A Note on Twisted Hopf Algebras

Yanhua WANG
Department of Applied Mathematics, Shanghai University of Finance and Economics, Shanghai 200433, P. R. China

Abstract

In this paper, we get some properties of the antipode of a twisted Hopf algebra. We proved that the graded global dimension of a twisted Hopf algebra coincides with the graded projective dimension of its trivial module k, which is also equal to the projective dimension of k.

Keywords Hopf algebras; twisted Hopf algebras; projective dimension; global dimension.
MR(2010) Subject Classification 16T05; 18G20; 16W50

1. Introduction

Twisted Hopf algebras were introduced by Li and Zhang in [6]. Its unique difference from a Hopf algebra is the comultiplication. On $A \otimes A$ we consider a multiplication different from the component-wise one, specially, the twisted multiplication by Lusztig's rule [6]. It includes some important and exciting examples such as the free algebra and polynomial algebra over the field k, the twisted Ringel-Hall algebra [8], Lusztig's free algebra and non-degenerate algebra [4], the positive part of the Drinfeld-Jimbo quantized enveloping algebra [2,3] and Rosso's quantum shuffle algebra [11].

The antipode of Hopf algebras plays an important role in Hopf algebras. If a Hopf algebra H is commutative (or cocommutative), then S^{2} is the identity map. We prove that this is also true for twisted Hopf algebras. Using the fundamental theorem of Hopf module, Lorenz-Lorenz proved that the global dimension of a Hopf algebra is exactly the projective dimension of the trivial module k (see [5, 2.4]). Using the fundamental theorem of Yetter-Drinfeld Hopf module [1, Theorem 1], we generalized Lorenz's conclusion to Yetter-Drinfeld Hopf algebras [13, Theorem 4.5]. Following [5] and [13], but with a different approach, we prove that it is also true for twisted Hopf algebras. The graded global dimension of a twisted Hopf algebra coincides with the graded projective dimension of the trivial module k, which equals the projective dimension of k.

The paper is organized as follows: In Section 2, we provide some background materials for twisted Hopf algebras. It is proved that if A is twist commutative or twist cocommutative, then $S^{2}=$ id. In Section 3 , we consider projective modules in a graded A-module category. We prove the main theorem in a different approach from those in [5] and [13]: Let A be a twisted Hopf

[^0]algebra. The graded global dimensional of A is equal to the graded projective dimensional of left A-module k, which also equals the projective dimension of left A-module k.

In this paper, all tensor products are assumed to be over k. Let V and W be vector spaces. For any $a \in V \otimes W$, denote by $a=\sum_{i} v_{i} \otimes w_{i}$ the sum of linearly independent elements of $\left\{v_{i}\right\}$ and $\left\{w_{i}\right\}$. In the following, " \star " denotes the convolution product.

2. Twisted Hopf algebras

Let k be a field, c be a non-zero element in k, and I be a set. Denote by $\mathbb{Z} I$ the free abelian group with I as basis. An element in $\mathbb{Z} I$ is written as $x=\left(x_{i}\right)_{i \in I}$ with $x_{i} \in \mathbb{Z}$, where $x_{i}=0$ for almost all $i \in I$. Let \mathbb{N}_{0} denote the set of non-negative integers. Denote by $\mathbb{N}_{0} I$ the subset $\left\{x=\left(x_{i}\right)_{i \in I} \in \mathbb{Z} I \mid x_{i} \in \mathbb{N}_{0}\right\}$.

An $\mathbb{N}_{0} I$ graded algebra $A=(A, m, u)$ means an associative k-algebra with a direct decomposition of k-spaces $A=\oplus_{x \in \mathbb{N}_{0} I} A_{x}$ with $A_{0}=k$ such that $A_{x} A_{y} \subseteq A_{x+y}$, for $x, y \in \mathbb{N}_{0} I$, where $m: A \otimes A \longrightarrow A$ is the multiplication and $u: k \longrightarrow A$ the unit of A.

A nonzero element $a \in A_{x}$ is said to be homogeneous of degree x, where x is called the degree of a, denoted $\operatorname{deg}(a)=|a|=x$.

