(Q) > 0 and d(Q) = 0.

We need consider the question on the dyadic rectangles cartesian product Q1 × · · · × Qn. In

our case, some d(Qk) = 0, for k ∈ α, where α = {α1, . . . , αm} is a subset of {1, . . . , n} with

α1 < · · · < αm, and α runs over all subsets of {1, . . . , n}; the other d(Qk) > 0, k ∈ {1, . . . , n}\α.

Therefore, the cases will be more complicated than on the unit disk. Our proof for Lemma 2.5

need use weighted condition (A2). Thus, we cannot directly obtain the necessary and sufficient

condition for TfTḡ to be bounded and invertible on L2
a(D

n). The theorems that we get have

more complicated forms. First, we are ready to prove the reverse Hölder inequality. By means

of the inequality, we will get our main result.

2. A reversed Hölder inequallty

In this section we will prove a reverse Hölder inequality for f(·, η) in L2
a(D

n) satisfying the

following invariant weight condition:

sup
η∈Dα

|̃f |2(·, η)|̃f |−2(·, η) <∞. (A2)

We will prove that the above condition implies that

sup
η∈Dα

|̃f |2+ε(·, η) ˜|f |−(2+ε)(·, η) <∞, (A2+ε)
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for sufficiently small ε > 0. Where η ∈ Dα = Dα1 × · · · × Dαm , α = {α1, . . . , αm} is a nonempty

subset of {1, . . . , n} with α1 < · · · < αm, and α runs over all subsets of {1, . . . , n}; f(·, η) denotes

the function dependent on variables η. Meanwhile, we can get f(·, η) ∈ L2
a(D

α) according to

f(·, η) ∈ L2
a(D

n).

Theorem 2.1 Suppose that f(·, η) ∈ L2
a(D

n) satisfies condition (A2) with

M = sup
η∈Dα

|̃f |2(·, η)|̃f |−2(·, η) <∞.

Then there exist constants εM and CM which depend on M such that

|̃f |2+ε(·, η) ≤ CM

(
|̃f |2(·, η)

)(2+ε)/2

for every η ∈ Dα and 0 < ε < εM . Where Dα = Dα1×· · ·×Dαm , α = {α1, . . . , αm} is a nonempty

subset of {1, . . . , n} with α1 < · · · < αm, and α runs over all subsets of {1, . . . , n}.
As in [2], the proof of Theorem 2.1 will make use of the cartesian product of dyadic rectangles

and the dyadic cartesian product maximal function. We first discuss the dyadic rectangles and

prove some elementany properties related to these rectangles.

Dyadic rectangles Any set of the form

Qlj,mj ,kj = {rjeiθj : (mj − 1)2−lj ≤ rj < mj2
−lj and (kj − 1)2−lj+1π ≤ θj < kj2

−lj+1π},

where lj ,mj , kj are positive integers such that mj ≤ 2lj , kj ≤ 2lj , j = 1, 2, . . . , n, is called a

dyadic rectangle. The center of the above dyadic rectangle Qj = Qlj ,mj,kj is the point zQj =

(mj − 1
2 )2−ljeivj with vj = (kj − 1

2 )21−ljπ. Let |E| denote the normalized area of measurable

set E ∈ D. If d(Qj) denotes the distance between Qj and ∂D, then a calculation shows that

|Qj| = 8|zQj |(1 − |zQj | − d(Qj))
2. (2.1)

In view of the Lemma 2.2 of [2], we can obtain the following Lemma.

Lemma 2.2 Let Qj be a dyadic rectangle with center wj = zQj . For a subset α = {α1, . . . , αm}
of {1, . . . , n} with α1 < · · · < αm, there is a constant C1 > 0 such that

∏

j∈α

|kwj (zj)|2 ≥ C1

∏

j∈α

1

(1 − |wj |)2

for every zj ∈ Qαj , where α runs over all subsets of {1, . . . , n}.
Let D(wj , sj) denote the pseudohyperbolic disk with center wj ∈ Dj and radius 0 < sj < 1,

i.e.,

D(wj , sj) = {zj ∈ Dj : |ϕwj (zj)| < sj}.

