Cauchy Integral Formulae in \mathbb{R}^{n}

Yafang GONG
School of Mathematics and Statistics, Wuhan University, Hubei 430072, P. R. China

Abstract

In this note $p(\underline{D})=\underline{D}^{m}+b_{1} \underline{D}^{m-1}+\cdots+b_{m}$ is a polynomial Dirac operator in \mathbb{R}^{n}, where $\underline{D}=\sum_{j=1}^{n} e_{j} \frac{\partial}{\partial x_{j}}$ is a standard Dirac operator in \mathbb{R}^{n}, b_{j} are the complex constant coefficients. In this note we discuss all decompositions of $p(\underline{D})$ according to its coefficients b_{j}, and obtain the corresponding explicit Cauchy integral formulae of f which are the solution of $p(\underline{D}) f=0$.

Keywords Dirac operator; Cauchy integral formula.
MR(2010) Subject Classification 30G35

1. Introduction

Denote by \mathbf{R}_{n} the universal Clifford algebra whose elements are $e_{0}, e_{1}, \ldots, e_{n}, \ldots, e_{j_{1}} \cdots e_{j_{r}}$, $\ldots, e_{1} \cdots e_{n}$, where $1 \leq j_{1}<\cdots<j_{r} \leq n, 1 \leq r \leq n . e_{0}=1$ is the unit element. e_{1}, \ldots, e_{n} are the vectors satisfying $e_{i} e_{j}+e_{j} e_{i}=-2 \delta_{i j}$ ([1]).

Denote $\underline{x} \in \mathbb{R}^{n}$ as $\underline{x}=x_{1} e_{1}+\cdots+x_{n} e_{n}, x_{j} \in \mathbb{R}$, then $\underline{x}^{2}=-|\underline{x}|^{2}$. Any nonzero vector $\underline{x} \in \mathbb{R}^{n}$ has a unique inverse $\underline{x}^{-1}=\underline{\bar{x}}|\underline{x}|^{-2}$, where $\underline{\bar{x}}=-\underline{x} . \mathbb{R}^{n}$ is called a homogeneous Euclidean space [2]. The Dirac operator in \mathbb{R}^{n} is defined by $\underline{D}=\sum_{j=1}^{n} e_{j} \frac{\partial}{\partial x_{j}}$. The solutions of $(\underline{D} f)(\underline{x})=$ $\sum_{j=1}^{n} e_{j} \frac{\partial f}{\partial_{x_{j}}}=0$ are called left monogenic while the solutions of $(f \underline{D})(\underline{x})=\sum_{j=1}^{n} \frac{\partial f}{\partial_{x_{j}}} e_{j}=0$ are called right monogenic.

There exists an analogous hyper-complex theory of monogenic functions in \mathbb{R}^{n+1}, where \mathbb{R}^{n+1} is called inhomogeneous Euclidean space. In this case $x=x_{0} e_{0}+\underline{x} \in \mathbb{R}^{n+1}, D=\frac{\partial}{\partial x_{0}}+\underline{D}$ is the Dirac operator in \mathbb{R}^{n+1} (see $[1,2]$).

Cauchy integral formulae related with both D and \underline{D} are active topics in Clifford analysis. There are some connections as well as differences between the null solutions of D and \underline{D}. The standard function theory on D can be found in the book [1]. Function theory of the iterated Dirac operator D^{k} was discussed in [3]. The structure of the null solutions of $p(D)=D^{m}+$ $b_{1} D^{m-1}+\cdots+b_{m}$ was obtained in [4]. In the case of the homogeneous Euclidean space \mathbb{R}^{n}, Cauchy integral formulae of \underline{D} (see [2]), $\underline{D}-\lambda$ (see [5]) and \underline{D}^{k} (see [6-8]) have been obtained, respectively. Similar results on Helmholtz-type operators were discussed in Quaternion and Clifford analysis $[9,10]$.