By definition $\left[9\right.$, p.206], an $\mathbb{N}_{0} I$-graded k-coalgebra $C=(C, \triangle, \epsilon)$ is a graded k-space $C=$ $\oplus_{x \in \mathbb{N}_{0} I} C_{x}$ with $C_{0}=k$ and with k-linear maps $\triangle: C \longrightarrow C \otimes C$ and $\epsilon: C \longrightarrow k$ satisfying the following conditions:
(i) \triangle is a coassociative comultiplication, i.e., $(\triangle \otimes \mathrm{id}) \triangle=(\mathrm{id} \otimes \triangle) \triangle$;
(ii) ϵ is the projection onto $C_{0}=k$, i.e., $\epsilon\left(C_{x}\right)=0$ for $x \neq 0$ and $\epsilon(1)=1$;
(iii) ϵ is a counit, i.e., $(\mathrm{id} \otimes \epsilon) \triangle=\mathrm{id}=(\epsilon \otimes \mathrm{id}) \triangle$;
(iv) \triangle respects the grading, i.e., $\triangle\left(C_{z}\right) \subseteq \oplus_{x+y=z} C_{x} \otimes C_{y}$.

Let $\chi: \mathbb{Z} I \times \mathbb{Z} I \longrightarrow \mathbb{Z}$ be a bilinear form (not necessarily symmetric), c be a non-zero element in k, and (A, m, u) be an $\mathbb{N}_{0} I$-graded algebra. In [10], Ringel introduced a new multiplication m_{χ} on (A, m, u) : for $a \in A_{x}, b \in A_{y}$, defined

$$
m_{\chi}(a \otimes b)=c^{\chi(|a|,|b|)} a b
$$

Then there is a unique $\mathbb{N}_{0} I$-graded, associative k-algebra structure on A with multiplication m_{χ}. Following Ringel, denote this new algebra by A_{χ}.

Dually, let (C, \triangle, ϵ) be an $\mathbb{N}_{0} I$-graded coalgebra. Consider a new k-linear comultiplication \triangle_{χ} on homogeneous elements of C defined

$$
\triangle_{\chi}(a)=\sum c^{\chi\left(\left|a_{1}\right|,\left|a_{2}\right|\right)}\left(a_{1} \otimes a_{2}\right), \quad a \in C
$$

where $\triangle(a)=\sum a_{1} \otimes a_{2}$.
Li and Zhang proved that $(C, \triangle \chi, \epsilon)$ is again an $\mathbb{N}_{0} I$-graded coalgebra [6, Lemma 2.4], denoted by C_{χ}.

For a bilinear form $\chi: \mathbb{Z} I \times \mathbb{Z} I \longrightarrow \mathbb{Z}$, define a new bilinear form $\chi^{T}: \mathbb{Z} I \times \mathbb{Z} I \longrightarrow \mathbb{Z}$ by

$$
\chi^{T}(x, y)=\chi(y, x)
$$

Define the inverse of χ as $-\chi: \mathbb{Z} I \times \mathbb{Z} I \longrightarrow \mathbb{Z}$, i.e., $\chi(x, y)+(-\chi(x, y))=0$.
Combining $\mathbb{N}_{0} I$-graded algebras and $\mathbb{N}_{0} I$-graded coalgebras, one can get twisted Hopf algebras [6, p.719].

Definition 1 Let k, c, I be as above, and $\chi: \mathbb{Z} I \times \mathbb{Z} I \longrightarrow \mathbb{Z}$ be an arbitrary bilinear form. If k-module A satisfies the following conditions
(T1) $\left(A=\oplus_{x \in \mathbb{N}_{0} I} A_{x}, m, u\right)$ is an $\mathbb{N}_{0} I$-graded k-algebra and (A, \triangle, ϵ) is an $\mathbb{N}_{0} I$-graded k-coalgebra.
(T2) The counit $\epsilon: A \longrightarrow k$ and comultiplication $\triangle: A \longrightarrow A \otimes A$ are algebra maps in the following sense

$$
\begin{equation*}
\epsilon(a b)=\epsilon(a) \epsilon(b), \quad \triangle(a b)=\sum c^{\chi\left(\left|a_{2}\right|,\left|b_{1}\right|\right)} a_{1} b_{1} \otimes a_{2} b_{2} \tag{1}
\end{equation*}
$$

(T3) There is a k-linear map $S: A \longrightarrow A$ such that

$$
m(\mathrm{id} \otimes S) \triangle=u \epsilon=m(S \otimes \mathrm{id}) \triangle
$$

Then $(A, m, u, \triangle, \epsilon)$ is called a (k, c, I, χ)-Hopf algebra or twisted Hopf algebra, S is called the antipode of A.