Lemma 2.3 Suppose that f(·, w) ∈ L2
a(D

n) satisfies the invariant weight condition (A2) and

let 0 < sj < 1. For a subset α = {α1, . . . , αm} of {1, . . . , n} with α1 < · · · < αm, let w =

{wα1 , . . . , wαm}. There is a constant Csj > 0 such that

1

Csj

≤ |f(·, ξ)|
|f(·, w)| ≤ Csj
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whenever ξ ∈ D(wα1 , sα1) × · · · ×D(wαm , sαm), where α runs over all subsets of {1, . . . , n}.

Proof Let u be in D(0, sα1)× · · · ×D(0, sαm). Since f(·, ξ) ∈ L2
a(D

α), we have f(u) = 〈f,Ku〉.
Applying the Cauchy-Schwarz inequality, for each u ∈ D(0, sα1) × · · · ×D(0, sαm), we obtain

|f(·, ξ)| ≤ ‖f‖2‖Ku‖2 = ‖f‖2

∏

j∈α

1

1 − |uj|2
≤

∏

j∈α

‖f‖2

1 − sj2
.

Now if ξj ∈ D(wαj , sj), let |uj| = |ϕwαj
(ξj)| < sj . Then for some uj ∈ D(0, sj), uj = ϕwαj

(ξj),

i.e., ϕwαj
(uj) = ϕwαj

◦ ϕwαj
(ξj) = ξj . Replacing f by f ◦ ϕw in the above inequality gives

|f(·, ξ)| = |(f ◦ ϕw)(·, u)| ≤
∏

j∈α

‖f ◦ ϕw‖2

1 − s2j
=

∏

j∈α

1

1 − s2j
|̃f |2(·, w)

1
2 .

Since f(·, w) ∈ L2
a(D

α), by the Cauchy-Schwarz inequality, we can get

|f(·, w)|−1 = |(f−1◦ϕw)(·, 0, . . . , 0)| ≤
∫

Dα

|f−1 ◦ ϕw|(·, z)dA(z) ≤ ‖f−1 ◦ ϕw‖2 = |f̃−1|2(·, w)1/2.

Combining these inequalities and the invariant weight condition (A2), we have

f(·, ξ)
f(·, w)

≤
∏

j∈α

1

1 − s2j
|̃f |2(·, w)

1
2 |̃f |−2(·, w)

1
2 ≤ Csj ,

for all ξ ∈ D(wα1 , sα1) × · · · ×D(wαm , sαm). Replacing f by f−1 gives the other inequality. �

Lemma 2.4 ([3]) There exists 0 < Rj < 1 such that

Qj ⊂ D(zQj , R)

for every dyadic rectangle in D that has positive distance to ∂D.

Lemma 2.5 If f(·, η) ∈ L2
a(D

n) satisfies the invariant weight condition (A2), then there is a

constant C(M) depending on M such that

( 1

|Q|

∫

Q

|f |2(·, η)dA(η)
)( 1

|Q|

∫

Q

|f |−2(·, η)dA(η)
)
≤ C(M)

for every η ∈ Q, where Q = Qζ1 ×Qζ2 × · · · ×Qζm is the cartesian product of dyadic rectangles,

ζ = {ζ1, . . . , ζm} is a nonempty subset of {1, . . . , n} with ζ1 < · · · < ζm, and ζ runs over all

subsets of {1, . . . , n}.

Proof Now suppose that α = {α1, α2, . . . , αt} is a subset of {ζ1, ζ2, . . . , ζm} with α1 < α2 <

· · · < αt, β = {ζ1, ζ2, . . . , ζm} \ α = {β1, β2, . . . , βm−t}. Next assume that
{

d(Qj) = 0, if j ∈ α;

d(Qj) > 0, if j ∈ β.

