Topologically Mixing and Hypercyclicity of Tuples

Bahmann YOUSEFI

Department of Mathematics, Payame Noor University, P.O. Box 19395-3697, Tehran, IRAN

Abstract In this paper, we characterize conditions under which a tuple of bounded linear operators is topologically mixing. Also, we give conditions for a tuple to be hereditarily hypercyclic with respect to a tuple of syndetic sequences.

Keywords tuple; hypercyclic vector; topologically mixing; thick set; hypercylicity criterion; hereditarily hypercyclic; syndetic sequence.

MR(2010) Subject Classification 47B37; 47B33

1. Introduction

By an n-tuple of operators we mean a finite sequence of length n of commuting continuous linear operators on an infinite dimensional Banach space X.

Definition 1.1 Let $\mathcal{T} = (T_1, T_2, \dots, T_n)$ be an *n*-tuple of operators acting on the Banach space X. We will let

$$\mathcal{F} = \{T_1^{k_1} T_2^{k_2} \cdots T_n^{k_n} : k_i \ge 0, \ i = 1, \dots, n\}$$

be the semigroup generated by \mathcal{T} . For $x \in X$, the orbit of x under the tuple \mathcal{T} is the set $\operatorname{Orb}(\mathcal{T}, x) = \{Sx : S \in \mathcal{F}\}$. A vector x is called a hypercyclic vector for \mathcal{T} if $\operatorname{Orb}(\mathcal{T}, x)$ is dense in X and in this case the tuple \mathcal{T} is called hypercyclic. Also, by $\mathcal{T}_d^{(k)}$ we will refer to the set of all k copies of an element of \mathcal{F} , i.e.,

$$\mathcal{T}_d^{(k)} = \{ S_1 \oplus \cdots \oplus S_k : S_1 = \cdots = S_k \in \mathcal{F} \}.$$

We say that $\mathcal{T}_d^{(k)}$ is hypercyclic provided there exist $x_1, \ldots, x_k \in X$ such that $\{W(x_1 \oplus \cdots \oplus x_k) : W \in \mathcal{T}_d^{(k)}\}$ is dense in the k copies of $X, X \oplus \cdots \oplus X$.

For simplicity we state and prove our results for a pair that is a tuple with n = 2, and the general case follows by a similar method. Also, remember that if T_1 , T_2 are commutative bounded linear operators on a Banach space X, and $\{m_j\}$, $\{n_j\}$ are two sequences of natural numbers, then we say $\{T_1^{m_j}T_2^{n_j}: j \ge 0\}$ is hypercyclic if there exists $x \in X$ such that $\{T_1^{m_j}T_2^{n_j}x: j \ge 0\}$ is dense in X.

Definition 1.2 We say that the pair $\mathcal{T} = (T_1, T_2)$ is topologically transitive if for every nonempty open subsets U and V of X there exists $S \in \mathcal{F}$ such that $S(U) \cap V \neq \emptyset$. Similarly, we say that

Received November 1, 2011; Accepted February 20, 2012 E-mail address: b_yousefi@pnu.ac.ir

 $\mathcal{T}_d^{(2)}$ is topologically transitive provided for any given nonempty open sets U_1, V_1, U_2, V_2 in X, there exist two positive integers m and n such that $T_1^m T_2^n(U_1) \cap V_1 \neq \emptyset$ and $T_1^m T_2^n(U_2) \cap V_2 \neq \emptyset$.

Definition 1.3 A pair (T_1, T_2) is called topologically mixing if for any given open sets U and V, there exist two positive integers M and N such that $T_1^m T_2^n(U) \cap V \neq \emptyset$ for all $m \ge M$ and $n \ge N$.

