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Abstract This paper considers the Cauchy problem with a kind of non-smooth initial data
for general inhomogeneous quasilinear hyperbolic systems with characteristics with constant
multiplicity. Under the matching condition, based on the refined fomulas on the decomposi-
tion of waves, we obtain a necessary and sufficient condition to guarantee the existence and
uniqueness of global weakly discontinuous solution to the Cauchy problem.
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1. Introduction and main results

Consider the following first order inhomogeneous quasilinear hyperbolic system
Ju ou

— + Au)=—— =B 1.1
U AW = Blu), (1)
where u = (ug,...,u,)T is the unknown vector function of (¢,x), A(u) is an n x n matrix with
suitably smooth entries a;;(u) (4,5 = 1,...,n), and B(u) is a vector function with suitably

smooth elements b;(u) (i =1,...,n).

By hyperbolicity, for any given u on the domain under consideration, A(u) has n real eigen-
values A1 (u), ..., A, (u) and a complete set of left (resp., right) eigenvectors. For ¢ = 1,...,n, let
Li(w) = (L (u ) in(u)) (resp., ri(u) = (11 (u), . .., rin(u))T) be aleft (resp., right) eigenvector
corresponding to A;(u):
(

Li(w)A(u) = Ai(uw)l;(u)  (resp. A(u)r;(u) = N(u)r;(u)). (1.2)

We have
det [I;;(u)| # 0 (equivalently, det |r;;(u)| # 0). (1.3)
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Without loss of generality, we assume that

Lwrj(u)=06; (G,j=1,...,n) (1.4)
and

ri(w)r(uw)=1 (i=1,...,n), (1.5)

where §;; denotes the Kronecker’s symbol.
If B(u) =0, for the initial data

t=0:u=¢(x) (—oo<x<+00), (1.6)

where ¢(z) is a C'! vector function with bounded C'* norm and satisfies certain small and decaying
property, it was proved that Cauchy problem (1.1) and (1.6) admits a unique global C! solution
u = u(t,z) with small C! norm for all t € R, if and only if system (1.1) is weakly linearly
degenerate (for strictly hyperbolic system [4,5,11,12]; for the non-strictly hyperbolic system
with characteristics with constant multiplicity [7, 14]. Also see [8]).

Recently, Li and Wang [9] studied the Cauchy problem of homogenous quasilinear strictly
hyperbolic system (1.1) (i.e., B(u) = 0) with a kind of non-smooth initial data

w(z), v <0,
t=0:u= (1.7)
ur(x), >0,
where u;(x) and u,(z) are C! vector functions on x < 0 and x > 0, respectively, with
w(0) = u,-(0) and u}(0) # u..(0) (1.8)
and satisfy the following small and decaying property
0 = sup{(1 — 2)" ' (luy(2)] + Ju(@)])} +sup{(1 + )" (Jup (2)| + [y ()N} < 1, (1.9)
z<0 x>0

where ¢ > 0 is a constant. They proved that Cauchy problem (1.1) and (1.7) admits a unique
global weakly discontinuous solution u = u(t, ) for all ¢ € R if and only if system (1.1) is weakly
linearly degenerate. If B(u) satisfies the matching condition, we have generalized their result to
the inhomogeneous case [1]. However, in case of B(u) = 0, if system (1.1) possesses characteristics
with constant multiplicity, under the assumption that normalized coordinates exist, a necessary
and sufficient condition to guarantee the existence and uniqueness of global weakly discontinuous
solutions has been obtained in [2].

In this paper, we will investigate the inhomogeneous global weakly discontinuous solution
to the quasilinear hyperbolic system (1.1) with characteristics with constant multiplicity.

For hyperbolic system (1.1) with characteristics with constant multiplicity, all A;(w), l;; ()
and 7;;(u) (4,7 = 1,...,n) have the same regularity as a;;(u) (4,5 =1,...,n).

Without loss of generality, we suppose that, in a neighbourhood of v = 0,
AMu) E A (u) == Mp(u) < Appa(u) < - < Ap(u) (p>1), (1.10)

where 1 < p < n. As p = 1, system (1.1) is strictly hyperbolic; as p > 1, system (1.1) is a
non-strictly hyperbolic systems with characteristics with constant multiplicity. Here we will deal
with the latter.
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The main difficulty we face is how to deal with the propagation of hyperbolic waves in the
inhomogeneous term B(u). For this purpose, we introduce the concept of matching condition
(Def. 1.1) and present a more refined formula on the decomposition of waves.