The condition (T3) is equivalent to the following:
(T3)' There is a k-linear map $S: A \longrightarrow A$ such that in the convolution algebra $\operatorname{Hom}_{k}(A, A)$, we have

$$
\begin{equation*}
S \star \operatorname{id}=\operatorname{id} \star S=u \epsilon \tag{2}
\end{equation*}
$$

Remark Let A be a twisted Hopf algebra. By [6, Theorem 2.10], we have
(i) S is an $\mathbb{N}_{0} I$-graded map, i.e., $|S(a)|=|a|$ for $a \in A$.
(ii) $S: A \longrightarrow A_{\chi^{T}}$ is an algebra anti-homomorphism, i.e., S satisfies

$$
\begin{equation*}
S(a b)=c^{\chi(|b|,|a|)} S(b) S(a), \quad a, b \in A \tag{3}
\end{equation*}
$$

(iii) S is a coalgebra anti-homomorphism, i.e., S satisfies

$$
\begin{equation*}
\triangle(S(a))=\sum c^{\chi\left(\left|a_{1}\right|,\left|a_{2}\right|\right)} S\left(a_{2}\right) \otimes S\left(a_{1}\right), \quad a \in A \tag{4}
\end{equation*}
$$

Comparing (2) with [12, Proposition 4.0.1], we may say that the antipode S is an algebra and coalgebra anti-morphism under the "twisted".

Lemma 2 Let A be a twisted Hopf algebra. Then

$$
\begin{equation*}
\epsilon(a) c^{\chi(|a|,|b|)}=\epsilon(a) c^{-\chi(|a|,|b|)}=\epsilon(a) c^{\chi^{T}(|a|,|b|)}=\epsilon(a), \quad \forall a, b \in A \tag{5}
\end{equation*}
$$

Proof If $a \notin A_{0}$, i.e., $|a| \neq 0$, then $\epsilon(a)=0$, the left side and right side of (5) are zero. If $a \in A_{0}$, then $\chi(|a|,|b|)=0$, hence $c^{\chi(|a|,|b|)}=1$, and the first equality holds. Similarly, one proves other equalities.

Corollary 3 Let A be a twisted Hopf algebra, $a \in A$ and $\triangle(a)=\sum a_{1} \otimes a_{2}$. Then

$$
\begin{equation*}
\epsilon(a) \sum c^{\chi\left(\left|a_{1}\right|,\left|a_{2}\right|\right)}=\epsilon(a) \sum c^{-\chi\left(\left|a_{1}\right|,\left|a_{2}\right|\right)}=\epsilon(a) \sum c^{\chi^{T}\left(\left|a_{1}\right|,\left|a_{2}\right|\right)}=\epsilon(a) \tag{6}
\end{equation*}
$$

Proof We only prove the first equation. If $a \notin A_{0}$, it holds as in Lemma 2. If $a \in A_{0}$, then $\triangle(a)=\sum a_{1} \otimes a_{2}=a(1 \otimes 1)$, and $\left|a_{1}\right|=\left|a_{2}\right|=0$. Thus $\sum \chi\left(\left|a_{1}\right|,\left|a_{2}\right|\right)=\chi(0,0)=0$. We have $\sum c^{\chi\left(\left|a_{1}\right|,\left|a_{2}\right|\right)}=\sum c^{-\chi\left(\left|a_{1}\right|,\left|a_{2}\right|\right)}=\sum c^{\chi^{T}\left(\left|a_{1}\right|,\left|a_{2}\right|\right)}$. This completes the proof.

