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Abstract Let P = E ⊲⊳ G be a Zappa-Szép product of a semilattice E with an identity and

a group G. In this paper, we first introduce the concept of congruence pairs for P , and then

prove that every congruence on P can be described by such a congruence pair. In fact the

congruence lattice on P is lattice-isomorphic to the set of all congruence pairs for P . Finally,

we characterize group congruences on P .
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The semidirect product of two groups generalizes the direct product of two groups in that

only one of the factors is assumed to be normal. The Zappa-Szép product of two groups is a

natural generalization of the semidirect product of two groups in that neither factor is required

to be normal. The Zappa-Szép product of two semigroups can also be considered as a natural

generalization of the Zappa-Szép product of two groups.

Zappa-Szép product arises when an algebraic structure has the property that every element

has a unique decomposition as a product of elements from two given substructures. The Zappa-

Szép product was developed in [8] and used to discover properties of groups by Rédei, Szép and

Tibiletti. Zappa-Szép product of semigroups also appeared in the work of Coleman and Easdown

[7] on the structure of a ring R under the binary operation a ◦ b = a + b− ab. They may also be

constructed from actions of two structures on one another, satisfying axioms first formulated by

Zappa [8], and have a natural interpretation within automata theory [3, Section 2].

Let E be a semilattice and G a group. Then the semidirect product E ⋊ G is an E-unitary

inverse semigroup which is isomorphic to a P -semigroup P (Y, G; X). Using the kernel normal

system, Jones in [4] obtained a way of constructing the congruences on a P -semigroup in terms

of subsemilattices of Y and subgroups of G. Petrich [6] gave a construction of congruences on

a P -semigroup by a congruence on Y and subgroups of G, in a different notation, due to Jones

[4]. Notice that any semidirect product E ⋊ G is a Zappa-Szép product E ⊲⊳ G which need not

to be an inverse semigroup. It is therefore of interest to look at the description of congruences

on a Zappa-Szép product E ⊲⊳ G.
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In this paper our aim is to describe congruences and congruence lattice on P = E ⊲⊳ G a

Zappa-Szép product of a semilattice E with an identity and a group G. We recall the definition

and basic properties of Zappa-Szép products in Section 1. After introducing the concept of

congruence pairs for P in Section 2, we prove that every congruence on P can induce a congruence

pair. Last section shows that every congruence on P can be constructed by a congruence pair,

and the congruence lattice on P is lattice-isomorphic to the set of all congruence pairs for P .

Finally, we characterize group congruences on P .

Readers can be referred to [2] for the undefined notion and notations about semigroups in

this paper.

1. Definition and basic properties

In this section, in order to give an expression of semigroup theoretic aspects of the Zappa-

Szép products of semilattices and groups, we record the definition and basic properties from [3].

Definition 1.1 ([3, Section 2]) Let A and S be semigroups, and suppose that we are given

functions S × A → A, (s, a) 7→ s · a and S × A → S, (s, a) 7→ sa satisfying the following axioms

for all s, t ∈ S and a, b ∈ A:

ZS1: s · (t · a) = st · a;

ZS2: s · (ab) = (s · a)(sa · b);

ZS3: sab = (sa)b;

ZS4: (st)a = st·ata.

Then it is easy to check that the set A×S endowed with the product (a, s)(b, t) = (a(s·b), sbt)

is a semigroup, the Zappa-Szép product of A and S, which we denote by A ⊲⊳ S.

Example 1.1 ([3, Section 2]) If the action of A on S is trivial, we obtain the familiar semidirect

product A ⋊ S.

Example 1.2 ([3, Section 2]) Let S be an inverse semigroup with semilattice of idempotents

E(S). Then we can form the Zappa-Szép product E(S) ⊲⊳ S using the actions

s · α = sαs−1 and sα = sα for all α ∈ E(S), s ∈ S.

The product in E(S) ⊲⊳ S is then given by

(α, s)(β, t) = (αsβs−1, sβt).