To state our result precisely, we first give the following three definition: the matching

condition, normalized coordinates and weak linear degeneracy.

Definition 1.1 B(u) satisfies the matching condition if there exists normalized transformation

and in normalized coordinates

p
B(Zuheh) =0, V|up| small (h=1,...,p) (1.11)
h=1
and
B(uje;) =0, V |uj| small (j=p+1,...,n). (1.12)

Definition 1.2 ([7]) If there exists an invertible smooth transformation u = u(a) (u(0) = 0)
such that in u-space

P
Fi(Zﬂheh) =¢;, ¥ |dp| small (i,h=1,...,p) (1.13)
h=1
and
7i(te;) = e;,V |G| small (j=p+1,...,n), (1.14)

in which for k =1,...,n,
(k)
ex = (0,...,0,1,0,...,0)T, (1.15)
then the transformation is called a normalized transformation, and the corresponding unknown

variables i = (@1, ..., 1u,)T are called normalized variables or normalized coordinates.

Definition 1.3 ([7]) The i-th characteristic A;(u) is weakly linearly degenerate, if there exists

a normalized transformation and in normalized coordinates
p
/\i(Zﬁheh) = \0), V |an| small (h=1,...,p), whenic {1,...,p}: (1.16)
h=1

Xi(tze;) = Xi(0), V |@;| small , wheni € {p+1,...,n}. (1.17)

When all characteristics \;(u) (i = 1,...,n) are weakly linearly degenerate, system (1.1) is weakly
linearly degenerate.

Our main result is as follows

Theorem 1.1 Suppose that in a neighbourhood of u = 0, A(u), B(u) € C? and the matching
condition is satisfied. Furthermore, assume that there exist normalized coordinates. Then there
exists 6p > 0 so small that for any given initial data satisfying (1.8)—(1.9) with 6 € (0, 6],
Cauchy problem (1.1) and (1.7) admits a unique global weakly discontinuous solution u = u(t, )
containing n — p + 1 weak discontinuities © = x(t) (k = p,...,n), where x = xx(t) (zx(0) = 0)
denotes a k-th weak discontinuity passing through the origin (0,0), if and only if system (1.1)
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is weakly linearly degenerate. Precisely speaking, the solution u = u(t,x) has the following

structure:
u(pfl)(t,x), (t,x) € Rp_1,

u=u(t,r) =< uD(tz),(t,z) e R (I=p,...,n—1), (1.18)

u™(t, ), (t,x) € Ry,
in which u()(t, ) € C" satisfies system (1.1) in the classical sense on Ry (I =p —1,...,n) with
{(t2) [t=0, z <zp®)} (=p-1),

Ri=< {t,x) |[t>0, z;(t) <z < x111(t)} (I=p,...,n—1), (1.19)
{t,z) |t >0, z>z,(t)} (I=n).
Moreover, for k =p,...,n,
u(k_l)(t,xk(t)) =4k (t, zx (1)), (1.20)
dx(;lqt(t) = M (uF V(2 (1)) = A (B (8, 21(2))). (1.21)

Remark 1.1 In Theorem 1.1 some weak discontinuities may degenerate.

2. Decomposition of waves

In this section, we will derive a more refined formula on decomposition of waves. To our
knowledge, the decomposition of waves is due to Liu [13] to study the formation of singularities
in the nonlinear waves for quasilinear hyperbolic partial differential equations.

Fori=1,...,n,let

and
Bi(u) = 1i(u) B(u) (2.2)
By (1.4), it is easy to get
Uy = Z wirg (u) (2.3)
k=1
and .
B(u) =Y Bi(u)ri(u) (2.4)
k=1
Let d 5 5
d_itZEJr)‘i(u)% (i=1,...,n) (2.5)

denote the directional derivative with respect to ¢ along the i-th characteristic ‘i—f = A\i(u). We

have

du
= > (i) = A (w))wirk (u) + B(u). (2.6)
v ki
Then, in normalized coordinates (if any!), it is easy to get
dui n n n B
= > purtwugwe+ Y (D A (w)Bi(w) Jus + ris(w)ilu), (2.7)
it = i=1 k=1
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where