First we fix j ∈ β, d(Qj) > 0. By Lemma 2.4, Qj ⊂ D(zQj , Rj), where 0 < Rj < 1. By Lemma

2.3, there exists a positive constant C such that

1

C
|f(·, zQβ1

, . . . , zQβm−t
)| < |f(·, ξ)| < C|f(·, zQβ1

, . . . , zQβm−t
)|
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for all ξ ∈ Qβ1 ×Qβ2 × · · · ×Qβm−t . Therefore for f(·, η) ∈ L2
a(D

α), we have

I =
1

|Q|

∫

Q

|f |2(·, η)dA(η)

=
1

|Q1| × |Q2| × · · · × |Qm|

∫

Q1

∫

Q2

· · ·
∫

Qm

|f(·, ξ1, ξ2, . . . , ξm)|2dξ1dξ2 · · · dξm

=
1∏m

j=1 |Qj |

∫
∏

h∈β

Qh

∫
∏

t∈α
Qt

|f(·, ξα1 , . . . , ξαt , ηβ1 , . . . , ηβm−t)|2dξα1 . . .dξαtdηβ1 . . . dηβm−t

≤ C

|Qα1 | × |Qα2 | × · · · |Qαt |

∫
∏

h∈α

Qh

|f(·, ξα1 , . . . , ξαt , zQβ1
, . . . , zQβm−t

)|2dξα1 · · · dξαt .

Next assume that j ∈ α and d(Qj) = 0, then we have |zQj | ≥ 1
2 , and it follows from (2.1) that

|Qj | = 8|zQj |(1 − |zQj | − d(Qj))
2 = 8|zQj |(1 − |zQj |)2 ≥ 4(1 − |zQj |)2.

Using Lemma 2.2 gives

J =
C

|Qα1 | × |Qα2 | × · · · |Qαm |

∫
∏

h∈α

Qh

|f(·, ξα1 , . . . , ξαt , zQβ1
, . . . , zQβm−t

)|2dξα1 · · ·dξαt

≤ C1∏
j∈α

(|1 − |zQj |)2
∫

∏
h∈α

Qh

|f(·, ξα1 , . . . , ξαt , zQβ1
, . . . , zQβm−t

)|2dξα1 · · ·dξαt

≤ C2

∫
∏

h∈α

Qh

|f(·, ξα1 , . . . , ξαt , zQβ1
, . . . , zQβm−t

)|2
∏

j∈α

|kzQj
(ξαj )|2dξα1 . . .dξαt

≤ C2

∫
∏

h∈α

Dh

|f(·, ξα1 , . . . , ξαt , zQβ1
, . . . , zQβm−t

)|2
∏

j∈α

|kzQj
(ξαj )|2dξα1 . . .dξαt

= C2 |̃f |2(·, zQα1
, zQα2

, . . . , zQαt
).

A similar inequality holds for f−1. Thus we have
( 1

|Q|

∫

Q

|f |2(·, η)dA
)( 1

|Q|

∫

Q

|f |−2(·, η)dA
)

≤ C2
2 [|̃f |2(·, zQα1

, . . . , zQαt
)][|̃f |−2(·, zQα1

, . . . , zQαt
)] ≤MC2

2 . �

Lemma 2.6 Suppose that f(·, η) ∈ L2
a(D

n) satisfies the invariant weighted condition (A2). For

every η, w ∈ Dα, let dµw = |f ◦ϕw|2(·, η)dA(η). If 0 < γ < 1, then there exists a 0 < δ(γ,M) < 1

such that

µw(E) ≤ δ(γ,M)µw(Qα)

whenever E is a subset of Qα = Qα1 × · · · ×Qαm with |E| ≤ γ|Qα|, where α = {α1, . . . , αm} is

a nonempty subset of {1, . . . , n} with α1 < · · · < αm, and δ(γ,M) depends on γ and M .