Some studies have been carried out for the polynomial Dirac operator $p(\underline{D})=\underline{D}^{m}+$ $b_{1} \underline{D}^{m-1}+\cdots+b_{m}$ in \mathbb{R}^{n} (see $\left.[7,8]\right)$. A Cauchy-Green type formula for the operator $\underline{D}^{m}+$

[^0]$\sum_{k=1}^{m-1}(-1)^{k-m} b_{k} \underline{D}^{k}$ has been obtained in [7] by a fundamental solution of $p(\underline{D})$. In this paper we use the technique in $[3,4]$ to give out an explicit Cauchy integral formula for the null solutions of $p(\underline{D})$, the method we used is different from that in [7].

2. Cauchy integral formulae in \mathbb{R}^{n}

The fundamental solution of $\underline{D}=\sum_{j=1}^{n} e_{j} \frac{\partial}{\partial x_{j}}$ is

$$
G_{1}(\underline{x})=\frac{-1}{\omega_{n}} \frac{\underline{x}}{|\underline{x}|^{n}} .
$$

$G_{1}(\underline{x})$ is both left and right monogenic in $\mathbb{R}^{n} \backslash\{\underline{0}\} . \omega_{n}$ denotes the measure of the unit sphere in \mathbb{R}^{n} (see [2]).

Theorem 2.1 ([2]) Suppose that $f: U \subset \mathbb{R}^{n} \rightarrow \mathbf{R}_{n}$ is left monogenic, $\Omega \subset U$ is a bounded domain with piecewise C^{1} boundary $\partial \Omega$. Then

$$
f(\underline{x})=\int_{\partial \Omega} G_{1}(\underline{y}-\underline{x}) n(\underline{y}) f(\underline{y}) \mathrm{d} \mu(\underline{y}), \quad \underline{x} \in \Omega
$$

where $\mathrm{d} \mu(\underline{y})$ is the surface measure of $\partial \Omega, n(\underline{y})$ is the outward unit normal at $\underline{y} \in \partial \Omega$.
The following functions $G_{k}(\underline{x})$ play important roles in the study $[7,8]$:
Case 1 In the case where n is odd, denote

$$
\begin{aligned}
G_{2 l+1}(\underline{x}) & =A_{2 l+1} \frac{\underline{x}}{|\underline{x}|^{n-2 l}}, \quad l=0,1, \ldots \\
G_{2 l}(\underline{x}) & =A_{2 l} \frac{1}{|\underline{x}|^{n-2 l}}, \quad l=1, \ldots
\end{aligned}
$$

Case 2 In the case where n is even, denote

$$
\begin{aligned}
G_{2 l+1}(\underline{x}) & =A_{2 l+1}^{\prime} \frac{\underline{x}}{|\underline{x}|^{n-2 l}}, \quad l=0,1, \ldots, \frac{n}{2}-1, \\
G_{2 l}(\underline{x}) & =A_{2 l}^{\prime} \frac{1}{|\underline{x}|^{n-2 l}}, \quad l=1, \ldots, \frac{n-2}{2} \\
G_{k}(\underline{x}) & =B_{k} \underline{x}^{k-n}+C_{k} \underline{x}^{k-n} \ln (|\underline{x}|), \quad k \geq n .
\end{aligned}
$$

These functions are the building stones in the study of $p(\underline{D})$. The real coefficients $A_{k}, A_{k}^{\prime}, B_{k}$ and C_{k} are chosen such that $\underline{D} G_{k}=G_{k} \underline{D}=G_{k-1}$ (see $[5,7,8]$), then $\underline{D}^{k} G_{k}=G_{k} \underline{D}^{k}=0$ in the domain $\mathbb{R}^{n} \backslash\{\underline{0}\}$. These $G_{k}(\underline{x})$ are reobtained by use of Fourier transform if the coefficients $A_{k}, A_{k}^{\prime}, B_{k}$ and C_{k} are omitted [6].