Let P = E ⊲⊳ G be a Zappa-Szép product of a band E and a group G. We assume the

additional two axioms:

ZS5: for the identity element 1 ∈ G we have 1 · α = α;

ZS6: if E has an identity 1 ∈ E, then g · 1 = 1 and g1 = g for all g ∈ G.

Proposition 1.1 ([3, Lemma 3.1]) Let E be a band and let G be a group, action on each other

so that [ZS1], . . . , [ZS5] hold. Then for all g ∈ G and α, β ∈ E with α ≤ β we have:

(1) 1α = 1;
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(2) (gα)−1 = (g−1)g·α;

(3) g · α = (g · β)(gβ · α);

(4) gβ · α = (gβ · α)(g · α);

(5) if gβ = 1, then α = α(g · α).

If E is a semilattice, then in addition, we have the following:

(6) the action of G on E is order-preserving;

(7) gβ · α = g · α;

(8) if gβ = 1, then g · α = α;

(9) if gβ = 1, then β(g · γ) = βγ for all γ ∈ E.

Proposition 1.2 ([3, Proposition 3.2]) A Zappa-Szép product P = E ⊲⊳ G of a band E and a

group G is a regular semigroup. Moreover:

(a) the subset of idempotents is E(P ) = {(α, g) : gα = 1};

(b) if E has an identity 1 ∈ E, then P is unit-regular;

(c) if E is a semilattice, then the set of inverses of (α, g) is

V (α, g) = {(g−1 · α, x) ∈ P : xα = (g−1)α},

and furthermore P is orthodox and L-unipotent.

2. Congruence pairs

Hereafter, let P = E ⊲⊳ G be a Zappa-Szép product of a semilattice E with an identity and

a group G. The object in this section is to introduce the concept of congruence pairs for P . We

begin our study of congruences on P by the consideration of a congruence on E and a family of

subgroups of G and their mutual relationship. First we need the following lemmas.

Lemma 2.1 Let ρ be a congruence on P . If (α, g)ρ(β, h), then (α, 1)ρ(β, 1). Moreover,

(α, g)ρ(α, h) and (β, g)ρ(β, h).

Proof Assume that (α, g)ρ(β, h). Multiplying on the right by (1, g−1), we obtain

(α, g)(1, g−1)ρ(β, h)(1, g−1).

Since g · 1 = 1, h · 1 = 1, g1 = g and h1 = h, we have

(α, 1) = (α(g · 1), g1g−1) = (α, g)(1, g−1)ρ(β, h)(1, g−1)

= (β(h · 1), h1g−1) = (β, hg−1)

which yields (α, 1)ρ(β, hg−1). Symmetrically, (β, 1)ρ(α, gh−1). Then,

(αβ, 1) = (βα, 1) = (β, 1)(α, 1)ρ(β, 1)(β, hg−1) = (β, hg−1)ρ(α, 1)

and

(αβ, 1) = (α, 1)(β, 1)ρ(α, 1)(α, gh−1) = (α, gh−1)ρ(β, 1).

This implies (α, 1)ρ(β, 1), as required.



680 Jiangping XIAO and Yonghua LI

Furthermore,

(α, g)ρ(β, h) = (β, 1)(β, h)ρ(α, 1)(β, h) = (αβ, h) = (βα, h)

= (β, 1)(α, h)ρ(α, 1)(α, h) = (α, h)

yielding (α, g)ρ(α, h). Symmetrically, (β, g)ρ(β, h). �

Let ρ be a congruence on P and EP = {(α, 1) : α ∈ E}. By Proposition 1.1 (1) and

Proposition 1.2 (a), we have EP ⊆ E(P ). For any (α, 1), (β, 1) ∈ EP , we have (α, 1)(β, 1) =

(αβ, 1) ∈ EP . In fact, it is easy to see that EP is a semilattice with an identity. We now define

a relation τρ on E by the rule

ατρβ ⇔ (α, 1)ρ(β, 1) for α, β ∈ E.