Proof Suppose that |̃f |2(·, η)|̃f |−2(·, η) ≤ M, for all η ∈ Dα. Let E be a subset of Qα with

|E| ≤ γ|Qα|. Applying the inequality of Cauchy-Schwarz and Lemma 2.5, we have

(|Qα| − |E|)2 =
(∫

Qα\E

|f ◦ ϕw||f ◦ ϕw|−1(·, η)dA(η)
)2
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≤
( ∫

Qα\E

|f ◦ ϕw|2(·, η)dA(η)
)(∫

Qα\E

|f ◦ ϕw|−2(·, η)dA(η)
)

≤
( ∫

Qα\E

|f ◦ ϕw|2(·, η)dA(η)
)(∫

Qα

|f ◦ ϕw|−2(·, η)dA(η)
)

≤
( ∫

Qα\E

|f ◦ ϕw|2(·, η)dA(η)
)
C(M)|Qα|2

(∫

Qα

|f ◦ ϕw|−2(·, η)dA(η)|
)−1

= C(M)|Qα|2
[
1 − µw(E)

µw(Qα)

]
.

It follows that
µw(E)

µw(Qα)
≤ 1 − 1

C(M)

(
1 − |E|

|Qα|
)2

≤ δ(γ,M),

if we put δ(γ,M) = 1 − (1 − γ)2/C(M). �

The dyadic cartesian product maximal function The dyadic cartesian product maximal

operator M∆ is defined by

(M∆f)(w) = sup
w∈Q

1

|Q|

∫

Q

|f |dA

where the supremum is over all the cartesian product of dyadic rectangles Q = Q1 ×Q2 × · · ·Qn
that contain w. The maximal function is greater than the dyadic cartesian products maximal

function, so the dyadic cartesian product maximal function of any continuous function is finite

on Dn. In particular, if f ∈ L2
a(D

n) satisfies the invariant condition (A2), then the dyadic

cartesian product maximal function M∆|f |2 is always finite. This can also be seen directly as

follows. Given a point w = (w1, . . . , wn) ∈ Dn, there is a number R = {R1, . . . , Rn}, 0 < Rj < 1,

1 ≤ j ≤ n such that all but a finite number of the cartesian product of dyadic rectangles

containing the point w lie inside the closed disk D̄(0, R) = {z = (z1, . . . , zn) : |zi| ≤ Ri}.
If f ∈ L2

a(D
n) and Q is a cartesian product of dyadic rectangle containing w inside the disk

D̄(0, R), then
1

|Q|

∫

Q

|f(z)|2dA(z) ≤ max{|f(z)|2 : |zj | ≤ Rj}.

If Q{1}, . . . , Q{s} are the cartesian product of dyadic rectangles containing w not contained in

the disk D̄(0, R), then

M∆|f |2(w) ≤ max{|f(z)|2 : |zj | ≤ Rj} + max
1≤i≤s

1

|Q{i}|

∫

Q{i}

|f(z)|2dA(z) <∞.

This proves that the dyadic cartesian product maximal function of |f |2 is finite on Dn.

The principal fact about the dyadic cartesian product maximal function is the Calderon-

Zygmund decomposition formulated in the next theorem. We will need the notion of “doubling”

of the dyadic rectangles in its proof. Suppose that lj ≥ 1 and mj , kj are positive integers such

that mj , kj ≤ 2lj . The double of Qj = Qlj ,mj,kj denoted by 2Qj, is defined by

2Qj = Qlj−1,[(mj+1)/2],[(kj+1)/2],

where [k] denotes the greatest integer less than or equal to k. An elementary calculation shows
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that

|2Qj |/|Qj| ≤ 8,

for every dyadic rectangle Qj in the unit disk.

Calderon-Zygmund decomposition theorem Let f be locally integrable on Dn, and t > 0.

Suppose that Ω = {z ∈ Dn : M∆f(z) > t} is not to Dn. Then Ω may be written as disjoint

union of cartesian product of dyadic rectangles Q{i} with

t <
1

|Q{i}|

∫

Q{i}

|f |dA < 8nt.

Proof Suppose that w ∈ Ω, then M∆f(w) > t. Then there exists a cartesian product of dyadic

rectangles Q containing w such that

1

|Q|

∫

Q

|f |dA > t.

