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Abstract In this paper, we investigate the hyper order of the solutions of high order linear

differential equations with some dominated coefficient being lacunary series, and obtain some

results which improve and extend previous results.
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1. Introduction and results

In this paper, we shall assume that readers are familiar with the fundamental results and

the standard notations of the Nevanlinna’s theory of meromorphic functions [8, 13]. In addition,

we use σ(f), λ(f) and λ(f) to denote the order, exponent of convergence of zeros and exponent

of convergence of distinct zeros of meromorphic function f , respectively. We use σ2(f) to denote

the hyper order of f(z), which is defined to be [14]

σ2(f) = lim
r→∞

log log T (r, f)

log r
= lim

r→∞

log2 T (r, f)

log r
.

The hyper exponent of convergence of zeros and distinct zeros of f(z) are respectively defined

to be [5]

λ2(f) = lim
r→∞

log2 N(r, f)

log r
, λ2(f) = lim

r→∞

log2 N(r, f)

log r
.

We denote the linear measure of a set E ⊂ [1,∞) by mE =
∫

E
dt and the logarithmic

measure of E by mlE =
∫

E
dt
t
. The upper and lower logarithmic density of E are defined by

log dens(E) = lim
r→∞

ml(E ∩ [1, r])

log r

and

log dens(E) = lim
r→∞

ml(E ∩ [1, r])

log r
,
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respectively. It is easy to see that mlE = ∞ if log dens(E) > 0 or log dens(E) > 0.

For the higher order linear differential equation

f (k) + Ak−1f
(k−1) + · · · + A0f = F, (1.1)

where Aj(z) (j = 0, 1, . . . , k− 1, k ≥ 2), F (z) are entire functions of finite order, it is well known

that every solution of (1.1) is entire when the coefficients Aj(z) (j = 0, 1, . . . , k − 1) and F (z)

are entire functions. As to equation (1.1), a classical problem is whether every transcendental

solution of (1.1) has infinite order or not if there exists some coefficient Ad(z)(1 ≤ d ≤ k − 1)

such that max{σ(Aj), j 6= d, σ(F )} < σ(Ad). Many people investigated this problem. In 1991,

Hellerstein, Miles and Rossi proved the following result.

Theorem 1.1 ([10]) Let A0, . . . , Ak−1, F be entire functions. Suppose that there exists an

Ad (0 ≤ d ≤ k − 1) such that

max{σ(Aj), j 6= d, σ(F )} < σ(Ad) ≤
1

2
.

Then every solution of (1.1) is either a polynomial or an entire function of infinite order.

By the definition of hyper order, we can easily obtain σ(f) = ∞ if σ2(f) > 0 and the growth

of infinite order solutions of (1.1) can be estimated more precisely. Then the above problem

becomes that under what conditions can we get the result σ2(f)=σ(Ad) for every transcendental

solution of (1.1) if there exists some coefficient Ad(z)(1 ≤ d ≤ k − 1) satisfying max{σ(Aj), j 6=

d, σ(F )} < σ(Ad).

In 2000, Chen and Yang gave the more precise estimate of hyper order of the solutions of

(1.1) and obtained the following results.

Theorem 1.2 ([4]) Let Aj(z) (j = 0, 1, . . . , k−1), F (z) be entire functions. Suppose that there

exists some d ∈ {0, . . . , k − 1} such that transcendental entire function Ad(z) satisfies

max{σ(F ), σ(Aj)(j 6= d)} < σ(Ad) <
1

2
,

then every transcendental solution of (1.1) satisfies σ2(f) = σ(Ad). Furthermore, if F (z) 6≡ 0,

then λ2(f) = λ2(f) = σ2(f) = σ(Ad).

From Theorem 1.2, we have σ2(f) = σ(Ad) for every transcendental solution of (1.1) if

max{σ(Aj), j 6= d, σ(F )} < σ(Ad) < 1/2. In order to remove the condition σ(Ad) < 1/2, we

introduce the lacunary series in the following.

Let Ad(z) =
∑∞

n=0 cλn
zλn be a lacunary series of finite order, where the sequence of expo-

nents {λ0, λ1, . . . , λn, . . .} is an increasing sequence of nonnegative integers satisfying the Fabry

gap condition
λn

n
→ ∞, n → ∞. (1.2)

In 2009, Tu and Liu proved the following result.

