Journal of Mathematical Research with Applications Nov., 2012, Vol. 32, No. 6, pp. 694–698 DOI:10.3770/j.issn:2095-2651.2012.06.009 Http://jmre.dlut.edu.cn

Cauchy Integral Formulae in \mathbb{R}^n

Yafang GONG

School of Mathematics and Statistics, Wuhan University, Hubei 430072, P. R. China

Abstract In this note $p(\underline{D}) = \underline{D}^m + b_1 \underline{D}^{m-1} + \cdots + b_m$ is a polynomial Dirac operator in \mathbb{R}^n , where $\underline{D} = \sum_{j=1}^n e_j \frac{\partial}{\partial x_j}$ is a standard Dirac operator in \mathbb{R}^n , b_j are the complex constant coefficients. In this note we discuss all decompositions of $p(\underline{D})$ according to its coefficients b_j , and obtain the corresponding explicit Cauchy integral formulae of f which are the solution of $p(\underline{D})f = 0$.

Keywords Dirac operator; Cauchy integral formula.

MR(2010) Subject Classification 30G35

1. Introduction

Denote by \mathbf{R}_n the universal Clifford algebra whose elements are $e_0, e_1, \ldots, e_n, \ldots, e_{j_1} \cdots e_{j_r}$, $\ldots, e_1 \cdots e_n$, where $1 \leq j_1 < \cdots < j_r \leq n, \ 1 \leq r \leq n$. $e_0 = 1$ is the unit element. e_1, \ldots, e_n are the vectors satisfying $e_i e_j + e_j e_i = -2\delta_{ij}$ ([1]).

Denote $\underline{x} \in \mathbb{R}^n$ as $\underline{x} = x_1e_1 + \dots + x_ne_n$, $x_j \in \mathbb{R}$, then $\underline{x}^2 = -|\underline{x}|^2$. Any nonzero vector $\underline{x} \in \mathbb{R}^n$ has a unique inverse $\underline{x}^{-1} = \underline{\overline{x}}|\underline{x}|^{-2}$, where $\underline{\overline{x}} = -\underline{x}$. \mathbb{R}^n is called a homogeneous Euclidean space [2]. The Dirac operator in \mathbb{R}^n is defined by $\underline{D} = \sum_{j=1}^n e_j \frac{\partial}{\partial x_j}$. The solutions of $(\underline{D}f)(\underline{x}) = \sum_{j=1}^n e_j \frac{\partial f}{\partial x_j} = 0$ are called left monogenic while the solutions of $(f\underline{D})(\underline{x}) = \sum_{j=1}^n \frac{\partial f}{\partial x_j}e_j = 0$ are called right monogenic.

There exists an analogous hyper-complex theory of monogenic functions in \mathbb{R}^{n+1} , where \mathbb{R}^{n+1} is called inhomogeneous Euclidean space. In this case $x = x_0 e_0 + \underline{x} \in \mathbb{R}^{n+1}$, $D = \frac{\partial}{\partial x_0} + \underline{D}$ is the Dirac operator in \mathbb{R}^{n+1} (see [1,2]).

Cauchy integral formulae related with both D and \underline{D} are active topics in Clifford analysis. There are some connections as well as differences between the null solutions of D and \underline{D} . The standard function theory on D can be found in the book [1]. Function theory of the iterated Dirac operator D^k was discussed in [3]. The structure of the null solutions of $p(D) = D^m + b_1 D^{m-1} + \cdots + b_m$ was obtained in [4]. In the case of the homogeneous Euclidean space \mathbb{R}^n , Cauchy integral formulae of \underline{D} (see [2]), $\underline{D} - \lambda$ (see [5]) and \underline{D}^k (see [6–8]) have been obtained, respectively. Similar results on Helmholtz-type operators were discussed in Quaternion and Clifford analysis [9, 10].

Some studies have been carried out for the polynomial Dirac operator $p(\underline{D}) = \underline{D}^m + b_1 \underline{D}^{m-1} + \cdots + b_m$ in \mathbb{R}^n (see [7,8]). A Cauchy-Green type formula for the operator $\underline{D}^m + b_1 \underline{D}^m$

Received August 6, 2010; Accepted September 3, 2012 E-mail address: yfgong.math@whu.edu.cn

 $\sum_{k=1}^{m-1} (-1)^{k-m} b_k \underline{D}^k$ has been obtained in [7] by a fundamental solution of $p(\underline{D})$. In this paper we use the technique in [3, 4] to give out an explicit Cauchy integral formula for the null solutions of $p(\underline{D})$, the method we used is different from that in [7].