Since the mapping (α, 1) → α is an isomorphism of EP onto E, the next lemma is immediate.

Lemma 2.2 τρ is a congruence on E.

By the approach from the Theorem VII.2.1 in [6], for every (α, 1) ∈ EP , we define Hατρ to

be the projection of (α, 1)ρ in G, explicitly

Hατρ = {g ∈ G : (β, g)ρ(α, 1) for some β ∈ E}.

Lemma 2.3 Hατρ is a subgroup of G.

Proof Since (α, 1)ρ(α, 1), by the definition of Hατρ, we have 1 ∈ Hατρ and so Hατρ 6= Ø. Let

g, h ∈ Hατρ . Then

g, h ∈ Hατρ ⇒ (β, g)ρ(α, 1) and (γ, h)ρ(α, 1)

⇒ (α, g)ρ(α, 1) and (α, h)ρ(α, 1) (by Lemma 2.1)

⇒ (α, g)ρ(α, h) ⇒ (α, g)(1, h−1)ρ(α, h)(1, h−1)

⇒ (α, gh−1)ρ(α, 1) ⇒ gh−1 ∈ Hατρ .

This implies that Hατρ is a subgroup of G, as required. �

As a consequence from the proof of Lemma 2.3, we have

Corollary 2.1 gh−1 ∈ Hατρ if and only if (α, g)ρ(α, h).

Proof From the proof of Lemma 2.3, we have (α, g)ρ(α, h) implies gh−1 ∈ Hατρ . Conversely,

we have

gh−1 ∈ Hατρ ⇒ (∃β ∈ E)(β, gh−1)ρ(α, 1)

⇒ (α, gh−1)ρ(α, 1) (by Lemma 2.1)

⇒ (α, gh−1)(1, h)ρ(α, 1)(1, h) ⇒ (α, g)ρ(α, h). �

For the rest of this section, we now study the mutual relationship between τρ and {Hατρ}α∈E .

Let P , ρ, τρ and {Hατρ}α∈E be stated as above.

Lemma 2.4 If ατρβ, then (t · α)τρ(t · β) and tα(tβ)−1 ∈ H(t·α)τρ for any t ∈ G.
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Proof First, we have

ατρβ ⇒ (α, 1)ρ(β, 1) ⇒ (t · α, t)(α, 1)ρ(t · α, t)(β, 1)

⇒ (t · α, tα)ρ((t · α)(t · β), tβ) (*)

⇒ (t · α, 1)ρ((t · α)(t · β), 1) (by Lemma 2.1)

⇒ (t · α)τρ(t · α)(t · β).

Symmetrically, (t · β)τρ(t · α)(t · β). It follows that (t · α)τρ(t · β).

Next,

ατρβ ⇒ (t · α, tα)ρ((t · α)(t · β), tβ) (by (∗))

⇒ (t · α, tα)ρ(t · α, tβ) (by Lemma 2.1)

⇒ tα(tβ)−1 ∈ H(t·α)τρ (by Corollary 2.1). �

Lemma 2.5 If g ∈ Hατρ , then α(g · ν)τραν and gν ∈ H(αυ)τρ for any ν ∈ E.

Proof First, we have

g ∈ Hατρ ⇒ (α, g)ρ(α, 1) (by Corollary 2.1)

⇒ (α, g)(ν, 1)ρ(α, 1)(ν, 1) ⇒ (α(g · ν), gν)ρ(αν, 1) (**)

⇒ (α(g · ν), 1)ρ(αν, 1) (by Lemma 2.1)

⇒ α(g · ν)τραν.

Next,

g ∈ Hατρ ⇒ (α(g · ν), gν)ρ(αν, 1) (by (∗∗))

⇒ (αν, gν)ρ(αν, 1) (by Lemma 2.1)

⇒ gν ∈ H(αν)τρ (by Corollary 2.1). �

Lemma 2.6 If α ≤ β, then tαHβτρ(tα)−1 ⊆ H(t·α)τρ for any t ∈ G.