llpz(.;,)g(u), when:=1,...,p,
Pigkit) =3 ) @) ,
Piji(w) + pip(w), wheni=p+1,....n
with
! 8Tki
(Ai(u) — Ag(u)) D (TULy « oy TUR—1, Uy TUR 15 - - - , TUp )dT,
(1) _ 0 j
pijk(u)_ j=1,...,n, k=p+1,...,nand j #k,
0, otherwise
and 1
8Tki
(AZ(U) - Ak(u)) s (ula sy Upy TUp41y e e ey e ,T’I,Ln)d’?',
(2) o 0 J
pijk(u)_ j=p+1,...,nand k=1,...,p,
0, otherwise,
- pgf,)c(u), wheni=1,...,p,
pigk(w) =3 () .
pijk(u), wheni=p+1,...,n
with .
(97“;”‘
n)dT,
‘/0 8’&] (ulu y Up, TUp41, , TU ) T
j=p+1,...,nk=1,...,pand k # 1,
(3) — L O
Pijk (u) / arkz (TUL, ooy TUR—1, Uk, TUEA1, - - - Ty )T,
o Ouj
j=1,....,n, k=p+1,...,nand j #k,
0, otherwise
and )
Org;
e, TUR )T,
/0 au] (uh y Up, TUp+1, y TU ) T
j=p+1,...,nk=1,...,p,
(4) _ L oy
pijk(u) /am”(Tul,...,Tuk_l,uk,TukH,...,Tun)dT,
o Ouj
ji=1....,n, k=p+1,...,n,k#7and j #k,
0, otherwise
Obviously,
plgz(u) = 07 Vivja
pijk(u) = 07 VZ7 V]vk € {17 7p}
and

piji(u) =0, Vi,j.
Noting (2.3) and (2.7), we have

n

dlu; (dz—\; (u)dt)] = [ Zn: Fyn(w)ujwp+Y (anﬁijk(u)gk(u))uﬁmi(u)@(u)]dtmx,
k=1

j,k=1 Jj=1
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(2.10)

(2.11)

(2.12)

(2.13)

(2.14)

(2.15)

(2.16)

(2.17)
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where
By (2.14), we have
Fijj(u) =0, Vj#i (2.19)
and
By (2.15), we get
Fiji(u) = VAi(w)re(u)ds;, Yi,Vike{l,...,p} (2.21)

Hence, when \;(u) is weakly linearly degenerate, in normalized coordinates, from (1.13), (1.14),
(1.16) and (1.17) it follows that

Fijk ( }é uheh) = V/\( hil uheh)rk(

NE

uheh) 5ij = O,

vt (2.22)
Vi, g ke{l,...;p}, V |up| small (h=1,...,p)

and

Fiii(uie;) = Vi (uie;)ri(ue;) =0, V |ug| small i =p+1,...,n). (2.23)
On the other hand, we have [1,15]
(ifj; = D vigk(wwjwp + Y (Z Biji(u)Br(u) + vij (U))wja (2.24)
Ly i=1 k=1
where

Vijk (u) = %{(/\j (w) = A ()l (u)Vre(u)r (w) = VA (u)r;(u)da + (71k)} (2.25)
Biji(u) = —li(w)Vr;(w)re(u) (2.26)

and
vij(u) = li(w)VB(u)r;(u), (2.27)

in which (j]k) stands for all terms obtained by changing j and k in the previous terms. Hence

Vijj(u) =0,V j#i (2.28)
and
Yiii(u) = =V (w)ri(u), V. (2.29)
Moreover, we have
Yije(w) =0, VYie{p+1,...,n}, Vike{l,...,p} (2.30)

Furthermore, when \;(u) is weakly linearly degenerate, in normalized coordinates it follows from
(1.13), (1.14), (1.16) and (1.17) that

p
%jk(zuheh) =0, Vijke{l,...,p}, ¥ |up| small (h=1,...,p) (2.31)
h=1
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and

Noting (2.3), by (2.24) we have

dlw;(dz — \;(u)dt)] = { Z Lijr (w)wjwy + Z (Z Bijk(u)ﬁk (u) + Vij (u))w]] dt Adz, (2.33)
j=1 1

gk=1 j k=
where
Liji(u) = %(Aj (u) = A ()i (W) [V (w)rj(u) = Vrj(uw)ry (u)]- (2.34)
Obviously,
Lijj(u)=0, Vi,j (2.35)
and
Tijp(u) =0, Vi, Vike{l,...,p} (2.36)

To simplify (2.7), (2.17), (2.24) and (2.33), similarly to the proof of Lemma 2.1 in [1], we

can prove the following lemma, which plays an important role in the proof of Lemma 3.2.

