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Abstract In this paper, we get some properties of the antipode of a twisted Hopf algebra. We

proved that the graded global dimension of a twisted Hopf algebra coincides with the graded

projective dimension of its trivial module k, which is also equal to the projective dimension

of k.
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1. Introduction

Twisted Hopf algebras were introduced by Li and Zhang in [6]. Its unique difference from

a Hopf algebra is the comultiplication. On A ⊗ A we consider a multiplication different from

the component-wise one, specially, the twisted multiplication by Lusztig’s rule [6]. It includes

some important and exciting examples such as the free algebra and polynomial algebra over the

field k, the twisted Ringel-Hall algebra [8], Lusztig’s free algebra and non-degenerate algebra [4],

the positive part of the Drinfeld-Jimbo quantized enveloping algebra [2, 3] and Rosso’s quantum

shuffle algebra [11].

The antipode of Hopf algebras plays an important role in Hopf algebras. If a Hopf algebra

H is commutative (or cocommutative), then S2 is the identity map. We prove that this is also

true for twisted Hopf algebras. Using the fundamental theorem of Hopf module, Lorenz-Lorenz

proved that the global dimension of a Hopf algebra is exactly the projective dimension of the

trivial module k (see [5, 2.4]). Using the fundamental theorem of Yetter-Drinfeld Hopf module

[1,Theorem 1], we generalized Lorenz’s conclusion to Yetter-Drinfeld Hopf algebras [13,Theorem

4.5]. Following [5] and [13], but with a different approach, we prove that it is also true for twisted

Hopf algebras. The graded global dimension of a twisted Hopf algebra coincides with the graded

projective dimension of the trivial module k, which equals the projective dimension of k.

The paper is organized as follows: In Section 2, we provide some background materials for

twisted Hopf algebras. It is proved that if A is twist commutative or twist cocommutative, then

S2 = id. In Section 3, we consider projective modules in a graded A-module category. We prove

the main theorem in a different approach from those in [5] and [13]: Let A be a twisted Hopf
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algebra. The graded global dimensional of A is equal to the graded projective dimensional of left

A-module k, which also equals the projective dimension of left A-module k.

In this paper, all tensor products are assumed to be over k. Let V and W be vector spaces.

For any a ∈ V ⊗W , denote by a =
∑

i vi ⊗wi the sum of linearly independent elements of {vi}

and {wi}. In the following, “ ⋆ ” denotes the convolution product.

2. Twisted Hopf algebras

Let k be a field, c be a non-zero element in k, and I be a set. Denote by ZI the free abelian

group with I as basis. An element in ZI is written as x = (xi)i∈I with xi ∈ Z, where xi = 0

for almost all i ∈ I. Let N0 denote the set of non-negative integers. Denote by N0I the subset

{x = (xi)i∈I ∈ ZI|xi ∈ N0}.

An N0I graded algebra A = (A,m, u) means an associative k-algebra with a direct decom-

position of k-spaces A = ⊕x∈N0IAx with A0 = k such that AxAy ⊆ Ax+y, for x, y ∈ N0I, where

m : A⊗A −→ A is the multiplication and u : k −→ A the unit of A.

A nonzero element a ∈ Ax is said to be homogeneous of degree x, where x is called the

degree of a, denoted deg(a) = |a| = x.

By definition [9, p.206], an N0I-graded k-coalgebra C = (C,△, ǫ) is a graded k-space C =

⊕x∈N0ICx with C0 = k and with k-linear maps △ : C −→ C ⊗ C and ǫ : C −→ k satisfying the

following conditions:

(i) △ is a coassociative comultiplication, i.e., (△⊗ id)△ = (id ⊗△)△;

(ii) ǫ is the projection onto C0 = k, i.e., ǫ(Cx) = 0 for x 6= 0 and ǫ(1) = 1;

(iii) ǫ is a counit, i.e., (id ⊗ ǫ)△ = id = (ǫ⊗ id)△;

(iv) △ respects the grading, i.e., △(Cz) ⊆ ⊕x+y=zCx ⊗ Cy.

Let χ : ZI×ZI −→ Z be a bilinear form (not necessarily symmetric), c be a non-zero element

in k, and (A,m, u) be an N0I-graded algebra. In [10], Ringel introduced a new multiplication

mχ on (A,m, u): for a ∈ Ax, b ∈ Ay, defined

mχ(a⊗ b) = cχ(|a|, |b|)ab.

Then there is a unique N0I-graded, associative k-algebra structure on A with multiplication mχ.

Following Ringel, denote this new algebra by Aχ.

Dually, let (C,△, ǫ) be an N0I-graded coalgebra. Consider a new k-linear comultiplication

△χ on homogeneous elements of C defined

△χ(a) =
∑

cχ(|a1|,|a2|)(a1 ⊗ a2), a ∈ C,

where △(a) =
∑
a1 ⊗ a2.