In a parallel manner with Sweedler's [12, Proposition 4.0.1], we have the following conclusion:
Proposition 4 Let $A=(A, m, u, \triangle, \epsilon)$ be a twisted Hopf algebra. Then for $a \in A$, the following are equivalent:
(S1) $\sum S\left(a_{2}\right) a_{1}=u \epsilon(a)$;
(S2) $\sum a_{2} S\left(a_{1}\right)=u \epsilon(a)$;
(S3) $S^{2}=\mathrm{id}$.
Proof Note that S is the convolution inverse of identity by (T3 $)^{\prime}$. We will show that S^{2} is the right (or left) convolution inverse of S, and so it is equal to id.

$$
\begin{aligned}
\left(S \star S^{2}\right)(a) & =\sum S\left(a_{1}\right) S^{2}\left(a_{2}\right)=\sum c^{-\chi\left(\left|a_{1}\right|,\left|a_{2}\right|\right)} S\left(S\left(a_{2}\right) a_{1}\right) \text { by }(3) \\
& =\sum c^{-\chi\left(\left|a_{1}\right|,\left|a_{2}\right|\right)} S(u \epsilon(a)) \text { by }(\mathrm{S} 1) \text { and Remarks }(1) \\
& =S\left(u \epsilon(a) \sum c^{-\chi\left(\left|a_{1}\right|,\left|a_{2}\right|\right)}\right)=S(u \epsilon(a)) \text { by }(6) \\
& =u \epsilon(a)
\end{aligned}
$$

This shows $(S 1) \Longrightarrow(S 3)$. Next we prove $(S 3) \Longrightarrow(S 2)$.

$$
\begin{aligned}
u \epsilon(a) & =\operatorname{id} \star S(a)=\sum a_{1} S\left(a_{2}\right) \\
& =\sum S^{2}\left(a_{1}\right) S\left(a_{2}\right)=\sum c^{-\chi\left(\left|a_{1}\right|,\left|a_{2}\right|\right)} S\left(a_{2} S\left(a_{1}\right)\right) .
\end{aligned}
$$

If $a \notin A_{0}$, then $0=u \epsilon(a)=\sum c^{-\chi\left(\left|a_{1}\right|,\left|a_{2}\right|\right)} S\left(a_{2} S\left(a_{1}\right)\right)$. Recall that $\sum c^{-\chi\left(\left|a_{1}\right|,\left|a_{2}\right|\right)} S\left(a_{2} S\left(a_{1}\right)\right)$ is the sum of linearly independent elements, thus $S\left(\sum a_{2} S\left(a_{1}\right)\right)=0$. So $\sum a_{2} S\left(a_{1}\right)=0=u \epsilon(a)$. If $a \in A_{0}$, then $c^{-\chi\left(\left|a_{1}\right|,\left|a_{2}\right|\right)}=1$. Thus $u \epsilon(a)=\sum a_{2} S\left(a_{1}\right)$. We have shown $(S 1) \Longrightarrow(S 3) \Longrightarrow(S 2)$.

Similarly, one can prove $(S 2) \Longrightarrow(S 3) \Longrightarrow(S 1)$ and the proof of Proposition 4 is completed.

Recall that A is commutative if $a b=b a$. Dually, A is cocommutative if $\triangle(a)=\sum a_{2} \otimes a_{1}$. The next corollary follows directly from Proposition 4.

Corollary 5 If A is commutative or cocommutative, we have $S^{2}=\mathrm{id}$.
We call A twisted commutative if $a b=c^{\chi(|a|,|b|)} b a$. Dually, A is cocommutative if $\triangle(a)=$ $\sum c^{\chi\left(\left|a_{1}\right|,\left|a_{2}\right|\right)} a_{2} \otimes a_{1}$. By the properties of counit ϵ, we have the following conclusion:

Corollary $6 A$ is twist commutative or twisted cocommutative. Then $S^{2}=\mathrm{id}$.
Proof If A is twisted commutative, we have $u \epsilon(a)=\sum a_{1} S\left(a_{2}\right)=\sum c^{\chi\left(\left|a_{1}\right|,\left|a_{2}\right|\right)} S\left(a_{2}\right) a_{1}$. Assume $a \notin A_{0}$, then $0=u \epsilon(a)=\sum c^{\chi\left(\left|a_{1}\right|,\left|a_{2}\right|\right)} S\left(a_{2}\right) a_{1}$. Thus $\sum S\left(a_{2}\right) a_{1}=0$. So $\sum S\left(a_{2}\right) a_{1}=$ $0=u \epsilon(a)$. If $a \in A_{0}$, then $c^{\chi\left(\left|a_{1}\right|,\left|a_{2}\right|\right)}=1$. Thus $u \epsilon(a)=\sum S\left(a_{2}\right) a_{1}$. In a word, we have $u \epsilon(a)=\sum S\left(a_{2}\right) a_{1}$. By Proposition 4 (S1), we prove the conclusion.