Assume $\lambda \in \mathbb{C}$. Denote

$$
\begin{equation*}
E_{\lambda}(\underline{x})=\sum_{k=1}^{\infty} \lambda^{k-1} G_{k}(\underline{x}) \tag{2.1}
\end{equation*}
$$

then for any fixed $\underline{x} \in \mathbb{R}^{n} \backslash\{0\}$, the series in (2.1) is convergent for $\lambda \in \mathbb{C}($ see $[5,8])$. $E_{\lambda}(\underline{x})$ is the fundamental solution of $\underline{D}-\lambda$ implying that $(\underline{D}-\lambda) E_{\lambda}(\underline{x})=E_{\lambda}(\underline{x})(\underline{D}-\lambda)=0$ in the domain $\mathbb{R}^{n} \backslash\{\underline{0}\}$. Obviously, $E_{0}(\underline{x})=G_{1}(\underline{x})$ is the fundamental solution of \underline{D}.

Theorem $2.2([5,8])$ Suppose that $f: U \subset \mathbb{R}^{n} \rightarrow \mathbf{R}_{n}$ is C^{1} satisfying $(\underline{D}-\lambda) f=0$. Let $\Omega \subset U$
be a bounded domain with piecewise C^{1} boundary $\partial \Omega$. Then

$$
f(\underline{x})=\int_{\partial \Omega} E_{-\lambda}(\underline{y}-\underline{x}) n(\underline{y}) f(\underline{y}) \mathrm{d} \mu(\underline{y}), \quad \underline{x} \in \Omega .
$$

Theorem 2.3 ([7]) Suppose that $f: U \subset \mathbb{R}^{n} \rightarrow \mathbf{R}_{n}$ is C^{k} satisfying $\underline{D}^{k} f=0, \Omega \subset U$ is a bounded domain with piecewise C^{k} boundary $\partial \Omega$. Then

$$
f(\underline{x})=\int_{\partial \Omega} \sum_{j=1}^{k}(-1)^{j-1} G_{j}(\underline{y}-\underline{x}) n(\underline{y}) \underline{D}^{j-1} f(\underline{y}) \mathrm{d} \mu(\underline{y}), \quad \underline{x} \in \Omega .
$$

Theorem $2.4([8])$ Let $E_{\lambda}^{(1)}(\underline{x})=E_{\lambda}(\underline{x})$ be a fundamental solution of $\underline{D}-\lambda$. Then

$$
E_{\lambda}^{(k)}(\underline{x})=\frac{1}{\Gamma(k)} \frac{d^{k}}{d \lambda^{k}} E_{\lambda}^{(1)}(\underline{x})
$$

is a fundamental solution for $(\underline{D}-\lambda)^{k}$. Moreover,

$$
(\underline{D}-\lambda) E_{\lambda}^{(k)}(\underline{x})=E_{\lambda}^{(k)}(\underline{x})(\underline{D}-\lambda)=E_{\lambda}^{(k-1)}(\underline{x})
$$

Theorem 2.5 Suppose $f: U \subset \mathbb{R}^{n} \rightarrow \mathbf{R}_{n}$ is C^{k} satisfying $(\underline{D}-\lambda)^{k} f=0, \lambda \in \mathbb{C}, \Omega$ is a bounded domain in U with piecewise C^{k} boundary $\partial \Omega$. Then

$$
\begin{equation*}
f(\underline{x})=\int_{\partial \Omega} \sum_{j=1}^{k}(-1)^{j-1} E_{-\lambda}^{(j)}(\underline{y}-\underline{x}) n(\underline{y})(\underline{D}-\lambda)^{j-1} f(\underline{y}) \mathrm{d} \mu(\underline{y}), \quad \underline{x} \in \Omega . \tag{2.2}
\end{equation*}
$$

Proof The idea for the proof comes from [3].
Assume that $f, g \in C^{k}(U), \lambda \in \mathbb{C}$, then

$$
\begin{align*}
\int_{\partial \Omega} g(\underline{y}) n(\underline{y}) f(\underline{y}) \mathrm{d} \mu(\underline{y}) & =\int_{\Omega}(g \underline{D} \cdot f+g \cdot \underline{D} f) \mathrm{d} \underline{y} \\
& =\int_{\Omega}(g(\underline{D}+\lambda) \cdot f+g \cdot(\underline{D}-\lambda) f) \mathrm{d} \underline{y} \tag{2.3}
\end{align*}
$$