Lemma 2.1 Suppose that in a neighbourhood of u = 0, A(u) € C?, B(u) € C? satisfies the

matching condition. Then, in normalized coordinates, V |u| small, V i, we have
> ( ﬁijk(u)ﬁk(u))uj +ra(u)Bi(u) = Y Pigk(w)uup (2.37)

and

> (X Bun()Be(w) + vig () )w; = > Qujel(whuiw, (2:38)

Jj=1 k=1 Jok=1
where Pj;, (u) and Q;j,(u) are continuous functions of u in a neighbourhood of u = 0. Moreover,

fori=1,...,p, we have
Piik(u) =0, V|u| small, Vijke{l,...,p}, (2.39)

and
Qijr(u) =0, V|u|small, VYjke{l,...,p} (2.40)

while for i = 1,...,n, there hold
Piij(u)=0, Vl|u|small, Vje{l,...,n} (2.41)

and
Qijj (u) =0, v |u| smal], V] S {1, e ,TL}. (242)

3. Proof of Theorem 1.1

The main result in this paper can be proved in a way similar to the proof of Theorem 1.1

in [1]. Here we point out only the essentially different part.
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Noting (1.10), there exist positive constants § and dy so small that

Aip1(u) = Xi(u') > 280, Vlul, [W[<6 (i=p,...,n—1) (3.1)
and 5
|Ai(u)—Ai(u/)|g30, Viu, W<é (i=1,...,n). (3.2)

Without loss of generality, we may assume that
)\1(0) > g (221,,7’L) (33)

For the time being we assume that on any given existence domain R(T') = {(t,z) | 0 < ¢ <
T,—00 < x < oo} of the weakly discontinuous solution u = u(t, z) to Cauchy problem (1.1) and
(1.7), we have

lu(t,z)| <6, V (t,z) € R(T). (3.4)
In the proof of Theorem 1.1, we will explain that this hypothesis is reasonable.
Let
{(t,2) |0<t<T, z<z(t)} (I=p—1),
R(T)={ {(t,2) [0<t<T, m(t) <@ S aiga ()} (L =py..in—1),
[(t,2) [0<E<T, o> 20(B)} (1=n)
and
{(t,2) |0<t<T, 2 < (A0) +do)t} (i=1,...,p),
{(t,z) |0 <t <T, > (A (0) — )t} (i=n).

Obviously,

Df =---=D}
and .

D c r(1)

i=1
Let

W = (@, ) (=p—1....n)
with
wgl) =LiwMu®  (i=1,...,n),
WS (T) = max{ ‘max  max sup {1+]z - /\i(O)t|)1+“|w£l) (t, )|},
1=1,..., pl:p ..... n (t,I)GRL(T)\D;-T

Cmax max swp (L e MO () .
i=ptlnl=p=l,n (4 4)eRy(T)\DT

W(T) = max{ ‘max  max {sup/ lwP™ D (¢t z)|dt + sup/ lwP) (¢, z)|dt},
c;NRp—1(T) ¢;NRp(T)

i=1,...,pj=p+1l,....n " ¢, c;

max max{sup/ |w£i_1)(t,x)|dt+sup/ |w£i)(t,x)|dt}},
¢;NR;—1(T) ¢;NR; (T)

i=p+1,...,n j#i cj cj
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where ¢; denotes any given j-th characteristic on D},

zp(t) b()
W1 (T) :max{ ‘max sup {/ |w§p71)(t,;v)|d;v +/ |w§p) (t,z)|dz},
=Leop0<t<T  Ja(t) p(t)

SN ZON
~ max  sup {/ lw;" (t,x)|dx—|—/ |w;" (t,x)|d:z:}},
i=ptLno<e<t  Ja(t) i (t)

where o
a(t)_{ —o0, ifi=1,...,p,
(MNi(0) —dp)t, ifi=p+1,...,n,
(Ni(0) + 00)t, ifi=1,...,n—1,
t):{ +o0, ifi=n
and

Uso(T) = |lu(t, z)|| L (r(T))>

WooT) = Y [t 2)]| oo (ry() -

I=p—1
Similarly, we can define US, (T), U1 (T) and Uy(T).
Lemma 3.1 ([9]) On the p-th weak discontinuity x = x,(t), we have
wgpfl) zwgp) (i=p+1,...,n);
while on the k-th weak discontinuity x = zx(t) (k =p+1,...,n), we have

wk ™ = (=1, k-1k+1,...,n).

707

(3.5)

(3.6)

Lemma 3.2 Suppose that in a neighbourhood of u = 0, A(u) € C?, system (1.1) is weakly

linearly degenerate, and B(u) € C? satisfies the matching condition. Suppose furthermore that

the initial data satisfy (1.9). Suppose finally that there exist normalized coordinates. Then, in

normalized coordinates there exists 0y > 0 so small that for any given 6 € (0,6y], we have the

following uniform a priori estimates on R(T):
W (T) < k10,
Wi(T), Wi(T) < ko),
Us(T) < k3b

and
ﬁl(T), Ul(T) S H49,

where k; (i =1,2,3,4) are positive constants independent of 6 and T.