Now, if z ∈ Q, then

M△f(z) ≥ 1

|Q|

∫

Q

|f |dA > t.

It follows z ∈ Ω. Thus proves that Q ⊂ Ω. We may assume that the Q{i} are the maximal

cartesian product of dyadic rectangles. It follows that Ω =
⋃
iQ{i}. Since Q = Q{i} is not equal

to Dn, by maximality its double 2Q is not contained in Ω. This means that 2Q contains a point

z which is not in Ω. Since M∆f(z) > t, we obtain

1

|2Q|

∫

2Q

|f |dA ≤M△f(z) ≤ t.

Hence, it follows that

1

|Q|

∫

Q

|f |dA ≤ 1

|Q|

∫

2Q

|f |dA ≤ t|2Q|
|Q| ≤ 8nt. �

Before we prove the reverse Hölder inequality, we need one more preliminary result for the

dyadic maximal function:

Proposition 2.7 If f(·, η) ∈ L2
a(D

n), Dα = Dα1 × · · · × Dαm , then

(i) |f |2(·, η) ≤M∆|f |2(·, η) on Dα, and

(ii) ‖f‖2
2 ≤M∆|f |2(·, 0, . . . , 0) ≤ 2m‖f‖2

2.

Here α = {α1, . . . , αm} is a nonempty subset of {1, . . . , n} with α1 < · · · < αm.

Proof (i) We will prove that if g is continuous on Dα, then |g(·, w)| ≤ M△g(·, w) for every

w ∈ Dα. Fix w ∈ Dα. Let Q{0} = Q01 × · · · × Q0m be any cartesian product of dyadic

rectangles containing w such that Q0j ⊂ Dj . Since function g is uniformly continuous on Q{0},

given ε > 0, there is a δ > 0, such that |g(·, z) − g(·, w)| < ε, whenever z, w ∈ Q{0} are such

that |z − w| = max1≤j≤m |zj − wj | < δ. Subdivide Q{0} a number of times, then there exists a

cartesian product of dyadic rectangles Q containing w with diameter less than δ. Then

|g(·, w)| ≤ |g(·, z)| + |g(·, z) − g(·, w)| ≤ |g(·, z)| + ε
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for all z ∈ Q. This implies that

|g(·, w)| ≤ 1

|Q|

∫

Q

|g(·, z)|dA(z) + ε ≤M∆g(·, w) + ε.

Therefore, we can obtain

|g(·, w)| ≤M∆g(·, w).

(ii) Since Dα is a cartesian product dyadic rectangles, we have

M∆|f |2(·, 0, . . . , 0) ≥ 1

|D|α
∫

Dα

|f |2(·, η)dA(η) = ‖f‖2
2,

for f(·, η) ∈ L2
a(D

α). If Qj is a dyadic rectangle other than D containing 0, then Qj ⊂ Dj(0, 1/2),

j ∈ α. For each z ∈ Dα, we have f(·, z) = 〈f,Kz〉 and the inequality of Cauchy-Schwarz implies

|f(·, z)|2 ≤ ‖f‖2‖Kz‖2 =

m∏

j=1

1

(1 − |zj|2)
‖f‖2

2

for all z ∈ D1(0, 1/2)× · · · ×Dm(0, 1/2). Since Qj ⊂ Dj(0, 1/2), it follows that

1

|Q|

∫

Q

|f |2dA ≤ (4/3)m‖f‖2
2 ≤ 2m‖f‖2

2. �

We are now ready to prove the reversed Hölder inequality contained in Theorem 2.1.

Proof of Theorem 2.1 First we prove that for some constant CM > 0,
∫

Dα

|f(·, z)|2+εdA(z) ≤ CM

( ∫

Dα

|f |2dA(z)
)(2+ε)/2

.

For each integer k ≥ 0, set

Ek = {z ∈ Dα : M∆|f |2(·, z) > 23mk+m‖f‖2
2}.