Substituting $g(\underline{D}+\lambda)^{k-1-j}$ for g and $(\underline{D}-\lambda)^{j} f$ for f in (2.3), and summing up for $j=$ $0,1, \ldots, k-1$ after multiplying the factor $(-1)^{j}$ on both sides, we have

$$
\begin{align*}
& \int_{\partial \Omega} \sum_{j=0}^{k-1}(-1)^{j} g(\underline{D}+\lambda)^{k-1-j} n(\underline{y})(\underline{D}-\lambda)^{j} f \mathrm{~d} \mu(\underline{y}) \\
& \quad=\int_{\Omega} g(\underline{D}+\lambda)^{k} \cdot f+(-1)^{k-1} g \cdot(\underline{D}-\lambda)^{k} f \mathrm{~d} \underline{y} \tag{2.4}
\end{align*}
$$

Note that $E_{-\lambda}^{(k)}(\underline{y}-\underline{x})(\underline{D}+\lambda)^{k}=\delta(\underline{y}-\underline{x}),(\underline{D}-\lambda)^{k} f=0$. Substituting in (2.4) $E_{-\lambda}^{(k)}(\underline{y}-\underline{x})$ for g and taking f to be a solution of $(\underline{D}-\lambda)^{k} f=0$, the right side of (2.4) becomes

$$
\int_{\Omega} E_{-\lambda}^{(k)}(\underline{y}-\underline{x})(\underline{D}+\lambda)^{k} \cdot f(\underline{y})+(-1)^{k-1} E_{-\lambda}^{(k)}(\underline{y}-\underline{x}) \cdot(\underline{D}-\lambda)^{k} f \underline{\mathrm{~d}} \underline{y}=f(\underline{x})
$$

and we finally have

$$
f(\underline{x})=\int_{\partial \Omega} \sum_{j=0}^{k-1}(-1)^{j} E_{-\lambda}^{(k)}(\underline{y}-\underline{x})(\underline{D}+\lambda)^{k-1-j} n(\underline{y})(\underline{D}-\lambda)^{j} f \mathrm{~d} \mu(\underline{y})
$$

$$
=\int_{\partial \Omega} \sum_{j=0}^{k-1}(-1)^{j} E_{-\lambda}^{(j+1)}(\underline{y}-\underline{x}) n(\underline{y})(D-\lambda)^{j} f(\underline{y}) \mathrm{d} \mu(\underline{y})
$$

where $E_{-\lambda}^{(k)}(\underline{y}-\underline{x})(\underline{D}+\lambda)=E_{-\lambda}^{(k-1)}(\underline{y}-\underline{x})$ are used in the above equation.
Remark 2.6 If $\lambda=0$, then $\left.E_{\lambda}^{(k)}(\underline{x})\right|_{\lambda=0}=G_{j}(\underline{x})$. In this case the Cauchy integral formula (2.2) is just the result stated in Theorem 2.3. If $k=1$, then (2.2) reduces to the Cauchy integral formula in Theorem 2.2.

Denote $p(\underline{D})=\underline{D}^{m}+b_{1} \underline{D}^{m-1}+\cdots+b_{m}$, where $b_{j} \in \mathbb{C}$. Next we use the method in [4] to derive the Cauchy integral formula for the null solutions of $p(\underline{D})$.

Denote $p(\lambda)=\lambda^{m}+b_{1} \lambda^{m-1}+\cdots+b_{m}$. By Gauss's Theorem, $p(\lambda)$ has different complex roots $\lambda_{1}, \ldots, \lambda_{l}$ with orders m_{1}, \ldots, m_{l}, respectively, where all m_{k} are positive integers, $m_{1}+\cdots+m_{l}=$ m. So $p(\lambda)$ is rewritten as

$$
\pi(\lambda)=\left(\lambda-\lambda_{1}\right)^{m_{1}} \cdots\left(\lambda-\lambda_{l}\right)^{m_{l}}
$$

Correspondingly $p(\underline{D})$ may be rewritten as

$$
\begin{equation*}
\pi(\underline{D})=\left(\underline{D}-\lambda_{1}\right)^{m_{1}} \cdots\left(\underline{D}-\lambda_{l}\right)^{m_{l}} . \tag{2.5}
\end{equation*}
$$