Proof To obtain that tαHβτρ(tα)−1 ⊆ H(t·α)τρ, we need only to prove that tαg(tα)−1 ∈ H(t·α)τρ

for any t ∈ G, g ∈ Hβτρ .

Let g ∈ Hβτρ. By Corollary 2.1, we have (β, g)ρ(β, 1). Since α ≤ β, we have αβ = α. Then

(α, g) = (αβ, g) = (α, 1)(β, g)ρ(α, 1)(β, 1) = (αβ, 1) = (α, 1).

It follows that

(t · α, t)(α, g)ρ(t · α, t)(α, 1) ⇒ (t · α, tαg)ρ(t · α, tα)

⇒ tαg(tα)−1 ∈ H(t·α)τρ (by Corollary 2.1). �

Now we introduce the concept of congruence pairs for P as follows.

Definition 2.1 A pair (τ, {Hατ}α∈E) is a congruence pair for P if

(i) τ is a congruence on E;
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(ii) {Hατ}α∈E is a family of subgroups on G;

(iii) τ and {Hατ}α∈E satisfy:

(a) If ατβ, then (t · α)τ(t · β) and tα(tβ)−1 ∈ H(t·α)τ for any t ∈ G;

(b) If g ∈ Hατ , then α(g · ν)ταν and gν ∈ H(αν)τ for any ν ∈ E;

(c) If α ≤ β, then tαHβτ (tα)−1 ⊆ H(t·α)τ for any t ∈ G.

The following result is immediate from the (c) of Definition 2.1 (iii).

Lemma 2.7 Let (τ, {Hατ}α∈E) be a congruence pair for P . If α ≤ β, then Hβτ ⊆ Hατ .

Proposition 2.1 Let P = E ⊲⊳ G, the Zappa-Szép product of a semilattice E with an identity

and a group G. If ρ is a congruence on P , then (τρ, {Hυτρ}υ∈E) is a congruence pair.

Proof It follows from Lemmas 2.1-2.6. �

3. Congruences and congruence lattice

To describe congruences on P, the set of all congruences on P is denoted by Con(P ). In this

section, we are finally ready to establish the relation between congruence lattice Con(P ) and the

set of all congruence pairs for P .

Theorem 3.1 Let P = E ⊲⊳ G, the Zappa-Szép product of a semilattice E with an identity and

a group G. If ρ is a congruence on P , then (τρ, {Hυτρ}υ∈E) is a congruence pair. Conversely, if

(τ, {Hυτ}υ∈E) is a congruence pair for P , a relation ρ(τ,{Hυτ}υ∈E) defined by

(α, g) ρ(τ,{Hυτ}υ∈E) (β, h) ⇔ ατβ, gh−1 ∈ Hατ ,

is a congruence on P . Moreover,

τρ(τ,{Hυτ }υ∈E) = τ, H
ατ

ρ(τ,{Hυτ }υ∈E) = Hατ , ρ(τρ,{Hυτρ}υ∈E) = ρ.

Proof By Proposition 2.1, we have already established the first statement in this theorem.

Thus, we suppose now that (τ, {Hυτ}υ∈E) is a congruence pair, and let ρ = ρ(τ,{Hυτ}υ∈E) be as

defined. It is immediate that ρ is reflexive and symmetric. In order to verify that ρ is transitive,

let (α, g)ρ(β, h) and (β, h)ρ(υ, k) for (α, g), (β, h), (υ, k) ∈ P . By the definition of ρ(τ,{Hυτ}υ∈E),

we have

(α, g)ρ(β, h) ⇒ ατβ and gh−1 ∈ Hατ , (β, h)ρ(υ, k) ⇒ βτυ and hk−1 ∈ Hβτ .