2. Cauchy integral formulae in \mathbb{R}^n

The fundamental solution of $\underline{D} = \sum_{j=1}^{n} e_j \frac{\partial}{\partial x_j}$ is

$$G_1(\underline{x}) = \frac{-1}{\omega_n} \frac{\underline{x}}{|\underline{x}|^n}.$$

 $G_1(\underline{x})$ is both left and right monogenic in $\mathbb{R}^n \setminus \{\underline{0}\}$. ω_n denotes the measure of the unit sphere in \mathbb{R}^n (see [2]).

Theorem 2.1 ([2]) Suppose that $f: U \subset \mathbb{R}^n \to \mathbf{R}_n$ is left monogenic, $\Omega \subset U$ is a bounded domain with piecewise C^1 boundary $\partial \Omega$. Then

$$f(\underline{x}) = \int_{\partial\Omega} G_1(\underline{y} - \underline{x}) n(\underline{y}) f(\underline{y}) \mathrm{d}\mu(\underline{y}), \quad \underline{x} \in \Omega,$$

where $d\mu(y)$ is the surface measure of $\partial\Omega$, n(y) is the outward unit normal at $y \in \partial\Omega$.

The following functions $G_k(\underline{x})$ play important roles in the study [7,8]:

Case 1 In the case where n is odd, denote

$$G_{2l+1}(\underline{x}) = A_{2l+1} \frac{\underline{x}}{|\underline{x}|^{n-2l}}, \quad l = 0, 1, \dots$$
$$G_{2l}(\underline{x}) = A_{2l} \frac{1}{|\underline{x}|^{n-2l}}, \quad l = 1, \dots;$$

Case 2 In the case where n is even, denote

$$G_{2l+1}(\underline{x}) = A'_{2l+1} \frac{\underline{x}}{|\underline{x}|^{n-2l}}, \quad l = 0, 1, \dots, \frac{n}{2} - 1,$$

$$G_{2l}(\underline{x}) = A'_{2l} \frac{1}{|\underline{x}|^{n-2l}}, \quad l = 1, \dots, \frac{n-2}{2};$$

$$G_k(\underline{x}) = B_k \underline{x}^{k-n} + C_k \underline{x}^{k-n} \ln(|\underline{x}|), \quad k \ge n.$$

These functions are the building stones in the study of $p(\underline{D})$. The real coefficients A_k, A'_k, B_k and C_k are chosen such that $\underline{D}G_k = G_k\underline{D} = G_{k-1}$ (see [5,7,8]), then $\underline{D}^kG_k = G_k\underline{D}^k = 0$ in the domain $\mathbb{R}^n \setminus \{\underline{0}\}$. These $G_k(\underline{x})$ are reobtained by use of Fourier transform if the coefficients A_k, A'_k, B_k and C_k are omitted [6].

Assume $\lambda \in \mathbb{C}$. Denote

$$E_{\lambda}(\underline{x}) = \sum_{k=1}^{\infty} \lambda^{k-1} G_k(\underline{x}), \qquad (2.1)$$

then for any fixed $\underline{x} \in \mathbb{R}^n \setminus \{0\}$, the series in (2.1) is convergent for $\lambda \in \mathbb{C}$ (see [5,8]). $E_{\lambda}(\underline{x})$ is the fundamental solution of $\underline{D} - \lambda$ implying that $(\underline{D} - \lambda)E_{\lambda}(\underline{x}) = E_{\lambda}(\underline{x})(\underline{D} - \lambda) = 0$ in the domain $\mathbb{R}^n \setminus \{\underline{0}\}$. Obviously, $E_0(\underline{x}) = G_1(\underline{x})$ is the fundamental solution of \underline{D} .

Theorem 2.2 ([5,8]) Suppose that $f: U \subset \mathbb{R}^n \to \mathbf{R}_n$ is C^1 satisfying $(\underline{D} - \lambda)f = 0$. Let $\Omega \subset U$

be a bounded domain with piecewise C^1 boundary $\partial \Omega$. Then

$$f(\underline{x}) = \int_{\partial\Omega} E_{-\lambda}(\underline{y} - \underline{x})n(\underline{y})f(\underline{y})d\mu(\underline{y}), \quad \underline{x} \in \Omega.$$