Obviously, $\underline{D}-\lambda_{k}$ commutes with the other $\underline{D}-\lambda_{i}$. Denote

$$
\pi_{k, s}(\underline{D})=\left(\underline{D}-\lambda_{1}\right)^{m_{1}} \cdots\left(\underline{D}-\lambda_{k-1}\right)^{m_{k-1}}\left(\underline{D}-\lambda_{k}\right)^{m_{k}-s}\left(\underline{D}-\lambda_{k+1}\right)^{m_{k+1}} \cdots\left(\underline{D}-\lambda_{l}\right)^{m_{l}}
$$

where $1 \leq s \leq m_{k}$. For any function f which is smooth enough, f has the decomposition

$$
\begin{equation*}
f=\sum_{k=1}^{l} \sum_{s=1}^{m_{k}} \frac{1}{\left(m_{k}-s\right)!}\left[\frac{d^{m_{k}-s}}{d \lambda^{m_{k}-s}} \frac{\left(\lambda-\lambda_{k}\right)^{s}}{\pi(\lambda)}\right]_{\lambda=\lambda_{k}} \pi_{k, s}(\underline{D}) f \tag{2.6}
\end{equation*}
$$

Theorem 2.7 (Cauchy integral formula for the solutions of $\pi(\underline{D}) f=0$) Assume that Ω is a bounded domain in U with piecewise C^{m} boundary $\partial \Omega, \pi(\underline{D})$ is given by (2.5), f is a null solutions of $\pi(\underline{D}) f=0$ in $U \subset \mathbb{R}^{n}$. Then for any $\underline{x} \in \Omega$,

$$
\begin{align*}
f(\underline{x})= & \sum_{k=1}^{l} \sum_{s=1}^{m_{k}} \frac{1}{\left(m_{k}-s\right)!}\left[\frac{d^{m_{k}-s}}{d \lambda^{m_{k}-s}} \frac{\left(\lambda-\lambda_{k}\right)^{m_{k}}}{\pi(\lambda)}\right]_{\lambda=\lambda_{k}} \\
& \int_{\partial \Omega} \sum_{j=1}^{s}(-1)^{j-1} E_{-\lambda_{k}}^{(j)}(\underline{y}-\underline{x}) n(y)\left(\underline{D}-\lambda_{k}\right)^{j-1} \pi_{k, s}(\underline{D}) f(\underline{y}) \mathrm{d} \mu(\underline{y}) . \tag{2.7}
\end{align*}
$$

Proof Since $\pi(\underline{D}) f=0$ on the domain $U, \pi_{k, s}(\underline{D}) f$ is a null solution of $\left(\underline{D}-\lambda_{k}\right)^{s}$. So by Theorem 2.5,

$$
\begin{equation*}
\pi_{k, s}(\underline{D}) f=\int_{\partial \Omega} \sum_{j=1}^{s}(-1)^{j-1} E_{-\lambda_{k}}^{(j)}(\underline{y}-\underline{x}) n(y)\left(\underline{D}-\lambda_{k}\right)^{j-1} \pi_{k, s}(\underline{D}) f(\underline{y}) \mathrm{d} \mu(\underline{y}) \tag{2.8}
\end{equation*}
$$

Formula (2.7) is derived after inserting (2.8) into (2.6).
Corollary 2.8 Denote $\pi(\underline{D})=\left(\underline{D}-\lambda_{1}\right) \cdots\left(\underline{D}-\lambda_{m}\right), f$ a null solution of $\pi(\underline{D}) f=0$ in $U \subset \mathbb{R}^{n}$. Then

$$
\begin{equation*}
f(\underline{x})=\sum_{k=1}^{m} \int_{\partial \Omega} E_{-\lambda_{k}}(\underline{y}-\underline{x}) n(\underline{y}) \frac{\prod_{j=1, j \neq k}^{m}\left(\underline{D}-\lambda_{j}\right)}{\prod_{j=1, j \neq k}^{m}\left(\lambda_{k}-\lambda_{j}\right)} f(\underline{y}) \mathrm{d} \mu(\underline{y}), \quad \underline{x} \in \Omega \tag{2.9}
\end{equation*}
$$