Theorem 1.3 ([12]) Let Aj(z) (j = 0, 1, . . . , k−1), F (z) be entire functions satisfying max{σ(Aj),

j 6= d, σ(F )} < σ(Ad) < ∞ (1 ≤ d ≤ k − 1). Suppose that Ad(z) =
∑∞

n=0 cλn
zλn is an entire

function of regular growth such that the sequence of exponents {λn} satisfies (1.2), then
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(i) If F (z) ≡ 0, then every transcendental solution f(z) of (1.1) satisfies σ2(f) = σ(Ad);

(ii) If F (z) 6≡ 0, then every transcendental solution f(z) of (1.1) satisfies λ2(f) = λ2(f) =

σ2(f) = σ(Ad).

In this paper, we remove the condition that Ad(z) is of regular growth and obtain the same

result as that in Theorem 1.3.

Theorem 1.4 Let Aj(z) (j = 0, 1, . . . , k−1), F (z) be entire functions satisfying max{σ(Aj), j 6=

d, σ(F )} < σ(Ad) < ∞(1 ≤ d ≤ k − 1). Suppose that Ad(z) =
∑∞

n=0 cλn
zλn is a lacunary series

such that the sequence of exponents {λn} satisfies (1.2), then

(i) Every transcendental solution f(z) of (1.1) satisfies σ2(f) = σ(Ad);

(ii) If F (z) 6≡ 0, then every transcendental solution f(z) of (1.1) satisfies λ2(f) = λ2(f) =

σ2(f) = σ(Ad);

(iii) If f(z) is a polynomial solution of (1.1), then f(z) must be a polynomial with degree

less than d.

(iv) If d = 1, then every non-constant solution f(z) of (1.1) satisfies σ2(f) = σ(Ad).

2. Lemmas

Lemma 2.1 ([7]) Let f(z) be a transcendental meromorphic function and α > 1 be a given

constant. For any given ε > 0, there exist a set E1 ⊂ [1,∞) that has finite logarithmic measure

and a constant B > 0 that depends only on α and (i, j)(i, j ∈ {0, . . . , k} with i < j) such that

for all z satisfying |z| = r 6∈ [0, 1] ∪ E1, we have

∣

∣

f (j)(z)

f (i)(z)

∣

∣ ≤ B
(T (αr, f)

r
(logα r) log T (αr, f)

)j−i

. (2.1)

Lemma 2.2 ([3]) Let f(z) be an entire function of order σ(f) = σ < ∞. Then for any given

ε > 0, there is a set E2 ⊂ [1,∞) that has finite linear measure and finite logarithmic measure

such that for all z satisfying |z| = r 6∈ [0, 1]
⋃

E2, we have

exp{−rσ+ε} ≤ |f(z)| ≤ exp{rσ+ε}. (2.2)

Lemma 2.3 ([6]) Let f(z) =
∑∞

n=1 cλn
zλn be an entire function of finite order. If the sequence

of exponents {λn} satisfies (1.2), then for any given ε (0 < ε < 1),

log L(r, f) > (1 − ε) log M(r, f) (2.3)

holds outside a set E3 of logarithmic density 0, where M(r, f) = sup|z|=r |f(z)|, L(r, f) =

inf |z|=r |f(z)|.

Lemma 2.4 Let f(z) be an entire function of order 0 < σ(f) = σ < ∞. Then for any β < σ,

there exists a set E4 with positive upper logarithmic density such that for all |z| = r ∈ E4, we

have

log M(r, f) > rβ , (2.4)

where M(r, f) = sup|z|=r |f(z)|.
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Proof By the definition of the order, there exists a sequence {rn} tending to ∞ such that for

any given ε > 0, we have

log M(rn, f) > rσ−ε
n .

Since β < σ, we can choose ε (sufficiently small) and α to satisfy 1 < α < σ−ε
β

. Then for all

r ∈ [rn, rα
n ] (n ≥ 1), we have

log M(r, f) ≥ log M(rn, f) > rσ−ε
n ≥ r

σ−ε

α > rβ .

Setting E4 =
⋃∞

n=1[rn, rα
n ], we have

log densE4 ≥ lim
n→∞

ml(E4 ∩ [1, r])

log r
≥ lim

n→∞

ml(E4 ∩ [1, rα
n ])

log rα
n

≥ lim
n→∞

ml([rn, rα
n ])

log rα
n

=
α − 1

α
> 0.

Thus, Lemma 2.4 is proved. �

Lemma 2.5 Let f(z) =
∑∞

n=1 cλn
zλn be an entire function of order 0 < σ(f) = σ < ∞. If

the sequence of exponents {λn} satisfies (1.2), then for any β < σ(f), there exists a set E5 with

positive upper logarithmic density such that for all |z| = r ∈ E5, we have

log L(r, f) > rβ , (2.5)

where L(r, f) = inf |z|=r |f(z)|.