Since M∆|f |2(·, 0, . . . , 0) ≤ 2m‖f‖2
2 ≤ 23mk+m‖f‖2

2, it follows from proposition 2.7 (ii) that for

every positive integer k set Ek is not equal to Dα. Fix k ≥ 1. By the Calderon-Zygmund

decomposition theorem, Ek =
⋃
iQ{i}, where Q{i} are disjoint cartesian product of dyadic

rectangles in Ek that satisfy

23mk+m‖f‖2
2 <

1

|Q{i}|

∫

Q{i}

|f |(·, z)dA(z) < 8m × 23mk+m‖f‖2
2,

thus

|Q{i}| ≤ 2−3mk−m‖f‖−2
2

∫

Q{i}

|f |dA, and

∫

Q{i}

|f |dA < 8m × 23mk+m‖f‖2
2|Q{i}|.

Let Q be a maximal cartesian product of dyadic rectangle in Ek−1. Summing over all such

Q{i} ⊂ Q gives that

|Ek
⋂
Q| =

∑

i:Q{i}⊂Q

|Q{i}| ≤ 2−3mk−m‖f‖−2
2

∫

Q

|f |2dA,

since the Q{i} are disjoint and their union is Ek. On the other hand, by maximality the double 2Q

is not contained in Ek−1, and as in the proof of the Calderon-Zygmund decomposition theorem
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it follows that ∫

Q

|f |2dA ≤ 23m(k−1)8m‖f‖2
2|Q|.

Hence

|Ek ∩Q| ≤ 1/2m|Q|.

By Lemma 2.6 there exists a 0 < δ < 1 such that

µ(Ek ∩Q) ≤ δµ(Q),

where dµ = |f |2(·, z)dA(z). Taking the union over all maximal cartesian product of dyadic

rectangles Q in Ek−1 gives

µ(Ek) ≤ δµ(Ek−1),

and therefore

µ(Ek) ≤ δkµ(E0) ≤ δk‖f‖2
2.

Using Proposition 2.7, we have
∫

Dα

|f |2+ε(·, z)dA(z) ≤
∫

Dα

(M△|f |2)ε/2|f |2dA(z)

=

∫

{M∆|f |2≤2m‖f‖2
2}

(M∆|f |2)ε/2|f |2dA+

∞∑

k=0

∫

Ek\Ek+1

(M∆|f |2)ε/2|f |2dA

≤ 2m‖f‖ε2‖f‖2
2 +

∞∑

k=0

2(3m(k+1)+1)ε/2‖f‖ε2µ(Ek)

≤ 2m‖f‖2+ε
2 +

∞∑

k=0

2(3m(k+1)+1)ε/2δk‖f‖2+ε
2

≤ (2m +
2(3m+1)ε/2

1 − 23mε/2δ
)‖f‖2+ε

2 ,

if 23mε/2δ < 1. We let 23mεM/2δ = 2δ/(1 + δ), then it follows that εM = ln(2/(1 + δ))/(3mln
√

2).

If 0 < ε < εM , then 23mε/2δ < 2δ/(1 + δ) < 1, so that

2(3m+1)ε/2

1 − 23mε/2δ
<

(2/(1 + δ))(1/3m+1)

1 − 2δ/(1 + δ)
≤ 2(1/3m+2)

1 − δ
.

So, if CM = 2m + 2(1/3m+2)

1−δ , then for 0 < ε < εM we have shown that

∫

Dα

|f |2+ε(·, z)dA ≤ CM

(∫

Dα

|f |2(·, z)dA
)(2+ε)/2

.

For a fixed w ∈ Dα, by Möbius invariance of Berezin transform we also have

M = sup
z∈Dα

˜|f ◦ ϕw|2(·, z) ˜|f ◦ ϕw|−2(·, z).