Definition 1.4 We say that a pair $\mathcal{T} = (T_1, T_2)$ is hereditarily hypercyclic with respect to a pair of nonnegative increasing sequences $(\{m_k\}, \{n_k\})$ of integers provided for all pair of subsequences $(\{m_{k_j}\}, \{n_{k_j}\})$ of $(\{m_k\}, \{n_k\})$, the sequence $\{T_1^{m_{k_j}}T_2^{n_{k_j}} : j \ge 1\}$ is hypercyclic. We say that a pair \mathcal{T} is hereditarily hypercyclic, if it is hereditarily hypercyclic with respect to a pair of nonnegative increasing sequences.

Definition 1.5 A strictly increasing sequence of positive integers $\{n_k\}$ is said to be syndetic if $\sup_k \{n_{k+1} - n_k\} < \infty$.

Definition 1.6 A set $S \subset \mathbf{Z}^2_+$ is called thick if for every $m, n \in \mathbb{N}$, there exist some $i_m, j_n \in \mathbb{N}$ such that $\{(p,q) : p = i_m, i_m + 1, \ldots, i_m + m; q = j_n, j_n + 1, \ldots, j_n + n\} \subset S$. Also, we say that S is co-finite if the complement of S in \mathbf{Z}^2_+ is finite.

Definition 1.7 Let $\mathcal{T} = (T_1, T_2)$ be a pair of continuous operators acting on a separable infinite dimensional Banach space X. For any nonempty open sets U, V in X, we define $N(U, V) \doteq \{(m, n) : m, n \in \mathbb{N}, T_1^m T_2^n(U) \cap V \neq \emptyset\} = \{(m, n) : m, n \in \mathbb{N}, T_1^{-m} T_2^{-n}(V) \cap U \neq \emptyset\}.$

Here, we want to extend some properties of topologically mixing operators to a pair of commuting operators, and although the techniques work for any *n*-tuple of operators but for simplicity we prove our results only for the case n = 2. For some topics we refer to [1–19].

2. Main results

A nice criterion, namely the Hypercyclicity Criterion for tuples, was given by N. S. Feldman [5].

Theorem 2.1 (The Hypercyclicity Criterion for a tuple) Suppose X is a separable infinite dimensional Banach space and $\mathcal{T} = (T_1, T_2)$ is a pair of continuous linear mappings on X. If there exist two dense subsets Y and Z in X, and a pair of strictly increasing sequences $\{m_j\}$ and $\{n_j\}$ such that:

(1) $T_1^{m_j}T_2^{n_j} \to 0 \text{ on } Y \text{ as } j \to \infty;$

(2) There exists a sequence of function $\{S_j : Z \to X\}$ such that for every $z \in Z$, $S_j z \to 0$, and $T_1^{m_j} T_2^{n_j} S_j z \to z$, then \mathcal{T} is a hypercyclic tuple.

In this section we characterize the equivalent conditions for a pair of operators, satisfying the Hypercyclicity Criterion. Also, we give conditions under which a tuple is hereditarily hypercyclic with respect to a tuple of syndetic sequences. We will use HC(T) for the collection of hypercyclic vectors for the tuple \mathcal{T} of operators.

Theorem 2.2 Let $\mathcal{T} = (T_1, T_2)$ be a pair of bounded linear operators acting on the Banach space X such that $(T_1^m T_2^n)^*$ has no eigenvalue for all m, n > 0. Let W be a nonempty open set in X such that for any nonempty open subsets U, V of W, the set N(U, V) is a thick set. Then $\mathcal{T}_d^{(2)}$ is hypercyclic.