Theorem 2.3 ([7]) Suppose that $f: U \subset \mathbb{R}^n \to \mathbf{R}_n$ is C^k satisfying $\underline{D}^k f = 0, \Omega \subset U$ is a bounded domain with piecewise C^k boundary $\partial\Omega$. Then

$$f(\underline{x}) = \int_{\partial\Omega} \sum_{j=1}^{\kappa} (-1)^{j-1} G_j(\underline{y} - \underline{x}) n(\underline{y}) \underline{D}^{j-1} f(\underline{y}) \mathrm{d}\mu(\underline{y}), \quad \underline{x} \in \Omega.$$

Theorem 2.4 ([8]) Let $E_{\lambda}^{(1)}(\underline{x}) = E_{\lambda}(\underline{x})$ be a fundamental solution of $\underline{D} - \lambda$. Then

$$E_{\lambda}^{(k)}(\underline{x}) = \frac{1}{\Gamma(k)} \frac{d^k}{d\lambda^k} E_{\lambda}^{(1)}(\underline{x})$$

is a fundamental solution for $(\underline{D} - \lambda)^k$. Moreover,

$$(\underline{D} - \lambda)E_{\lambda}^{(k)}(\underline{x}) = E_{\lambda}^{(k)}(\underline{x})(\underline{D} - \lambda) = E_{\lambda}^{(k-1)}(\underline{x}).$$

Theorem 2.5 Suppose $f: U \subset \mathbb{R}^n \to \mathbf{R}_n$ is C^k satisfying $(\underline{D} - \lambda)^k f = 0, \lambda \in \mathbb{C}, \Omega$ is a bounded domain in U with piecewise C^k boundary $\partial\Omega$. Then

$$f(\underline{x}) = \int_{\partial\Omega} \sum_{j=1}^{k} (-1)^{j-1} E_{-\lambda}^{(j)}(\underline{y} - \underline{x}) n(\underline{y}) (\underline{D} - \lambda)^{j-1} f(\underline{y}) d\mu(\underline{y}), \quad \underline{x} \in \Omega.$$
(2.2)

Proof The idea for the proof comes from [3].

Assume that $f, g \in C^k(U), \lambda \in \mathbb{C}$, then

$$\int_{\partial\Omega} g(\underline{y}) n(\underline{y}) f(\underline{y}) d\mu(\underline{y}) = \int_{\Omega} (g\underline{D} \cdot f + g \cdot \underline{D} f) d\underline{y}$$
$$= \int_{\Omega} (g(\underline{D} + \lambda) \cdot f + g \cdot (\underline{D} - \lambda) f) d\underline{y}.$$
(2.3)

Substituting $g(\underline{D} + \lambda)^{k-1-j}$ for g and $(\underline{D} - \lambda)^j f$ for f in (2.3), and summing up for $j = 0, 1, \ldots, k-1$ after multiplying the factor $(-1)^j$ on both sides, we have

$$\int_{\partial\Omega} \sum_{j=0}^{k-1} (-1)^j g(\underline{D} + \lambda)^{k-1-j} n(\underline{y}) (\underline{D} - \lambda)^j f d\mu(\underline{y})$$
$$= \int_{\Omega} g(\underline{D} + \lambda)^k . f + (-1)^{k-1} g. (\underline{D} - \lambda)^k f d\underline{y}.$$
(2.4)

Note that $E_{-\lambda}^{(k)}(\underline{y}-\underline{x})(\underline{D}+\lambda)^k = \delta(\underline{y}-\underline{x}), \ (\underline{D}-\lambda)^k f = 0$. Substituting in (2.4) $E_{-\lambda}^{(k)}(\underline{y}-\underline{x})$ for g and taking f to be a solution of $(\underline{D}-\lambda)^k f = 0$, the right side of (2.4) becomes

$$\int_{\Omega} E_{-\lambda}^{(k)} (\underline{y} - \underline{x}) (\underline{D} + \lambda)^k . f(\underline{y}) + (-1)^{k-1} E_{-\lambda}^{(k)} (\underline{y} - \underline{x}) . (\underline{D} - \lambda)^k f \mathrm{d}\underline{y} = f(\underline{x})$$

and we finally have

$$f(\underline{x}) = \int_{\partial\Omega} \sum_{j=0}^{k-1} (-1)^j E_{-\lambda}^{(k)}(\underline{y} - \underline{x})(\underline{D} + \lambda)^{k-1-j} n(\underline{y})(\underline{D} - \lambda)^j f \mathrm{d}\mu(\underline{y})$$

Cauchy integral formulae in \mathbb{R}^n

$$= \int_{\partial\Omega} \sum_{j=0}^{k-1} (-1)^j E_{-\lambda}^{(j+1)}(\underline{y} - \underline{x}) n(\underline{y}) (D - \lambda)^j f(\underline{y}) d\mu(\underline{y}),$$

where $E_{-\lambda}^{(k)}(\underline{y} - \underline{x})(\underline{D} + \lambda) = E_{-\lambda}^{(k-1)}(\underline{y} - \underline{x})$ are used in the above equation. \Box

Remark 2.6 If $\lambda = 0$, then $E_{\lambda}^{(k)}(\underline{x})|_{\lambda=0} = G_j(\underline{x})$. In this case the Cauchy integral formula (2.2) is just the result stated in Theorem 2.3. If k = 1, then (2.2) reduces to the Cauchy integral formula in Theorem 2.2.