This implies that ατβτυ, and so ατυ. By ατβ, we have Hατ = Hβτ and so gk−1 = (gh−1)(hk−1) ∈

Hατ . It follows that (α, g)ρ(υ, k). Therefore ρ is an equivalence relation.

To show that ρ is a congruence, we prove that ρ is a right congruence and a left congruence.

Let (α, g)ρ(β, h) and (υ, k) ∈ P . Then, ατβ and gh−1 ∈ Hατ . Further,

gh−1 ∈ Hατ ⇒ α(gh−1 · (h · υ))τα(h · υ) (by (2) of Definition 2.1 (iii))

⇒ α(g · υ)τα(h · υ) ⇒ α(g · υ)τβ(h · υ) (by ατβ) (***)
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and

gh−1 ∈ Hατ ⇒ (gh−1)h·υ ∈ Hα(h·υ)τ (by (2) of Definition 2.1 (iii))

⇒ gh−1·(h·υ)(h−1)h·υ ∈ Hα(h·υ)τ

⇒ gυ(hυ)−1 ∈ Hα(h·υ)τ (since h−1 · (h · υ) = υ and (h−1)h·υ = (hυ)−1)

⇒ gυ(hυ)−1 ∈ Hβ(h·υ)τ (since ατβ we have α(h · υ)τβ(h · υ))

⇒ gυ(hυ)−1 ∈ Hα(g·υ)τ (by (∗ ∗ ∗)).

Furthermore, (gυk)(hυk)−1 = (gυk)(k−1(hυ)−1) = gυ(hυ)−1 ∈ Hα(g·υ)τ . Therefore,

(α, g)(υ, k) = (α(g · υ), gυk)ρ(β(h · υ), hυk) = (β, h)(υ, k).

This implies that ρ is a right congruence.

On the other hand,

ατβ ⇒ (k · α)τ(k · β) (by (1) of Definition 2.1 (iii))

⇒ υ(k · α)τυ(k · β)

and

gh−1 ∈ Hατ

⇒ kαgh−1(kα)−1 ∈ H(k·α)τ (since α ≤ α and (3) of Definition 2.1 (iii))

⇒ kαgh−1(kβ)−1 = (kαgh−1(kα)−1)(kα(kβ)−1) ∈ H(k·α)τ (by (1) of Definition 2.1 (iii))

⇒ kαgh−1(kβ)−1 ∈ Hυ(k·α)τ (since υ(k · α) ≤ (k · α) and Lemma 2.7).

Therefore,

(υ, k)(α, g) = (υ(k · α), kαg)ρ(υ(k · β), kβh) = (υ, k)(β, h).

This implies that ρ is a left congruence.

It is clear that τρ(τ,{Hυτ }υ∈E ) = τ .

Next,

g ∈ Hατ ⇔ (α, g)ρ(τ,{Hυτ}υ∈E)(α, 1) ⇔ g ∈ H
ατ

ρ(τ,{Hυτ }υ∈E )

which yields H
ατ

ρ(τ,{Hυτ }υ∈E) = Hατ .

Finally,

(α, g)ρ(β, h) ⇔ (α, 1)ρ(β, 1) and (α, g)ρ(α, h) ⇔ ατρβ and gh−1 ∈ Hατρ

⇔ (α, g)ρ(τρ,{Hυτρ}υ∈E)(β, h)

which yields ρ = ρ(τρ,{Hυτρ}υ∈E). �

Theorem 3.2 Let Con(P ) be the congruence lattice of all congruences on P. Let ΩP be the

poset of all congruences pairs for P with the partial order given by

(τ, {Hατ}α∈E) ≤ (τ ′, {Hατ ′}α∈E) ⇔ τ ⊆ τ ′, Hατ ⊆ Hατ ′ for each α ∈ E.

Then the mapping

θ : Con(P ) −→ ΩP , ρ −→ (τρ, {Hατρ}α∈E)
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is a lattice isomorphism from Con(P ) onto ΩP .