Proof Let $\mathcal{B} = \{B_n : n \in \mathbb{N}\}$ be a countable open base of X and define

$$G_i = \bigcup_{m,n} T_1^{-m} T_2^{-n}(B_i)$$

If $G_i \cap \overline{W} \neq \emptyset$, then clearly $G_i \cap \overline{W}$ is dense in \overline{W} under the relative topology, since else there exists a nonempty set $U \subset W$ such that $U \cap \overline{G_i \cap W} = \emptyset$. On the other and, since $G_i \cap \overline{W} \neq \emptyset$, we have $W \cap G_i \neq \emptyset$, and so

$$T_1^{-m_0}T_2^{-n_0}(B_i)\cap W\neq\emptyset$$

for some pair of nonnegative integers (m_0, n_0) . If we define

$$V = T_1^{-m_0} T_2^{-n_0}(B_i) \cap W,$$

then $V \subset W$. Now by using the hypothesis, there exist a pair (m'_0, n'_0) of integers such that

$$T_1^{m'_0}T_2^{n'_0}(U) \cap V \neq \emptyset.$$

Thus

$$\emptyset \neq U \cap T_1^{-m'_0} T_2^{-n'_0} T_1^{-m_0} T_2^{-n_0}(B_i) \cap W \subset U \cap \overline{G_i \cap W}$$

that is a contradiction. Hence $G_i \cap \overline{W}$ is dense in \overline{W} for all i, and so $\cap_i G_i$ is a dense G_δ subset of \overline{W} . Thus, indeed

$$HC(\mathcal{T}) \cap W = \cap_i G_i.$$

So, if $x \in \bigcap_i G_i$, then $\operatorname{Orb}(\mathcal{T}, x) \cap W$ is dense in W. Now, since $(T_1^m T_2^n)^*$ has no eigenvalue for all m, n > 0, thus by Corollary 5.6 in [5], \mathcal{T} is hypercyclic. Hence, \mathcal{T} is topologically transitive and so, for any nonempty open sets U', V' in X, there exist two pairs of nonnegative integers (m_1, n_1) and (m_2, n_2) with $m_1 < m_2$ and $n_1 < n_2$ such that

$$U'' \doteq T_1^{-m_1} T_2^{-n_1}(U') \cap W \neq \emptyset,$$

and

$$V'' \doteq T_1^{-m_2} T_2^{-n_2}(V') \cap W \neq \emptyset.$$

By our assumption N(U'', V'') is a thick set, thus N(U', V') is also a thick set, since

$$N(U'', V'') + (m_2 - m_1, n_2 - n_1) \subseteq N(U', V').$$

This implies that $\mathcal{T}_d^{(2)}$ is hypercyclic and so the proof is completed. \Box

Theorem 2.3 Let $\mathcal{T} = (T_1, T_2)$ be a pair of bounded linear operators acting on the Banach space X such that $(T_1^m T_2^n)^*$ has no eigenvalue for all m, n > 0. Let W be a nonempty open set in X such that for any nonempty open subsets U, V of W, the set N(U, V) is co-finite. Then \mathcal{T} is topologically mixing.

$$T_1^{-m_1}T_2^{-n_1}(U) \cap W \neq \emptyset$$

and

$$T_1^{-m_2}T_2^{-n_2}(V) \cap W \neq \emptyset.$$

Define the sets U_1 and V_1 by

$$U_1 = T_1^{-m_1} T_2^{-n_1}(U) \cap W$$

and

$$V_1 = T_1^{-m_2} T_2^{-n_2}(V) \cap W_1$$

Then by the hypothesis of the theorem, $N(U_1, V_1)$ is a co-finite set and consequently N(U, V) is also a co-finite set. Thus \mathcal{T} is topologically mixing. \Box

Theorem 2.4 Let $\mathcal{T} = (T_1, T_2)$ be a pair of bounded linear operators acting on the Banach space X such that $(T_1^m T_2^n)^*$ has no eigenvalue for all m, n > 0. Let W be a nonempty open set in X containing two dense sets Y, Z, and suppose that there exist a pair of nonnegative integers (m_k, n_k) , and a sequence of mappings $\{S_k : Z \to X\}$ such that: for every $z \in Z$, $S_k z \to 0$, $T_1^{m_k} T_2^{n_k} S_k z \to z$, and $T_1^{m_k} T_2^{n_k} \to 0$ pointwise on Y. Then $\mathcal{T}_d^{(2)}$ is hypercyclic.

