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Abstract In this note p(D) = Dm + b1D
m−1 + · · · + bm is a polynomial Dirac operator in

R
n, where D =

∑n

j=1
ej

∂
∂xj

is a standard Dirac operator in R
n, bj are the complex constant

coefficients. In this note we discuss all decompositions of p(D) according to its coefficients bj ,

and obtain the corresponding explicit Cauchy integral formulae of f which are the solution of

p(D)f = 0.
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1. Introduction

Denote by Rn the universal Clifford algebra whose elements are e0, e1, . . . , en, . . . , ej1 · · · ejr
,

. . . , e1 · · · en, where 1 ≤ j1 < · · · < jr ≤ n, 1 ≤ r ≤ n. e0 = 1 is the unit element. e1, . . . , en are

the vectors satisfying eiej + ejei = −2δij ([1]).

Denote x ∈ Rn as x = x1e1 + · · · + xnen, xj ∈ R, then x2 = −|x|2. Any nonzero vector

x ∈ Rn has a unique inverse x−1 = x|x|−2, where x = −x. Rn is called a homogeneous Euclidean

space [2]. The Dirac operator in Rn is defined by D =
∑n

j=1 ej
∂

∂xj
. The solutions of (Df)(x) =

∑n
j=1 ej

∂f
∂xj

= 0 are called left monogenic while the solutions of (fD)(x) =
∑n

j=1
∂f
∂xj

ej = 0 are

called right monogenic.

There exists an analogous hyper-complex theory of monogenic functions in R
n+1, where

Rn+1 is called inhomogeneous Euclidean space. In this case x = x0e0 + x ∈ Rn+1, D = ∂
∂x0

+ D

is the Dirac operator in Rn+1 (see [1, 2]).

Cauchy integral formulae related with both D and D are active topics in Clifford analysis.

There are some connections as well as differences between the null solutions of D and D. The

standard function theory on D can be found in the book [1]. Function theory of the iterated

Dirac operator Dk was discussed in [3]. The structure of the null solutions of p(D) = Dm +

b1D
m−1 + · · · + bm was obtained in [4]. In the case of the homogeneous Euclidean space Rn,

Cauchy integral formulae of D (see [2]), D − λ (see [5]) and Dk (see [6–8]) have been obtained,

respectively. Similar results on Helmholtz-type operators were discussed in Quaternion and

Clifford analysis [9, 10].

Some studies have been carried out for the polynomial Dirac operator p(D) = Dm +

b1D
m−1 + · · · + bm in Rn (see [7, 8]). A Cauchy-Green type formula for the operator Dm +
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∑m−1
k=1 (−1)k−mbkDk has been obtained in [7] by a fundamental solution of p(D). In this paper

we use the technique in [3, 4] to give out an explicit Cauchy integral formula for the null solutions

of p(D), the method we used is different from that in [7].

2. Cauchy integral formulae in Rn

The fundamental solution of D =
∑n

j=1 ej
∂

∂xj
is

G1(x) =
−1

ωn

x

|x|n
.

G1(x) is both left and right monogenic in Rn\{0}. ωn denotes the measure of the unit sphere in

Rn (see [2]).

Theorem 2.1 ([2]) Suppose that f : U ⊂ Rn → Rn is left monogenic, Ω ⊂ U is a bounded

domain with piecewise C1 boundary ∂Ω. Then

f(x) =

∫

∂Ω

G1(y − x)n(y)f(y)dµ(y), x ∈ Ω,

where dµ(y) is the surface measure of ∂Ω, n(y) is the outward unit normal at y ∈ ∂Ω.

The following functions Gk(x) play important roles in the study [7, 8]:

Case 1 In the case where n is odd, denote

G2l+1(x) = A2l+1
x

|x|n−2l
, l = 0, 1, . . . ,

G2l(x) = A2l

1

|x|n−2l
, l = 1, . . . ;

Case 2 In the case where n is even, denote

G2l+1(x) = A′
2l+1

x

|x|n−2l
, l = 0, 1, . . . ,

n

2
− 1,

G2l(x) = A′
2l

1

|x|n−2l
, l = 1, . . . ,

n − 2

2
;

Gk(x) = Bkxk−n + Ckxk−n ln(|x|), k ≥ n.