Proof By Lemma 2.3, for any given ε(> 0), there exists a set E3 with log densE3 = 1 such that

for all r ∈ E3, we have (2.3). By Lemma 2.4, there exists a set E4 with log densE4 > 0 such that

for all r ∈ E4, we have

log M(r, f) > rσ−ε. (2.6)

Then for any β < σ, we can choose ε to satisfy 0 < ε < min{σ(f)− β, 1}. By (2.3) and (2.6), we

have that for all r ∈ E3 ∩ E4,

log L(r, f) > (1 − ε) log M(r, f) > (1 − ε)rσ−ε > rβ .

Note that the set E5 = E3 ∩ E4 has a positive upper logarithmic density. In fact, we have

log dens(E3 ∩ E4) + log dens(E3 ∪ E4) ≥ log densE3 + log densE4.

Consequently, we have

log dens(E5) ≥ log densE3 + log densE4 − 1 > 0.

Thus, Lemma 2.5 is proved. �

Lemma 2.6 ([2]) Let f(z) be a transcendental entire function. Then there is a set E6 ⊂ [1, +∞)

having finite logarithmic measure such that for all z satisfying |z| = r 6∈ E6 and |f(z)| = M(r, f),

we have
∣

∣

f(z)

f (s)(z)

∣

∣ ≤ 2rs, s ∈ N. (2.7)

Lemma 2.7 ([9,11]) Let f(z) be a transcendental entire function, and let z be a point with

|z| = r at which |f(z)| = M(r, f). Then for all |z| = r outside a set E7 of r of finite logarithmic
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measure, we have

f (i)(z)

f(z)
=

(νf (r)

z

)i

(1 + o(1)), i ∈ N, r /∈ E7, (2.8)

where νf (r) is the central index of f(z).

Lemma 2.8 ([5]) Let f(z) be an entire function of infinite order satisfying σ2(f) = σ. Then

lim
r→∞

log2 νf (r)

log r
= σ, (2.9)

where νf (r) is the central index of f(z).

Lemma 2.9 ([1, 2]) Let Aj(z) (j = 0, . . . , k − 1) be entire functions satisfying max{σ(Aj), j =

0, . . . , k − 1} ≤ σ < ∞. If f(z) is a solution of

f (k) + Ak−1f
(k−1) + · · · + A0f = 0, (2.10)

then σ2(f) ≤ σ.

By Lemmas 2.7, 2.8 and the same arguments as in the proof of Lemma 2.9, we can easily

obtain the following result.

Lemma 2.10 Let Aj(z) (j = 0, . . . , k − 1), F (z) be entire functions satisfying max{σ(Aj), j =

0, . . . , k − 1, σ(F )} ≤ σ < ∞. If f(z) is a solution of (1.1), then σ2(f) ≤ σ.

3. Proof of Theorem 1.4

Proof of Theorem 1.4 (i) Assume that f(z) is transcendental solution of (1.1). By (1.1), we

have

|Ad| ≤
∣

∣

f (k)

f (d)

∣

∣ + · · · + |Ad+1|
∣

∣

f (d+1)

f (d)

∣

∣ +
∣

∣

f

f (d)

∣

∣

(

|Ad−1|
∣

∣

f (d−1)

f

∣

∣ + · · · +
∣

∣A0| + |
F

f

∣

∣

)

. (3.1)

By Lemma 2.1, there exists a set E1 ⊂ [1,∞) having finite logarithmic measure and a constant

B > 0 such that
∣

∣

f (j)(z)

f (i)(z)

∣

∣ ≤ B(T (2r, f))2k, 0 ≤ i < j ≤ k (3.2)

holds for all |z| = r 6∈ E1 and for sufficiently large r. Since max{σ(Aj), j 6= d, σ(F )} < σ(Ad),

we choose α1, β1 to satisfy max{σ(Aj), j 6= d, σ(F )} < α1 < β1 < σ(Ad). By Lemma 2.2,

there exists a set E2 ⊂ [1,∞) having finite logarithmic measure such that for all z satisfying

|z| = r 6∈ E2 and for sufficiently large r, we have

|Aj(z)| ≤ exp{rα1}. (3.3)