Proof Consider nonempty open sets U_1, U_2, V_1, V_2 in W and let $y \in Y$ and $z \in Z$. Also, let $\epsilon > 0$ be such that $B(y, \epsilon) \subset U_1$, and $B(z, 2\epsilon) \subset V_1$. Since all three sequences

$$\{S_kz\}_k, \ \{z - T_1^{m_k}T_2^{n_k}S_kz\}_k, \ \{T_1^{m_k}T_2^{n_k}y\}_k$$

tend to 0, there exists M > 0 such that

$$S_k z, T_1^{m_k} T_2^{n_k} y, z - T_1^{m_k} T_2^{n_k} S_k z \in B(0,\epsilon)$$

for all k > M. So,

$$y + S_k z \in U_1$$

and

$$T_1^{m_k}T_2^{n_k}(y+S_kz) \in V_1$$

for all k > M. Hence, we get

$$T_1^{m_k}T_2^{n_k}(U_1)\cap V_1\neq\emptyset$$

for all k > M. Note that we can let M be large enough such that simultaneously

$$T_1^{m_k}T_2^{n_k}(U_i)\cap V_i\neq\emptyset$$

for i = 1, 2, and all k > M. This implies that

$$[T_1^{m_k}T_2^{n_k} \oplus T_1^{m_k}T_2^{n_k}(U_1 \oplus U_2)] \cap (V_1 \oplus V_2) \neq \emptyset$$

for all k > M. Now, by the same method used earlier, there exists a hypercyclic vector $x \oplus y \in X \oplus X$ for $\mathcal{T}_d^{(2)}$ such that

$$\{S(x\oplus y):S\in \mathcal{T}_d^{(2)}\}\cap W\oplus W$$

is dense in $W \oplus W$. This implies that $\mathcal{T}_d^{(2)}$ is hypercyclic and so the proof is completed. \Box

Corollary 2.5 Under the conditions of Theorem 2.4, if $m_k = n_k = k$, then \mathcal{T} is topologically mixing.

Theorem 2.6 Let $\mathcal{T} = (T_1, T_2)$ be a pair of bounded linear operators acting on the Banach space X. If \mathcal{T} satisfies the Hypercyclicity Criterion and $(\{m_k\}, \{n_k\})$ is a pair of syndetic sequences, then \mathcal{T} is hereditarily hypercyclic with respect to $(\{m_k\}, \{n_k\})$.

Proof Since $(\{m_k\}, \{n_k\})$ is syndetic, there exists a pair (m, n) of integers such that $m_{k+1}-m_k < m$ and $n_{k+1}-n_k < n$ for all k. This implies that for any k there exists $(m'_k, n'_k) \in (\{m_k\}, \{n_k\})$ such that $km \leq m'_k < (k+1)m$ and $kn \leq n'_k < (k+1)n$. Let B be an open neighborhood of 0 and U be any nonempty open subset of X. Define

$$W = \bigcap_{i=1}^{2m-1} \bigcap_{j=1}^{2n-1} T_1^{-i} T_2^{-j}(B)$$

and

$$V = T_1^{-2m} T_2^{-2n}(U).$$

Since \mathcal{T} satisfies the Hypercyclicity Criterion, $\mathcal{T}_d^{(2)}$ is topologically transitive. Indeed, let \mathcal{T} satisfy the Hypercyclicity Criterion and let $(\{m_j\}, \{n_j\}), X_0, Y_0, \text{ and } S_j : Y_0 \longrightarrow X$ be as given in the Hypercyclicity Criterion. Note that Hypercyclicity Criterion will also be satisfied by any pair of subsequence $(\{m_{j_k}\}, \{n_{j_k}\})$ of $(\{m_j\}, \{n_j\})$. Now, let U_1, V_1, U_2 , and V_2 be any nonempty open subsets of X. Pick $x \in X_0, y \in Y_0$ and $\epsilon > 0$ so that $B(x, \epsilon) \subset U_1$ and $B(y, 2\epsilon) \subset V_1$. By the conditions of Hypercyclicity Criterion, there exists an integer r large enough, satisfying:

$$T_1^{m_r}T_2^{n_r}x, \ S_ry, \ T_1^{m_r}T_2^{n_r}S_ry - y \in B(0,\epsilon).$$

So we get $x + S_r y \in B(x, \epsilon) \subset U_1$ and

$$||T_1^{m_r}T_2^{n_r}S_ry - y|| + ||T_1^{m_r}T_2^{n_r}x|| < 2\epsilon.$$

Thus, we have

$$T_1^{m_r}T_2^{n_r}S_ry - y \in B(y, 2\epsilon) \subset V_1.$$

Hence, $T_1^{m_r}T_2^{n_r}(U_1) \cap V_1$ is nonempty for r large enough. This implies that there exists a pair of subsequence $(\{m_{j_k}\}, \{n_{j_k}\})$ of $(\{m_j\}, \{n_j\})$ such that for all k we have

$$T_1^{m_{j_k}}T_2^{n_{j_k}}(U_1)\cap V_1\neq\emptyset.$$

Now, since Hypercyclicity Criterion will also be satisfied for $(\{m_{j_k}\}, \{n_{j_k}\})$, by using the same method we can see that there exists k_0 large enough such that

$$T_1^{m_{j_{k_0}}} T_2^{n_{j_{k_0}}}(U_2) \cap V_2 \neq \emptyset.$$

Since $(m_{j_{k_0}}, n_{j_{k_0}})$ is an element of the sequence $(\{m_{j_k}\}, \{n_{j_k}\})$, we have

$$T_1^{m_{j_{k_0}}} T_2^{n_{j_{k_0}}}(U_1) \cap V_1 \neq \emptyset$$

and so $\mathcal{T}_d^{(2)}$ is topologically transitive. Thus, there exists a pair (p,q) of integers such that

 $T_1^p T_2^q(U) \cap W \neq \emptyset$

and

$$T_1^p T_2^q(W) \cap V \neq \emptyset.$$

Note that $mr_0 \leq p \leq m(r_0 + 1)$ and $ns_0 \leq p \leq n(s_0 + 1)$ for some pair of integers (r_0, s_0) . In the intervals $[mr_0, m(r_0 + 1)]$, $[ns_0, n(s_0 + 1)]$, consider elements m'_{k_0} and n'_{k_0} of the sequences $\{m_k\}$ and $\{n_k\}$, respectively. Now, let the case $p < m'_{k_0}$ and $q < n'_{k_0}$ and set

$$t(p) = m'_{k_0+1} - p, \quad t'(p) = 2m - (m'_{k_0+1} - p),$$

$$t(q) = n'_{k_0+1} - q, \quad t'(q) = 2n - (n'_{k_0+1} - q).$$

Clearly,

$$1 \le t(p), \ t'(p) \le 2m - 1,$$

 $1 \le t(q), \ t'(q) \le 2n - 1.$

This implies that

$$W \subset T_1^{-t(p)} T_2^{-t(q)}(B) \cap T_1^{-t'(p)} T_2^{-t'(q)}(B).$$

So, clearly we get

$$T_1^p T_2^q (T_1^{-t'(p)} T_2^{-t'(q)}(B)) \cap T_1^{-2m} T_2^{-2n}(V) \neq \emptyset,$$

from which we can conclude that

$$T_1^{p+t(p)}T_2^{q+t(q)}(U) \cap B = T_1^{m_{k_0+1}}T_2^{n_{k_0+1}'}(U) \cap B \neq \emptyset$$

and

$$T_1^{p-t'(p)+2m}T_2^{q-t'(q)+2n}(B) \cap V = T_1^{m'_{k_0+1}}T_2^{n'_{k_0+1}}(B) \cap V \neq \emptyset.$$

So, in the case of $p < m'_{k_0}$ and $q < n'_{k_0}$, \mathcal{T} is hereditarily hypercyclic with respect to $(\{m_k\}, \{n_k\})$. In other cases, for example, if $q \ge n'_{k_0}$, then by substituting t(q) by $q - n'_{k_0}$, and t'(q) by $2n - (q - n'_{k_0})$, we can get a similar result. So the proof is completed. \Box

Acknowledgement The author would like to thank the referee for helpful suggestions.