Proof According to Theorem 3.1, we know that θ is bijective. Since

ρ ≤ σ ⇔ τρ ⊆ τσ, Hατρ ⊆ Hατσ for each α ∈ E ⇔ (τρ, {Hατρ}α∈E) ≤ (τσ , {Hατσ}α∈E),

θ is preserving order mapping. Therefore θ is a lattice isomorphism. �

For the rest of this section, we characterize group congruences on P .

Proposition 3.1 Let P = E ⊲⊳ G, a Zappa-Szép product of a semilattice E with an identity

and a group G. Let H be a normal subgroup of G satisfying:

(1) tα(tβ)−1 ∈ H for any α, β ∈ E, t ∈ G;

(2) If g ∈ H , then gυ ∈ H for any υ ∈ E.

Define a relation ρH on P by

(α, g)ρH(β, h) ⇔ gh−1 ∈ H.

Then ρH is a group congruence on P . Conversely, every group congruence on P can be con-

structed in this way.

Proof Direct part. It is easy to verify that ρH is an equivalent relation. To show that ρH is a

congruence, let (α, g)ρH(β, h) and (υ, k) ∈ P . Then

(α, g)ρH(β, h) ⇒ gh−1 ∈ H ⇒ (gh−1)h·υ ∈ H (by (2))

⇒ gh−1·(h·υ)(h−1)h·υ ∈ H

⇒ gυ(hυ)−1 ∈ H (by Proposition 1.1 (2))

⇒ (gυk)(hυk)−1 ∈ H

and

(α, g)ρH(β, h) ⇒ gh−1 ∈ H (by the definition of ρH)

⇒ kαgh−1(kβ)−1 = (kαgh−1(kα)−1)(kα(kβ)−1) ∈ H

(since H is a normal subgroup and kα(kβ)−1 ∈ H).

It follows that

(α, g)(υ, k) = (α(g · υ), gυk)ρH(β(h · υ), hυk) = (β, h)(υ, k)

and

(υ, k)(α, g) = (υ(k · α), kαg)ρH(υ(k · β), kβh) = (υ, k)(β, h).

Therefore, ρ is a congruence.

By Proposition 1.2, P is regular implies that P/ρH is regular. It remains to show that P/ρH

is cancellative. We prove that P/ρH is left cancellative and right cancellative. Now

(υ, k)ρH(α, g)ρH = (υ, k)ρH(β, h)ρH

⇒ (υ, k)(α, g)ρH(υ, k)(β, h) ⇒ (υ(k · α), kαg)ρH(υ(k · β), kβh)
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⇒ kαgh−1(kβ)−1 ∈ H (by the definition of ρH)

⇒ gh−1 = [(kα)−1(kαgh−1(kβ)−1)kα]((kα)−1kβ) ∈ H

(since H is a normal subgroup)

(by (1) we have (kα)−1kβ = (k−1)k·α)((k−1)k·β)−1 ∈ H)

⇒ (α, g)ρH(β, h) (by the definition of ρH) ⇒ (α, g)ρH = (β, h)ρH .

This implies that P/ρH is left cancellative.

(α, g)ρH(υ, k)ρH = (β, h)ρH(υ, k)ρH ⇒ (α, g)(υ, k)ρH(β, h)(υ, k)

⇒ (α, g)(υ, k)(1, k−1)ρH(β, h)(υ, k)(1, k−1) ⇒ (α, g)(υ, 1)ρH(β, h)(υ, 1)

⇒ (α, g)(1, 1)ρH(β, h)(1, 1) (since (υ, 1)ρH(1, 1))

⇒ (α, g)ρH(β, h) ⇒ (α, g)ρH = (β, h)ρH .

This implies that P/ρH is right cancellative. Therefore, ρH is a group congruence on P .

Converse part. Let ρ be a group congruence on P . Now we define a subset H of G as follows

H = {g ∈ G : (α, g)ρ(β, 1) for some α, β ∈ E}.