These functions are the building stones in the study of p(D). The real coefficients Ak, A′
k, Bk

and Ck are chosen such that DGk = GkD = Gk−1 (see [5, 7, 8]), then DkGk = GkDk = 0 in

the domain Rn\{0}. These Gk(x) are reobtained by use of Fourier transform if the coefficients

Ak, A′
k, Bk and Ck are omitted [6].

Assume λ ∈ C. Denote

Eλ(x) =

∞
∑

k=1

λk−1Gk(x), (2.1)

then for any fixed x ∈ Rn\{0}, the series in (2.1) is convergent for λ ∈ C (see [5, 8]). Eλ(x) is the

fundamental solution of D − λ implying that (D − λ)Eλ(x) = Eλ(x)(D − λ) = 0 in the domain

Rn\{0}. Obviously, E0(x) = G1(x) is the fundamental solution of D.

Theorem 2.2 ([5, 8]) Suppose that f : U ⊂ Rn → Rn is C1 satisfying (D−λ)f = 0. Let Ω ⊂ U
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be a bounded domain with piecewise C1 boundary ∂Ω. Then

f(x) =

∫

∂Ω

E−λ(y − x)n(y)f(y)dµ(y), x ∈ Ω.

Theorem 2.3 ([7]) Suppose that f : U ⊂ Rn → Rn is Ck satisfying Dkf = 0, Ω ⊂ U is a

bounded domain with piecewise Ck boundary ∂Ω. Then

f(x) =

∫

∂Ω

k
∑

j=1

(−1)j−1Gj(y − x)n(y)Dj−1f(y)dµ(y), x ∈ Ω.

Theorem 2.4 ([8]) Let E
(1)
λ (x) = Eλ(x) be a fundamental solution of D − λ. Then

E
(k)
λ (x) =

1

Γ(k)

dk

dλk
E

(1)
λ (x)

is a fundamental solution for (D − λ)k. Moreover,

(D − λ)E
(k)
λ (x) = E

(k)
λ (x)(D − λ) = E

(k−1)
λ (x).

Theorem 2.5 Suppose f : U ⊂ Rn → Rn is Ck satisfying (D−λ)kf = 0, λ ∈ C, Ω is a bounded

domain in U with piecewise Ck boundary ∂Ω. Then

f(x) =

∫

∂Ω

k
∑

j=1

(−1)j−1E
(j)
−λ(y − x)n(y)(D − λ)j−1f(y)dµ(y), x ∈ Ω. (2.2)

Proof The idea for the proof comes from [3].

Assume that f, g ∈ Ck(U), λ ∈ C, then
∫

∂Ω

g(y)n(y)f(y)dµ(y) =

∫

Ω

(gD.f + g.Df)dy

=

∫

Ω

(g(D + λ).f + g.(D − λ)f)dy. (2.3)

Substituting g(D + λ)k−1−j for g and (D − λ)jf for f in (2.3), and summing up for j =

0, 1, . . . , k − 1 after multiplying the factor (−1)j on both sides, we have

∫

∂Ω

k−1
∑

j=0

(−1)jg(D + λ)k−1−jn(y)(D − λ)jfdµ(y)

=

∫

Ω

g(D + λ)k.f + (−1)k−1g.(D − λ)kfdy. (2.4)

Note that E
(k)
−λ(y − x)(D +λ)k = δ(y −x), (D−λ)kf = 0. Substituting in (2.4) E

(k)
−λ(y − x)

for g and taking f to be a solution of (D − λ)kf = 0, the right side of (2.4) becomes
∫

Ω

E
(k)
−λ(y − x)(D + λ)k.f(y) + (−1)k−1E

(k)
−λ(y − x).(D − λ)kfdy = f(x)

and we finally have

f(x) =

∫

∂Ω

k−1
∑

j=0

(−1)jE
(k)
−λ(y − x)(D + λ)k−1−jn(y)(D − λ)jfdµ(y)
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=

∫

∂Ω

k−1
∑

j=0

(−1)jE
(j+1)
−λ (y − x)n(y)(D − λ)jf(y)dµ(y),

where E
(k)
−λ(y − x)(D + λ) = E

(k−1)
−λ (y − x) are used in the above equation. �

Remark 2.6 If λ = 0, then E
(k)
λ (x)|λ=0 = Gj(x). In this case the Cauchy integral formula

(2.2) is just the result stated in Theorem 2.3. If k = 1, then (2.2) reduces to the Cauchy integral

formula in Theorem 2.2.