References

- S. I. ANSARI, P. S. BOURDON. Some properties of cyclic operators. Acta Sci. Math. (Szeged), 1997, 63(1-2): 195–207.
- [2] F. BAYART, E. MATHERON. Dynamics of Linear Operators. Cambridge University Press, Cambridge, 2009.
- [3] J. BÈS, A. PERIS. Alfredo Hereditarily hypercyclic operators. J. Funct. Anal., 1999, 167(1): 94–112.
- [4] N. S. FELDMAN. Countably hypercyclic operators. J. Operator Theory, 2003, 50(1): 107-117.
- [5] N. S. FELDMAN. Hypercyclic tuples of operators and somewhere dense orbits. J. Math. Anal. Appl., 2008, 346(1): 82–98.

- [6] F. LEÓN-SAAVEDRA. Notes about the hypercyclicity criterion. Math. Slovaca, 2003, 53(3): 313–319.
- [7] H. PETERSSON. Topologies for which every nonzero vector is hypercyclic. J. Math. Anal. Appl., 2007, 327(2): 1431–1443.
- [8] Enhui SHI, Yuwu YAO, Lizhen ZHOU, et al. Hereditarily hypercyclic operators and mixing. J. Math. Anal. Appl., 2007, 330(1): 237–244.
- [9] S. YARMAHMOODI, K. HEDAYATIAN, B. YOUSEFI. Supercyclicity and hypercyclicity of an isometry plus a nilpotent. Abstr. Appl. Anal. 2011, Art. ID 686832, 11 pp.
- B. YOUSEFI, H. REZAEI. Hypercyclicity on the algebra of Hilbert-Schmidt operators. Results Math., 2004, 46(1-2): 174–180.
- [11] B. YOUSEFI, H. REZAEI. Some necessary and sufficient conditions for hypercyclicity criterion. Proc. Indian Acad. Sci. Math. Sci., 2005, 115(2): 209–216.
- [12] B. YOUSEFI, A. FARROKHINIA. On the hereditarily hypercyclic operators. J. Korean Math. Soc., 2006, 43(6): 1219–1229.
- [13] B. YOUSEFI, H. REZAEI, J. DOROODGAR. Supercyclicity in the operator algebra using Hilbert-Schmidt operators. Rend. Circ. Mat. Palermo (2), 2007, 56(1): 33–42.
- [14] B. YOUSEFI, H. REZAEI. Hypercyclic property of weighted composition operators. Proc. Amer. Math. Soc., 2007, 135(10): 3263–3271.
- [15] B. YOUSEFI, S. HAGHKHAH. Hypercyclicity of special operators on Hilbert function spaces. Czechoslovak Math. J., 2007, 57(132): 1035–1041.
- [16] B. YOUSEFI, REZAEI H. On the supercyclicity and hypercyclicity of the operator algebra. Acta Math. Sin. (Engl. Ser.), 2008, 24(7): 1221–1232.
- [17] B. YOUSEFI, R. SOLTANI. Hypercyclicity of the adjoint of weighted composition operators. Proc. Indian Acad. Sci. Math. Sci., 2009, 119(4): 513–519.
- [18] B. YOUSEFI, J. IZADI. Weighted composition operators and supercyclicity criterion. Int. J. Math. Math. Sci. 2011, Art. ID 514370, 5 pp.
- [19] B. YOUSEFI. Hereditarily transitive tuples. Rend. Circ. Mat. Palermo, Volume 2011, DOI 10.1007/s12215-011-0066-y (2011).