Since Ad(z) =
∑∞

n=0 cλn
zλn and {λn} satisfies (1.2), by Lemma 2.5, there exists a set E5 ⊂ [1,∞)

having infinite logarithmic measure such that for all z satisfying |z| = r ∈ E5, we have

|Ad(z)| ≥ inf
|z|=r

|Ad(z)| ≥ exp{rβ1}. (3.4)

By Lemmas 2.2 and 2.6, there exist two sets E6, E2 ⊂ [1,∞) having finite logarithmic measure
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such that for all z satisfying |z| = r 6∈ (E6

⋃

E2) and |f(z)| = M(r, f), we have
∣

∣

∣

f(z)

f (d)(z)

∣

∣

∣
≤ 2rd,

∣

∣

∣

F (z)

f(z)

∣

∣

∣
≤ |F (z)| ≤ exp{rα1}. (3.5)

Hence from (3.1)–(3.5), for all z satisfying|z| = r ∈ E5\(E1

⋃

E2

⋃

E6) and |f(z)| = M(r, f), we

have

exp{rβ1} ≤ (k + 1)rd exp{rα1} · (T (2r, f))2k. (3.6)

Since β1 is arbitrarily close to σ(Ad), by (3.6), we have

lim
r→∞

log log T (r, f)

log r
≥ σ(Ad).

On the other hand, by Lemma 2.10, we have σ2(f) ≤ σ(Ad). Therefore, σ2(f) = σ(Ad).

(ii) Assume that if f(z) is a transcendental solution of (1.1), by (i), we have σ2(f) = σ(Ad).

Next we show that λ2(f) = λ2(f) = σ2(f) if F 6≡ 0. From (1.1), we have

1

f
=

1

F

(f (k)

f
+ Ak−1

f (k−1)

f
+ · · · + A0

)

. (3.7)

By (3.7), it is easy to see that if f(z) has a zero at z0 of order m more than k, then F must have

a zero at z0 of order m − k. Hence we get

N(r,
1

f
) ≤ kN(r,

1

f
) + N(r,

1

F
). (3.8)

Also by (3.7), we have

m(r,
1

f
) ≤

k
∑

j=1

m(r,
f (j)

f
) +

k−1
∑

j=0

m(r, Aj) + m(r,
1

F
). (3.9)

By (3.8), (3.9) and the lemma of logarithmic derivative, we obtain that

T (r, f) ≤ kN(r,
1

f
) + M(log(rT (r, f))) + T (r, F ) +

k−1
∑

j=0

T (r, Aj), r /∈ E, (3.10)

where E ⊂ (0, +∞) is a set having finite linear measure, M > 0 is a constant, not necessarily

the same at each occurrence. For sufficiently large r 6∈ E and for any given ε > 0, we have

M(log(rT (r, f))) ≤
1

2
T (r, f), (3.11)

k−1
∑

j=0

T (r, Aj) + T (r, F ) ≤ (k + 1)rσ(Ad)+ε. (3.12)

By (3.11) and (3.12), we have

T (r, f) ≤ 2kN(r,
1

f
) + 2(k + 1)rσ(Ad)+ε, (3.13)

hence σ2(f) ≤ λ2(f) by (3.13). Therefore, λ2(f) = λ2(f) = σ2(f).

(iii) Suppose that f(z) is a polynomial solution of (1.1) with degree not less than d. By

(1.1), we have

|Adf
(d)(z)| ≤ |f (k)(z)|+ · · ·+ |Ad+1f

(d+1)(z)|+ |Ad−1f
(d−1)(z)|+ · · ·+ |A0f(z)|+ |F (z)|. (3.14)
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By the proof of (i), we know that there exists a set E5 with infinite logarithmic measure

such that for all z satisfying |z| = r ∈ E5, we have

|Adf (d)(z)| ≥ rM · exp {rβ1}. (3.15)

On the other hand, since max{σ(Aj), j 6= d, σ(F )} < α1, by Lemma 2.2 and (3.14), for sufficiently

large |z| = r 6∈ E2, we have

|Adf
(d)(z)| ≤ |f (k)(z)| + · · · + |Ad+1f

d+1(z)| + |Ad−1f
d−1(z)| + · · · + |A0f(z)| + |F (z)|

≤ rM · exp {rα1}. (3.16)

Since α1 < β1, (3.15) is a contradiction with (3.16), thus, the degree of f(z) must be less than d.

(iv) If d = 1 and f(z) is a polynomial solution of (1.1), by (iii), we obtain that f(z) must be

a constant. In addition, by (i), we obtain that every non-constant solution f(z) of (1.1) satisfies

σ2(f)=σ(Ad). �
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