Denote $p(\underline{D}) = \underline{D}^m + b_1 \underline{D}^{m-1} + \dots + b_m$, where $b_j \in \mathbb{C}$. Next we use the method in [4] to derive the Cauchy integral formula for the null solutions of $p(\underline{D})$.

Denote $p(\lambda) = \lambda^m + b_1 \lambda^{m-1} + \dots + b_m$. By Gauss's Theorem, $p(\lambda)$ has different complex roots $\lambda_1, \dots, \lambda_l$ with orders m_1, \dots, m_l , respectively, where all m_k are positive integers, $m_1 + \dots + m_l = m$. So $p(\lambda)$ is rewritten as

$$\pi(\lambda) = (\lambda - \lambda_1)^{m_1} \cdots (\lambda - \lambda_l)^{m_l}$$

Correspondingly $p(\underline{D})$ may be rewritten as

$$\pi(\underline{D}) = (\underline{D} - \lambda_1)^{m_1} \cdots (\underline{D} - \lambda_l)^{m_l}.$$
(2.5)

Obviously, $\underline{D} - \lambda_k$ commutes with the other $\underline{D} - \lambda_i$. Denote

1

$$\pi_{k,s}(\underline{D}) = (\underline{D} - \lambda_1)^{m_1} \cdots (\underline{D} - \lambda_{k-1})^{m_{k-1}} (\underline{D} - \lambda_k)^{m_k - s} (\underline{D} - \lambda_{k+1})^{m_{k+1}} \cdots (\underline{D} - \lambda_l)^{m_l},$$

where $1 \leq s \leq m_k$. For any function f which is smooth enough, f has the decomposition

$$f = \sum_{k=1}^{l} \sum_{s=1}^{m_k} \frac{1}{(m_k - s)!} \left[\frac{d^{m_k - s}}{d\lambda^{m_k - s}} \frac{(\lambda - \lambda_k)^s}{\pi(\lambda)} \right]_{\lambda = \lambda_k} \pi_{k,s}(\underline{D}) f.$$
(2.6)

Theorem 2.7 (Cauchy integral formula for the solutions of $\pi(\underline{D})f = 0$) Assume that Ω is a bounded domain in U with piecewise C^m boundary $\partial\Omega$, $\pi(\underline{D})$ is given by (2.5), f is a null solutions of $\pi(\underline{D})f = 0$ in $U \subset \mathbb{R}^n$. Then for any $\underline{x} \in \Omega$,

$$f(\underline{x}) = \sum_{k=1}^{l} \sum_{s=1}^{m_{k}} \frac{1}{(m_{k} - s)!} \left[\frac{d^{m_{k} - s}}{d\lambda^{m_{k} - s}} \frac{(\lambda - \lambda_{k})^{m_{k}}}{\pi(\lambda)} \right]_{\lambda = \lambda_{k}}$$
$$\int_{\partial \Omega} \sum_{j=1}^{s} (-1)^{j-1} E_{-\lambda_{k}}^{(j)} (\underline{y} - \underline{x}) n(y) (\underline{D} - \lambda_{k})^{j-1} \pi_{k,s} (\underline{D}) f(\underline{y}) d\mu(\underline{y}).$$
(2.7)

Proof Since $\pi(\underline{D})f = 0$ on the domain U, $\pi_{k,s}(\underline{D})f$ is a null solution of $(\underline{D} - \lambda_k)^s$. So by Theorem 2.5,

$$\pi_{k,s}(\underline{D})f = \int_{\partial\Omega} \sum_{j=1}^{s} (-1)^{j-1} E_{-\lambda_k}^{(j)}(\underline{y} - \underline{x}) n(y) (\underline{D} - \lambda_k)^{j-1} \pi_{k,s}(\underline{D}) f(\underline{y}) \mathrm{d}\mu(\underline{y}).$$
(2.8)