Applying the above argument to the function |f ◦ ϕw|2, we obtain
∫

Dα

|f ◦ ϕw |2+ε(·, z)dA(z) ≤ CM

(∫

Dα

|f ◦ ϕw|2(·, z)dA(z)
)(2+ε)/2

,
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that is,

|̃f |2+ε(·, w) ≤ CM

(
|̃f |2(·, w)

)(2+ε)/2

. �

3. Invertible Toeplitz product

In this section, we will completely characterize the bounded invertible Toeplitz products

TfTḡ on L2
a(D

n). We have the fellowing result:

Theorem 3.1 Let f(·, η) and g(·, η) be in L2
a(D

n). Then TfTḡ(·, η) is bounded and invertible

on L2
a(D

α) if and only if

sup{|̃f |2(·, w)|̃g|2(·, w) : w ∈ Dα} <∞

and

inf{|f(·, w)||g(·, w)| : w ∈ Dα} > 0.

Here Dα = Dα1 × · · · × Dαm , α = {α1, . . . , αm} is a nonempty subset of {1, . . . , n} with α1 <

· · · < αm, and α runs over all subsets of {1, . . . , n}.

Proof “⇒”. Suppose that TfTḡ(·, η) is bounded and invertible on L2
a(D

α). By Theorem 1.1

there exists a constant M such that

|̃f |2(·, w)|̃g|2(·, w) ≤M, (3.2)

for all w ∈ Dα. Note that

TfTḡkw = g(·, w)fkw.

Thus

‖TfTḡkw‖2
2 = |g(·, w)|2 |̃f |2(·, w),

so the invertibility of TfTḡ yields

|g(·, w)|2 |̃f |2(·, w) ≥ δ1 > 0, (3.3)

for some constant δ1 and for all w ∈ Dα. Since TgTf̄ = (TfTḡ)
∗ is bounded and invertible, there

is also a constant δ2 such that

|f(·, w)|2 |̃g|2(·, w) ≥ δ2 > 0, (3.4)

for all w ∈ Dα. Put δ = δ1δ2, then it follows from (3.2), (3.3) and (3.4) that

δ ≤ |f(·, w)|2|g(·, w)|2 |̃f |2(·, w)|̃g|2(·, w) ≤M |f(·, w)|2|g(·, w)|2,

and thus

|f(·, w)||g(·, w)| ≥ δ1/2

M1/2
,

for all w ∈ Dα.

“⇐”. Suppose that

M = sup{|̃f |2(·, w)|̃g|2(·, w) : w ∈ Dα} <∞, η = inf |f(·, w)||g(·, w)| > 0.
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Since f, g ∈ L2
a(D

α), we have

|f(·, w)|2 = |f ◦ ϕw(·, 0, . . . , 0)|2 ≤
∫

Dα

|f ◦ ϕw|2(·, z)dA(z) = |̃f |2(·, w),

for all w ∈ Dα. Thus, |f(·, w)||g(·, w)| ≤ M1/2, for all w ∈ Dα. So, fg is a bounded function on

Dα and f and g cannot have zeros in Dα. Since |g(·, z)|2 ≥ η2|f(·, z)|−2, for all z ∈ Dα, we have

|̃g|2(·, w) ≥ η2 |̃f |−2(·, w),

for all w ∈ Dα. Consequently,

M ≥ |̃f |2(·, w)|̃g|2(·, w) ≥ η2 |̃f |2(·, w)|̃f |−2(·, w),

so that

|̃f |2(·, w)|̃f |−2(·, w) ≤M/η2,

for all w ∈ Dα. This means that f satisfies the condition (A2). By the reverse Hölder inequality,

for some ε > 0,

sup
w∈Dα

|̃f |2+ε(·, w) ˜|f |−(2+ε)(·, w) <∞,

for all w ∈ Dα. By Theorem 1.1, TfTf−1 is bounded on L2
a(D

α). Since fg is bounded on (Dα), the

operator Tfg is bounded on L2
a(D

α). It follows that TfTḡ = TfTf−1Tfg is bounded on L2
a(D

α).

The function ψ = 1/(f ḡ) is bounded on Dα, so that the operator Tψ is bounded on L2
a(D

α).

Using that

TfTḡTψ = I = TψTfTḡ,

we conclude that TfTḡ is invertible on L2
a(D

α). �
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