Li and Zhang proved that (C,△χ, ǫ) is again an N0I-graded coalgebra [6, Lemma 2.4],

denoted by Cχ.

For a bilinear form χ : ZI × ZI −→ Z, define a new bilinear form χT : ZI × ZI −→ Z by

χT (x, y) = χ(y, x).
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Define the inverse of χ as −χ : ZI × ZI −→ Z, i.e., χ(x, y) + (−χ(x, y)) = 0.

Combining N0I-graded algebras and N0I-graded coalgebras, one can get twisted Hopf alge-

bras [6, p.719].

Definition 1 Let k, c, I be as above, and χ : ZI × ZI −→ Z be an arbitrary bilinear form. If

k-module A satisfies the following conditions

(T1) (A = ⊕x∈N0IAx,m, u) is an N0I-graded k-algebra and (A,△, ǫ) is an N0I-graded

k-coalgebra.

(T2) The counit ǫ : A −→ k and comultiplication △ : A −→ A⊗A are algebra maps in the

following sense

ǫ(ab) = ǫ(a)ǫ(b), △(ab) =
∑

cχ(|a2|,|b1|)a1b1 ⊗ a2b2. (1)

(T3) There is a k-linear map S : A −→ A such that

m(id ⊗ S)△ = uǫ = m(S ⊗ id)△.

Then (A,m, u,△, ǫ) is called a (k, c, I, χ)-Hopf algebra or twisted Hopf algebra, S is called the

antipode of A.

The condition (T3) is equivalent to the following:

(T3)’ There is a k-linear map S : A −→ A such that in the convolution algebra Homk(A,A),

we have

S ⋆ id = id ⋆ S = uǫ. (2)

Remark Let A be a twisted Hopf algebra. By [6, Theorem 2.10], we have

(i) S is an N0I-graded map, i.e., |S(a)| = |a| for a ∈ A.

(ii) S : A −→ AχT is an algebra anti-homomorphism, i.e., S satisfies

S(ab) = cχ(|b|,|a|)S(b)S(a), a, b ∈ A. (3)

(iii) S is a coalgebra anti-homomorphism, i.e., S satisfies

△(S(a)) =
∑

cχ(|a1|,|a2|)S(a2) ⊗ S(a1), a ∈ A. (4)

Comparing (2) with [12,Proposition 4.0.1], we may say that the antipode S is an algebra

and coalgebra anti-morphism under the “twisted”.

Lemma 2 Let A be a twisted Hopf algebra. Then

ǫ(a)cχ(|a|,|b|) = ǫ(a)c−χ(|a|,|b|) = ǫ(a)cχ
T (|a|,|b|) = ǫ(a), ∀a, b ∈ A. (5)

Proof If a /∈ A0, i.e., |a| 6= 0, then ǫ(a) = 0, the left side and right side of (5) are zero. If

a ∈ A0, then χ(|a|, |b|) = 0, hence cχ(|a|,|b|) = 1, and the first equality holds. Similarly, one

proves other equalities.

Corollary 3 Let A be a twisted Hopf algebra, a ∈ A and △(a) =
∑
a1 ⊗ a2. Then

ǫ(a)
∑

cχ(|a1|,|a2|) = ǫ(a)
∑

c−χ(|a1|,|a2|) = ǫ(a)
∑

cχ
T (|a1|,|a2|) = ǫ(a). (6)
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Proof We only prove the first equation. If a /∈ A0, it holds as in Lemma 2. If a ∈ A0, then

△(a) =
∑
a1 ⊗ a2 = a(1 ⊗ 1), and |a1| = |a2| = 0. Thus

∑
χ(|a1|, |a2|) = χ(0, 0) = 0. We have

∑
cχ(|a1|,|a2|) =

∑
c−χ(|a1|,|a2|) =

∑
cχ

T (|a1|,|a2|). This completes the proof. �

In a parallel manner with Sweedler’s [12,Proposition 4.0.1], we have the following conclusion:

Proposition 4 Let A = (A,m, u,△, ǫ) be a twisted Hopf algebra. Then for a ∈ A, the following

are equivalent:

(S1)
∑
S(a2)a1 = uǫ(a);

(S2)
∑
a2S(a1) = uǫ(a);

(S3) S2 = id.

Proof Note that S is the convolution inverse of identity by (T3)′. We will show that S2 is the

right (or left) convolution inverse of S, and so it is equal to id.