Formula (2.7) is derived after inserting (2.8) into (2.6). \Box

Corollary 2.8 Denote $\pi(\underline{D}) = (\underline{D} - \lambda_1) \cdots (\underline{D} - \lambda_m)$, f a null solution of $\pi(\underline{D})f = 0$ in $U \subset \mathbb{R}^n$. Then

$$f(\underline{x}) = \sum_{k=1}^{m} \int_{\partial\Omega} E_{-\lambda_k}(\underline{y} - \underline{x}) n(\underline{y}) \frac{\prod_{j=1, j \neq k}^{m} (\underline{D} - \lambda_j)}{\prod_{j=1, j \neq k}^{m} (\lambda_k - \lambda_j)} f(\underline{y}) d\mu(\underline{y}), \quad \underline{x} \in \Omega.$$
(2.9)

Remark 2.9 By substituting $E_{-\lambda_k}^{(j)}(\underline{y} - \underline{x})$ by $E_{\lambda_k}^{(j)}(\underline{x})$ in (2.7) and $E_{-\lambda_k}(\underline{y} - \underline{x})$ by $E_{\lambda_k}(\underline{x})$ in (2.9), respectively, then summing up for $k = 1, \ldots, l$, we get the functions

$$\sum_{k=1}^{l} \sum_{s=1}^{m_k} \frac{1}{(m_k - s)!} \Big[\frac{d^{m_k - s}}{d\lambda^{m_k - s}} \frac{(\lambda - \lambda_k)^{m_k}}{\pi(\lambda)} \Big]_{\lambda = \lambda_k} \sum_{j=1}^{s} (-1)^{j-1} E_{\lambda_k}^{(j)}(\underline{x})$$

$$\sum_{k=1}^{m} E_{\lambda_k}(\underline{x})$$

and

$$\sum_{k=1}^{m} \frac{E_{\lambda_k}(\underline{x})}{\prod_{j \neq k} (\lambda_k - \lambda_j)},$$

which are the fundamental solutions in [8] for $(\underline{D} - \lambda_1)^{m_1} \cdots (\underline{D} - \lambda_l)^{m_l}$ and $(\underline{D} - \lambda_1) \cdots (\underline{D} - \lambda_m)$, respectively. In [7], John Ryan obtained another fundamental solution of $p(\underline{D})$ and a Cauchy-Green formula for the null solutions of $\underline{D}^m + \sum_{k=1}^{m-1} (-1)^{k-m} b_k \underline{D}^k$. Obviously, the obtained results in this note show that the fundamental solutions of $p(\underline{D})$ are not the same as the kernel functions used in its Cauchy integral formulae in the case where some $\lambda_k \neq 0$. It is also worth pointing out that the method we used is different from that in [7], it is simpler and more constructive than that in [7].

References

- [1] F. BRACKX, R. DELANGHE, F. SOMMEN. Clifford Analysis. Pitman, Boston, MA, 1982.
- [2] R. DELANGHE, F. SOMMEN, V. SOUČEK. Clifford Algebra and Spinor Valued Functions: A Function Theory for the Dirac Operator. Kluwer Academic Publishers Group, Dordrecht, 1992.
- R. DELANGHE, F. BRACKX. Hypercomplex function theory and Hilbert modules with reproducing kernel. Proc. London Math. Soc. (3), 1978, 37(3): 545–576.
- Yafang GONG, Tao QIAN, Jinyuan DU. Structure of solutions of polynomial Dirac equations in Clifford analysis. Complex Var. Theory Appl., 2004, 49(1): 15–24.
- [5] Zhenyuan XU. A function theory for the operator $D \lambda$. Complex Variables Theory Appl., 1991, 16(1): 27–42.
- [6] J. PEETRE, Tao QIAN. Möbius covariance of Iterated Dirac operators. Austral. Math. Soc. Ser. A, 1994, 56(3): 403–414.
- [7] J. RYAN. Cauchy-Green type formula in Clifford analysis. Trans. Amer. Math. Soc., 1995, 347(4): 1331– 1341.
- [8] F. SOMMEN, Zhenyuan XU. Fundamental Solutions for Operators which are Polynomials in the Dirac Operator. Kluwer Acad. Publ., Dordrecht, 1992.
- [9] K. GÜRLEBECK, W. SPRÖSSIG. Quaternionic Analysis and Elliptic Boundary Value Problems. Birkhäuser Verlag, Basel, 1990.
- [10] K. GÜRLEBECK, W. SPRÖSSIG. Quaternionic and Clifford Calculus for Physicists and Engineers. Series Mathematical methods in Practice: Vol. 1. Wiley, Chichester. 1997.