Remark 2.9 By substituting $E_{-\lambda_{k}}^{(j)}(\underline{y}-\underline{x})$ by $E_{\lambda_{k}}^{(j)}(\underline{x})$ in (2.7) and $E_{-\lambda_{k}}(\underline{y}-\underline{x})$ by $E_{\lambda_{k}}(\underline{x})$ in (2.9), respectively, then summing up for $k=1, \ldots, l$, we get the functions

$$
\sum_{k=1}^{l} \sum_{s=1}^{m_{k}} \frac{1}{\left(m_{k}-s\right)!}\left[\frac{d^{m_{k}-s}}{d \lambda^{m_{k}-s}} \frac{\left(\lambda-\lambda_{k}\right)^{m_{k}}}{\pi(\lambda)}\right]_{\lambda=\lambda_{k}} \sum_{j=1}^{s}(-1)^{j-1} E_{\lambda_{k}}^{(j)}(\underline{x})
$$

and

$$
\sum_{k=1}^{m} \frac{E_{\lambda_{k}}(\underline{x})}{\Pi_{j \neq k}\left(\lambda_{k}-\lambda_{j}\right)}
$$

which are the fundamental solutions in $[8]$ for $\left(\underline{D}-\lambda_{1}\right)^{m_{1}} \cdots\left(\underline{D}-\lambda_{l}\right)^{m_{l}}$ and $\left(\underline{D}-\lambda_{1}\right) \cdots\left(\underline{D}-\lambda_{m}\right)$, respectively. In [7], John Ryan obtained another fundamental solution of $p(\underline{D})$ and a CauchyGreen formula for the null solutions of $\underline{D}^{m}+\sum_{k=1}^{m-1}(-1)^{k-m} b_{k} \underline{D}^{k}$. Obviously, the obtained results in this note show that the fundamental solutions of $p(\underline{D})$ are not the same as the kernel functions used in its Cauchy integral formulae in the case where some $\lambda_{k} \neq 0$. It is also worth pointing out that the method we used is different from that in [7], it is simpler and more constructive than that in [7].

References

[1] F. BRACKX, R. DELANGHE, F. SOMMEN. Clifford Analysis. Pitman, Boston, MA, 1982.
[2] R. DELANGHE, F. SOMMEN, V. SOUČEK. Clifford Algebra and Spinor Valued Functions: A Function Theory for the Dirac Operator. Kluwer Academic Publishers Group, Dordrecht, 1992.
[3] R. DELANGHE, F. BRACKX. Hypercomplex function theory and Hilbert modules with reproducing kernel. Proc. London Math. Soc. (3), 1978, 37(3): 545-576.
[4] Yafang GONG, Tao QIAN, Jinyuan DU. Structure of solutions of polynomial Dirac equations in Clifford analysis. Complex Var. Theory Appl., 2004, 49(1): 15-24.
[5] Zhenyuan XU. A function theory for the operator $D-\lambda$. Complex Variables Theory Appl., 1991, 16(1): 27-42.
[6] J. PEETRE, Tao QIAN. Möbius covariance of Iterated Dirac operators. Austral. Math. Soc. Ser. A, 1994, 56(3): 403-414.
[7] J. RYAN. Cauchy-Green type formula in Clifford analysis. Trans. Amer. Math. Soc., 1995, 347(4): 13311341.
[8] F. SOMMEN, Zhenyuan XU. Fundamental Solutions for Operators which are Polynomials in the Dirac Operator. Kluwer Acad. Publ., Dordrecht, 1992.
[9] K. GÜRLEBECK, W. SPRÖSSIG. Quaternionic Analysis and Elliptic Boundary Value Problems. Birkhäuser Verlag, Basel, 1990.
[10] K. GÜRLEBECK, W. SPRÖSSIG. Quaternionic and Clifford Calculus for Physicists and Engineers. Series Mathematical methods in Practice: Vol. 1. Wiley, Chichester. 1997.

[^0]: Received August 6, 2010; Accepted September 3, 2012
 E-mail address: yfgong.math@whu.edu.cn