(S ⋆ S2)(a) =
∑

S(a1)S
2(a2) =

∑
c−χ(|a1|, |a2|)S(S(a2)a1) by (3)

=
∑

c−χ(|a1|, |a2|)S(uǫ(a)) by (S1) and Remarks (1)

= S(uǫ(a)
∑

c−χ(|a1|,|a2|)) = S(uǫ(a)) by (6)

= uǫ(a)

This shows (S1) =⇒ (S3). Next we prove (S3) =⇒ (S2).

uǫ(a) = id ⋆ S(a) =
∑

a1S(a2)

=
∑

S2(a1)S(a2) =
∑

c−χ(|a1|,|a2|)S(a2S(a1)).

If a /∈ A0, then 0 = uǫ(a) =
∑
c−χ(|a1|,|a2|)S(a2S(a1)). Recall that

∑
c−χ(|a1|,|a2|)S(a2S(a1)) is

the sum of linearly independent elements, thus S(
∑
a2S(a1)) = 0. So

∑
a2S(a1) = 0 = uǫ(a). If

a ∈ A0, then c−χ(|a1|,|a2|) = 1. Thus uǫ(a) =
∑
a2S(a1). We have shown (S1) =⇒ (S3) =⇒ (S2).

Similarly, one can prove (S2) =⇒ (S3) =⇒ (S1) and the proof of Proposition 4 is com-

pleted. �

Recall that A is commutative if ab = ba. Dually, A is cocommutative if △(a) =
∑
a2 ⊗ a1.

The next corollary follows directly from Proposition 4.

Corollary 5 If A is commutative or cocommutative, we have S2 = id.

We call A twisted commutative if ab = cχ(|a|,|b|)ba. Dually, A is cocommutative if △(a) =
∑
cχ(|a1|,|a2|)a2 ⊗ a1. By the properties of counit ǫ, we have the following conclusion:

Corollary 6 A is twist commutative or twisted cocommutative. Then S2 = id.

Proof IfA is twisted commutative, we have uǫ(a) =
∑
a1S(a2) =

∑
cχ(|a1|,|a2|)S(a2)a1. Assume

a /∈ A0, then 0 = uǫ(a) =
∑
cχ(|a1|,|a2|)S(a2)a1. Thus

∑
S(a2)a1 = 0. So

∑
S(a2)a1 =

0 = uǫ(a). If a ∈ A0, then cχ(|a1|,|a2|) = 1. Thus uǫ(a) =
∑
S(a2)a1. In a word, we have

uǫ(a) =
∑
S(a2)a1. By Proposition 4 (S1), we prove the conclusion.

2. The global dimension of twisted Hopf algebras
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A graded right A-module M is a right A-module with a decomposition M = ⊕x∈N0IMx

such that MxAy ⊆ Mxy. We denote the module as M ⊗ A −→ M : m ⊗ a −→ ma for any

m ∈ M, a ∈ A. Denote the graded A-module category as A-gr. For graded A-modules M and

N , we define the morphism in A-gr as:

HomA-gr(M,N) = {f ∈ HomA(M,N)|f(Mx) ⊆ Nx, ∀x ∈ N0I}.

Note that |f | = x.

The graded A-module structure of Hom(M,N) is

(af)(m) =
∑

cχ(|a2|,|m|)a1(f(S(a2)m)), ∀f ∈ Hom(M,N), a ∈ A,m ∈M. (7)

Let A be a twisted Hopf algebra, and M,N be graded left A-modules. Then M ⊗ N is a

graded left A-module with

a(m⊗ n) =
∑

cχ(|a2|,|m|)a1m⊗ a2n, ∀a ∈ A,m ∈M,n ∈ N. (8)

Lemma 7 If A is a twisted Hopf algebra, M is a left A-module, then we have

ǫ(a)cχ(|a|,|m|) = ǫ(a)c−χ(|a|,|m|) = ǫ(a)cχ
T (|a|,|m|) = ǫ(a), ∀a ∈ A,m ∈M. (9)

Proof It is similar to the proof of Lemma 2.

Proposition 8 Let A be a twisted Hopf algebra, P,N,W be graded left A-modules. Then

HomA-gr(P ⊗k N,W ) ∼= HomA-gr(P,Homk(N,W )) as vector space, where P ⊗N is viewed as a

left A-module via (8), Homk(N,W ) as a left A-module via (7).

Proof It is obvious if A = k. Here, we assume that A 6= k. Let

φ : HomA-gr(P ⊗N, W ) −→ HomA-gr(P,Hom(N,W )),

g 7−→ φ(g),

where φ(g)(p)(n) = g(p⊗ n). And

ψ : HomA-gr(P, Hom(N,W )) −→ HomA-gr(P ⊗N,W )

f 7−→ ψ(f),

where ψ(f)(p ⊗ n) = f(p)(n). Note that φ and ψ are the usual bijections of the Hom-Tensor

adjunction.