2. The global dimension of twisted Hopf algebras

A graded right A-module M is a right A-module with a decomposition $M=\oplus_{x \in \mathbb{N}_{0} I} M_{x}$ such that $M_{x} A_{y} \subseteq M_{x y}$. We denote the module as $M \otimes A \longrightarrow M: m \otimes a \longrightarrow m a$ for any $m \in M, a \in A$. Denote the graded A-module category as A-gr. For graded A-modules M and N, we define the morphism in A-gr as:

$$
\operatorname{Hom}_{A-\mathrm{gr}}(M, N)=\left\{f \in \operatorname{Hom}_{A}(M, N) \mid f\left(M_{x}\right) \subseteq N_{x}, \forall x \in \mathbb{N}_{0} I\right\}
$$

Note that $|f|=x$.
The graded A-module structure of $\operatorname{Hom}(M, N)$ is

$$
\begin{equation*}
(a f)(m)=\sum c^{\chi\left(\left|a_{2}\right|,|m|\right)} a_{1}\left(f\left(S\left(a_{2}\right) m\right)\right), \quad \forall f \in \operatorname{Hom}(M, N), a \in A, m \in M \tag{7}
\end{equation*}
$$

Let A be a twisted Hopf algebra, and M, N be graded left A-modules. Then $M \otimes N$ is a graded left A-module with

$$
\begin{equation*}
a(m \otimes n)=\sum c^{\chi\left(\left|a_{2}\right|,|m|\right)} a_{1} m \otimes a_{2} n, \forall a \in A, m \in M, n \in N \tag{8}
\end{equation*}
$$

Lemma 7 If A is a twisted Hopf algebra, M is a left A-module, then we have

$$
\begin{equation*}
\epsilon(a) c^{\chi(|a|,|m|)}=\epsilon(a) c^{-\chi(|a|,|m|)}=\epsilon(a) c^{\chi^{T}(|a|,|m|)}=\epsilon(a), \quad \forall a \in A, m \in M \tag{9}
\end{equation*}
$$

Proof It is similar to the proof of Lemma 2.
Proposition 8 Let A be a twisted Hopf algebra, P, N, W be graded left A-modules. Then $\operatorname{Hom}_{A-g r}\left(P \otimes_{k} N, W\right) \cong \operatorname{Hom}_{A-g r}\left(P, \operatorname{Hom}_{k}(N, W)\right)$ as vector space, where $P \otimes N$ is viewed as a left A-module via (8), $\operatorname{Hom}_{k}(N, W)$ as a left A-module via (7).

Proof It is obvious if $A=k$. Here, we assume that $A \neq k$. Let

$$
\begin{aligned}
\phi: \operatorname{Hom}_{A-\mathrm{gr}}(P \otimes N, W) & \longrightarrow \operatorname{Hom}_{A-\mathrm{gr}}(P, \operatorname{Hom}(N, W)), \\
g & \longmapsto \phi(g),
\end{aligned}
$$

where $\phi(g)(p)(n)=g(p \otimes n)$. And

$$
\begin{aligned}
\psi: \operatorname{Hom}_{A-\mathrm{gr}}(P, \operatorname{Hom}(N, W)) & \longrightarrow \operatorname{Hom}_{A-\mathrm{gr}}(P \otimes N, W) \\
f & \longmapsto \psi(f),
\end{aligned}
$$

where $\psi(f)(p \otimes n)=f(p)(n)$. Note that ϕ and ψ are the usual bijections of the Hom-Tensor adjunction.