Denote p(D) = Dm + b1D
m−1 + · · · + bm, where bj ∈ C. Next we use the method in [4] to

derive the Cauchy integral formula for the null solutions of p(D).

Denote p(λ) = λm+b1λ
m−1+· · ·+bm. By Gauss’s Theorem, p(λ) has different complex roots

λ1, . . . , λl with orders m1, . . . , ml, respectively, where all mk are positive integers, m1+· · ·+ml =

m. So p(λ) is rewritten as

π(λ) = (λ − λ1)
m1 · · · (λ − λl)

ml .

Correspondingly p(D) may be rewritten as

π(D) = (D − λ1)
m1 · · · (D − λl)

ml . (2.5)

Obviously, D − λk commutes with the other D − λi. Denote

πk,s(D) = (D − λ1)
m1 · · · (D − λk−1)

mk−1(D − λk)mk−s(D − λk+1)
mk+1 · · · (D − λl)

ml ,

where 1 ≤ s ≤ mk. For any function f which is smooth enough, f has the decomposition

f =

l
∑

k=1

mk
∑

s=1

1

(mk − s)!

[ dmk−s

dλmk−s

(λ − λk)s

π(λ)

]

λ=λk

πk,s(D)f. (2.6)

Theorem 2.7 (Cauchy integral formula for the solutions of π(D)f = 0) Assume that Ω is

a bounded domain in U with piecewise Cm boundary ∂Ω, π(D) is given by (2.5), f is a null

solutions of π(D)f = 0 in U ⊂ Rn. Then for any x ∈ Ω,

f(x) =

l
∑

k=1

mk
∑

s=1

1

(mk − s)!

[ dmk−s

dλmk−s

(λ − λk)mk

π(λ)

]

λ=λk

∫

∂Ω

s
∑

j=1

(−1)j−1E
(j)
−λk

(y − x)n(y)(D − λk)j−1πk,s(D)f(y)dµ(y). (2.7)

Proof Since π(D)f = 0 on the domain U , πk,s(D)f is a null solution of (D − λk)s. So by

Theorem 2.5,

πk,s(D)f =

∫

∂Ω

s
∑

j=1

(−1)j−1E
(j)
−λk

(y − x)n(y)(D − λk)j−1πk,s(D)f(y)dµ(y). (2.8)

Formula (2.7) is derived after inserting (2.8) into (2.6). �

Corollary 2.8 Denote π(D) = (D−λ1) · · · (D−λm), f a null solution of π(D)f = 0 in U ⊂ R
n.

Then

f(x) =
m

∑

k=1

∫

∂Ω

E−λk
(y − x)n(y)

Πm
j=1,j 6=k(D − λj)

Πm
j=1,j 6=k(λk − λj)

f(y)dµ(y), x ∈ Ω. (2.9)
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Remark 2.9 By substituting E
(j)
−λk

(y − x) by E
(j)
λk

(x) in (2.7) and E−λk
(y − x) by Eλk

(x) in

(2.9), respectively, then summing up for k = 1, . . . , l, we get the functions

l
∑

k=1

mk
∑

s=1

1

(mk − s)!

[ dmk−s

dλmk−s

(λ − λk)mk

π(λ)

]

λ=λk

s
∑

j=1

(−1)j−1E
(j)
λk

(x)

and
m

∑

k=1

Eλk
(x)

Πj 6=k(λk − λj)
,

which are the fundamental solutions in [8] for (D−λ1)
m1 · · · (D−λl)

ml and (D−λ1) · · · (D−λm),

respectively. In [7], John Ryan obtained another fundamental solution of p(D) and a Cauchy-

Green formula for the null solutions of Dm+
∑m−1

k=1 (−1)k−mbkDk. Obviously, the obtained results

in this note show that the fundamental solutions of p(D) are not the same as the kernel functions

used in its Cauchy integral formulae in the case where some λk 6= 0. It is also worth pointing out

that the method we used is different from that in [7], it is simpler and more constructive than

that in [7].
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