First, we check φ is a graded A-module map. Let g be a graded A-module map. For any

a ∈ A, |a| 6= 0, p ∈ P , n ∈ N , we have

(aφ(g)(p))(n) =
∑

cχ(|a2|,|p|)a1(φ(g)(p)(S(a2)n))

=
∑

cχ(|a2|,|p|)a1(g(p⊗ S(a2)n))

=
∑

cχ(|a2|,|p|)g(a1(p⊗ S(a2)n))

=
∑

cχ(|a3|,|p|)+χ(|a2|,|p|)g(a1p⊗ a2S(a3)n) by (8)

=
∑

cχ(|a2|,|p|)g(a1p⊗ ǫ(a2)n)
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=
∑

g(a1p⊗ ǫ(a2)n) by (9)

= g(ap⊗ n) = (φ(g)(ap))(n).

Thus φ is a graded A-module isomorphism.

Next, let f be a graded A-module map. We show that ψ(f) is also a graded A-module map.

ψ(f)(a(p⊗ n)) =
∑

ψ(f)(cχ(|a2|,|p|)a1p⊗ a2n)

=
∑

f(cχ(|a2|,|p|)a1p)(a2n)

=
∑

cχ(|a2|,|p|)(a1f(p))(a2n)

=
∑

cχ(|a3|,|p|)+χ(|a2|,|p|)a1[f(p)(S(a2)a3n)] by (7)

=
∑

cχ(|a2|,|p|)a1[f(p)(ǫ(a2)n)]

=
∑

a1[f(p)(ǫ(a2)n)] by (9)

=
∑

a[f(p)(n)] = a(ψ(f)(p⊗ n)).

Note that the proposition means that if the left A-module P is projective, then P ⊗ N is

projective for any N . In fact, functor HomA(P,Homk(N,−)) = HomA(P,−) ◦ Hom(N,−) is

exact since functor HomA(P,−) and Hom(N,−) are exact. So HomA(P ⊗k N,W ) is exact by

Proposition 8. Thus P ⊗N is projective.

Graded projective module and projective dimension of graded module appeared in [7, 2.2].

For later use, we write them as definitions.

Definition 9 Let P ∈ A-gr. P is called gr-projective if P is a projective A-module.

Definition 10 A projective resolution of M in A-gr is an exact sequence of A-module

· · · −−−−→ Pn
dn−−−−→ Pn−1

dn−1

−−−−→ · · · −−−−→ P1
d1−−−−→ P0

φ
−−−−→ M −−−−→ 0,

in which all Pn are projective in A-gr, and di and φ are morphisms in A-gr.

If a projective resolution of M in A-gr exists, we define the projective dimension of M as

follows:

Definition 11 The projective dimension of graded A-module M is defined to be the smallest

number d for which there is an exact sequence

0 −→ Pd −→ Pd−1 −→ · · · −→ P1 −→ P0 −→M −→ 0,

with projective objects in A-gr. We denote this by gr.p.dimM = d. If no such projective

resolution in A-gr exists, then we define gr.p.dimM = ∞.

Definition 12 Let A be a twisted Hopf algebras. The global dimension of A is defined to be

the supremum of projective dimensions of graded A-modules. We denote this by gr.gl.dimA =

sup{gr.p.dimM |∀M ∈ A-gr}.

Following [5] and [13], we have the main theorem:
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Theorem 13 Let A be a twisted Hopf algebra. Then

gr.gl.dimA = gr.p.dimAk = p.dimAk.

Proof To prove the conclusion, we only need to prove gr.p.dimAN ≤ gr.p.dimAk for any graded

left A-module N . If gr.p.dimAk = ∞, it holds. Now we assume that gr.p.dimAk <∞. Suppose

that we have a projective resolution of Ak in the category of graded left A-module:

0 −→ Pn −→ Pn−1 −→ · · · −→ P0 −→ k −→ 0.

We can get a new exact sequence by applying the functor −⊗N :

0 −→ Pn ⊗N −→ Pn−1 ⊗N −→ · · · −→ P0 ⊗N −→ k ⊗N ∼= N −→ 0.

Since Pi are graded projective left A-module, by Proposition 8, we know Pi ⊗N are also graded

projective left A-modules with module structure (8). We get 0 −→ Pn ⊗N −→ Pn−1 ⊗N −→

· · · −→ P0 ⊗ N −→A k ⊗ N ∼= N −→ 0 is a graded projective resolution of N , and therefore

gr.p.dimAN ≤ gr.p.dimAk.

Thus the graded global dimension of A is the graded projective dimension of Ak, i.e.,

gr.gl.dimA = gr.p.dimAk. Note that gr.p.dimAk = p.dimAk for any graded algebras [7, 2.3.3]. �
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