First, we check ϕ is a graded A-module map. Let g be a graded A-module map. For any $a \in A,|a| \neq 0, p \in P, n \in N$, we have

$$
\begin{aligned}
(a \phi(g)(p))(n) & =\sum c^{\chi\left(\left|a_{2}\right|,|p|\right)} a_{1}\left(\phi(g)(p)\left(S\left(a_{2}\right) n\right)\right) \\
& =\sum c^{\chi\left(\left|a_{2}\right|,|p|\right)} a_{1}\left(g\left(p \otimes S\left(a_{2}\right) n\right)\right) \\
& =\sum c^{\chi\left(\left|a_{2}\right|,|p|\right)} g\left(a_{1}\left(p \otimes S\left(a_{2}\right) n\right)\right) \\
& =\sum c^{\chi\left(\left|a_{3}\right|,|p|\right)+\chi\left(\left|a_{2}\right|,|p|\right)} g\left(a_{1} p \otimes a_{2} S\left(a_{3}\right) n\right) \quad \text { by }(8) \\
& =\sum c^{\chi\left(\left|a_{2}\right|,|p|\right)} g\left(a_{1} p \otimes \epsilon\left(a_{2}\right) n\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\sum g\left(a_{1} p \otimes \epsilon\left(a_{2}\right) n\right) \quad \text { by }(9) \\
& =g(a p \otimes n)=(\phi(g)(a p))(n)
\end{aligned}
$$

Thus ϕ is a graded A-module isomorphism.
Next, let f be a graded A-module map. We show that $\psi(f)$ is also a graded A-module map.

$$
\begin{aligned}
\psi(f)(a(p \otimes n)) & =\sum \psi(f)\left(c^{\chi\left(\left|a_{2}\right|,|p|\right)} a_{1} p \otimes a_{2} n\right) \\
& =\sum f\left(c^{\chi\left(\left|a_{2}\right|,|p|\right)} a_{1} p\right)\left(a_{2} n\right) \\
& =\sum c^{\chi\left(\left|a_{2}\right|,|p|\right)}\left(a_{1} f(p)\right)\left(a_{2} n\right) \\
& =\sum c^{\chi\left(\left|a_{3}\right|,|p|\right)+\chi\left(\left|a_{2}\right|,|p|\right)} a_{1}\left[f(p)\left(S\left(a_{2}\right) a_{3} n\right)\right] \quad \text { by }(7) \\
& =\sum c^{\chi\left(\left|a_{2}\right|,|p|\right)} a_{1}\left[f(p)\left(\epsilon\left(a_{2}\right) n\right)\right] \\
& =\sum a_{1}\left[f(p)\left(\epsilon\left(a_{2}\right) n\right)\right] \text { by }(9) \\
& =\sum a[f(p)(n)]=a(\psi(f)(p \otimes n)) .
\end{aligned}
$$

Note that the proposition means that if the left A-module P is projective, then $P \otimes N$ is projective for any N. In fact, functor $\operatorname{Hom}_{A}\left(P \operatorname{Hom}_{k}(N,-)\right)=\operatorname{Hom}_{A}(P,-) \circ \operatorname{Hom}(N,-)$ is exact since functor $\operatorname{Hom}_{A}(P,-)$ and $\operatorname{Hom}(N,-)$ are exact. So $\operatorname{Hom}_{A}\left(P \otimes_{k} N, W\right)$ is exact by Proposition 8. Thus $P \otimes N$ is projective.

Graded projective module and projective dimension of graded module appeared in [7, 2.2]. For later use, we write them as definitions.

Definition 9 Let $P \in A$-gr. P is called gr-projective if P is a projective A-module.
Definition 10 A projective resolution of M in A-gr is an exact sequence of A-module

$$
\cdots \longrightarrow P_{n} \xrightarrow{d_{n}} P_{n-1} \xrightarrow{d_{n-1}} \cdots \longrightarrow P_{1} \xrightarrow{d_{1}} P_{0} \xrightarrow{\phi} M \longrightarrow 0,
$$

in which all P_{n} are projective in $A-g r$, and d_{i} and ϕ are morphisms in A-gr.
If a projective resolution of M in A-gr exists, we define the projective dimension of M as follows:

Definition 11 The projective dimension of graded A-module M is defined to be the smallest number d for which there is an exact sequence

$$
0 \longrightarrow P_{d} \longrightarrow P_{d-1} \longrightarrow \cdots \longrightarrow P_{1} \longrightarrow P_{0} \longrightarrow M \longrightarrow 0
$$

with projective objects in A-gr. We denote this by gr.p.dim $M=d$. If no such projective resolution in A-gr exists, then we define gr.p. $\operatorname{dim} M=\infty$.

Definition 12 Let A be a twisted Hopf algebras. The global dimension of A is defined to be the supremum of projective dimensions of graded A-modules. We denote this by gr.gl. $\operatorname{dim} A=$ $\sup \{$ gr.p. $\operatorname{dim} M \mid \forall M \in A$-gr $\}$.