It is convenient to present the next phases of the arguments as a lemma.

Firstly, notice that if ρ is a group congruence on P , then (α, g)ρ(β, h) for all (α, g), (β, h) ∈

E(P ).

Lemma 3.1 Let ρ be a group congruence on P and g, h ∈ G. Then, (α, g)ρ(β, h) if and only if

(γ, gυ)ρ(δ, hω) for any γ, δ, υ, ω ∈ E.

Proof If (α, g)ρ(β, h), then

(α, g)(υ, 1)ρ(β, h)(ω, 1) ⇒ (α(g · υ), gυ)ρ(β(h · ω), hω) ⇒ (γ, 1)(α(g · υ), gυ)ρ(δ, 1)(β(h · ω), hω)

⇒ (γα(g · υ), gυ)ρ(δβ(h · ω), hω) ⇒ (α(g · υ)γ, gυ)ρ(β(h · ω)δ, hω)

⇒ (α(g · υ), 1)(γ, gυ)ρ(β(h · ω), 1)(δ, hω) ⇒ (γ, gυ)ρ(δ, hω)

(since(α(g · υ), 1)ρ(β(h · ω), 1)) and ρ is a group congruence).

Conversely, it is clear. �

Let us now return to the main proof. Since (α, 1)ρ(α, 1), by the definition of H , we have

1 ∈ H and so H 6= Ø. If g ∈ H and h ∈ H , then

(∃α, β, γ, δ ∈ E)(α, g)ρ(β, 1) and (γ, h)ρ(δ, 1) (by the definition of H)

⇒ (α, g)ρ(γ, h) (by (β, 1)ρ(δ, 1))

⇒ (α, g)ρ(α, h) (by Lemma 3.1)

⇒ (α, g)(1, h−1)ρ(α, h)(1, h−1) ⇒ (α, gh−1)ρ(α, 1)

⇒ gh−1 ∈ H (by the definition of H).

This implies that H is a subgroup. To show that H is a normal subgroup of G, we need to prove
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that tgt−1 ∈ H for any t ∈ G, g ∈ H . Let g ∈ H and t ∈ G. Then

(∃α, β ∈ E) (α, g)ρ(β, 1) (by the definition of H)

⇒ (1, g)ρ(1, 1) (by Lemma 3.1)

⇒ (1, t)(1, g)(1, t−1)ρ(1, t)(1, 1)(1, t−1)

⇒ (1, tgt−1)ρ(1, 1) ⇒ tgt−1 ∈ H.

In order to establish condition (1), let α, β ∈ E. Then

(1, t)(α, 1)ρ(1, t)(β, 1) ⇒ (t · α, tα)ρ(t · β, tβ)

⇒ (t · α, tα)(1, (tβ)−1)ρ(t · β, tβ)(1, (tβ)−1)

⇒ (t · α, tα(tβ)−1)ρ(t · β, 1) ⇒ tα(tβ)−1 ∈ H.

Further, let g ∈ H . Then

(∃α, β ∈ E)(α, g)ρ(β, 1) ⇒ (α, gυ)ρ(β, 1) (by Lemma 3.1)

⇒ gυ ∈ H.

We have proved that H satisfies the condition (2).

Finally, we prove that ρH = ρ. Now

(α, g)ρH(β, h) ⇒ gh−1 ∈ H ⇒ (γ, gh−1)ρ(δ, 1)

⇒ (γ, gh−1)(1, h)ρ(δ, 1)(1, h)

⇒ (γ, g)ρ(δ, h) ⇒ (α, g)ρ(β, h)

which yields ρH ⊆ ρ.

(α, g)ρ(β, h) ⇒ (α, g)(1, h−1)ρ(β, h)(1, h−1) ⇒ (α, gh−1)ρ(β, 1)

⇒ gh−1 ∈ H ⇒ (α, g)ρH(β, h)

which yields ρ ⊆ ρH . �
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