Following [5] and [13], we have the main theorem:

Theorem 13 Let A be a twisted Hopf algebra. Then

$$
\text { gr.gl.dim } A=\text { gr.p. } \operatorname{dim}_{A} k=\text { p. } \operatorname{dim}_{A} k
$$

Proof To prove the conclusion, we only need to prove gr.p. $\operatorname{dim}_{A} N \leq$ gr.p. $\operatorname{dim}_{A} k$ for any graded left A-module N. If gr.p. $\operatorname{dim}_{A} k=\infty$, it holds. Now we assume that gr.p. $\operatorname{dim}_{A} k<\infty$. Suppose that we have a projective resolution of ${ }_{A} k$ in the category of graded left A-module:

$$
0 \longrightarrow P_{n} \longrightarrow P_{n-1} \longrightarrow \cdots \longrightarrow P_{0} \longrightarrow k \longrightarrow 0
$$

We can get a new exact sequence by applying the functor $-\otimes N$:

$$
0 \longrightarrow P_{n} \otimes N \longrightarrow P_{n-1} \otimes N \longrightarrow \cdots \longrightarrow P_{0} \otimes N \longrightarrow k \otimes N \cong N \longrightarrow 0
$$

Since P_{i} are graded projective left A-module, by Proposition 8, we know $P_{i} \otimes N$ are also graded projective left A-modules with module structure (8). We get $0 \longrightarrow P_{n} \otimes N \longrightarrow P_{n-1} \otimes N \longrightarrow$ $\cdots \longrightarrow P_{0} \otimes N \longrightarrow A k \otimes N \cong N \longrightarrow 0$ is a graded projective resolution of N, and therefore gr.p. $\operatorname{dim}_{A} N \leq$ gr.p. $\operatorname{dim}_{A} k$.

Thus the graded global dimension of A is the graded projective dimension of ${ }_{A} k$, i.e., gr.gl. $\operatorname{dim} A=$ gr.p. $\operatorname{dim}_{A} k$. Note that gr.p.dim $A_{A} k=$ p.dim ${ }_{A} k$ for any graded algebras [7, 2.3.3]. \square

References

[1] Y. DOI. Hopf module in Yetter-Drinfeld categories. Comm. Algebra, 1998, 26 (9): 3057-3070.
[2] V. G. DRINFELD. Hopf algebras and quantum Yang-Baxter equation. Soviet Math. Dokl., 1985, 32: 254-258.
[3] M. JIMBO. A q-difference analogue of $U(g)$ and the Yang-Baxter equation. Lett. Math. Phys., 1985, 10: 63-69.
[4] G. LUSZTIG, Introduction to Quantum Groups. Birkhäuser Boston, Inc., Boston, MA, 1993.
[5] M. LORENZ, M. LORENZ. On Crossed products of Hopf algebras. Proc. Amer. Math. Soc., 1995, 123(1): 33-38.
[6] Libin LI, Pu ZHANG. Twisted Hopf algebras, Ringel-Hall algebras and Green's category. J. Algebra, 2000, 231(2): 713-743.
[7] C. NĂSTĂSESCU, F. VAN OYSTAEYEN. Methods of Graded Ring. Springer-Verlag, Berlin, 2004.
[8] C. M. RINGEL. Hall algebras and quantum group. Invent. Math., 1990, 101(3): 583-591.
[9] C. M. RINGEL. Green's theorem on Hall algebras. Canad. Math. Soc. Conf. Proc., 1996, 19: 185-245.
[10] C. M. RINGEL. Hall algebras revisited. Israel Math. Conf. Proc.,1993, 7: 171-176.
[11] M. ROSSO. Quantum groups and quantum shuffles. Invent. Math., 1998, 133(2): 399-416.
[12] M. E. SWEEDLER. Hopf Algebras. Benjamin, New York, 1969.
[13] Yanhua WANG. On global dimension of Yetter-Drinfeld Hopf algebras. Sci. China Ser. A, 2009, 52(10): 2154-2162.

[^0]: Received April 29, 2011; Accepted December 11, 2011
 Supported by the National Natural Science Foundation of China (Grant No. 10901098).
 E-mail address: yhw@mail.shufe.edu.cn