Proof For simplicity and without loss of generality, in the sequel we assume v = (uq, ...

are normalized variables.
We first estimate W< (T)).

(3.10)

7un
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For any given i € {1,...,n}, passing through any fixed point A(t,z) € R(T)\ D}, we draw
the i-th characteristic ¢; : £ = £(7) (7 < t) which intersects the z-axis at a point (0, x;0). When
Ae R(T)\DF (i e {1,...,p}, L €{p,...,n—1}), by (2.38), integrating (2.24) along ¢; from 0
to t and noting (2.28) and (3.6) gives

w (t,x) = If + I, (3.11)
where
I3 —w 0 Zi0) / Z ’ngk wj wk (T &(r))dr+
7,k=1
iom—1 _"1
S S A VY (e )ars
m=Il+2 tim 7,k=1
t n
/ Z ”Yijk(u(l))wy)w;(f)(ﬂ &(r))dr (3.12)
tii41 G k=1
and

Iy = / Z Qiji(u n) ug? (. & (7)) dr+

7,k=1
> /m Y Q™ Y () dr
m=Il+2 t 7,k=1
/ 3 Qui® a7, & (7))dr (3.13)
Zl+1jk 1

while when A € R,,(T)\ DI (i € {1,...,p}), we have

af 0.0 = )+ [ D a0l )+

7,k=1
/ Z ka n) n) (T gz( )) (3'14)
7,k=1

here and hereafter, (tim, Zm(tim)) denotes the intersection point of ¢; with the m-th weak dis-
continuity & = ,,(¢) (m =p,...,n). Then noting (2.40), (2.42), (3.4) and |&(7) — A;(0)7| > do7

when (7,£(7))€D, by using Lemma 3.2 in [9] and the estimate of I{ in [2] we find

(14 o = A (O [w” (£, 2)] <C{O + W (T)WA(T) + (WL (T))*+

UL(TYWE(T) + US (T)W(T) + US (TYWS(T)}, (3.15)

here and henceforth, C' denotes a different positive constant independent of 6 and T'.

On the other hand, when A € R(T)\ D! (i€ {p+1,...,n},p <1< 1), noting (3.5), (3.6)
and integrating (2.24) from 0 to ¢ yields

w(t,2) = I¢ + I, (3.16)
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where
tip n
It =w®™(0,210) + / > A (r () dr+
0 k=1
-1 i,m41 n
Z/ Z ,Yljkl u(m (m)w](cm)(Tv gz(T))dT—i_
m=p tmn k:
t n 0
/t Z '71]1@ u(l w] wk (T 51( ))dT (317)
il j k=1
and
5_A > Qi (w® Dy VD, () dr+
7,k=1
-1 timy1 T
S [T Quaa ™l r)dre
m=p tim 7,k=1
/'Xj@kﬁl% )(r,&i(r))dr (3.18)
ti 7y k=1

when A € R,_1(T)\ DI (i € {p+1,...,n}), we obtain

1#”m@Q#“0mol/§Z%k@1 yoi D (7, 6i(7))dr+
J,k=1

/Z@ﬂpnp“wmm»r (3.19)
k=1
In these two cases, noting (2.28), (2.30) and (2.42), we can get (3.15) similarly.

While when A € R(T)\ D} (i € {p+1,...,n},l > i), noting (2.28) and (3.6), (3.11) still
holds. Note when i = n, by the definition of DT, (3.11) disappears. In this case, we deduce
(3.15) similarly.

Thus, we have

WE(T) <C{O+ WE(T)Wi(T) + (WS (T))*+
UL(T)WE(T) + U (T)W(T) + U (T)WS (T)}- (3.20)

We now estimate W, (T).

For i = 1,...,p, passing through any given point A(t,z) € DI N R,(T), we draw the j-
th characteristic ¢; : £ = &(7) (j > p, 7 < t), which intersects the p-th weak discontinuity
x = x,(t) at a point B(tp,xp). In the meantime, the i-th characteristic ¢; : £ = &(7) (7 < t)
passing through A intersects the boundary = = (A(0) + o)t of DI at a point C(tc,zc). By
(2.33) and (2.38), using Stokes’ formula on the domain ABOC, we get

[ 1 ) = @) el
/ 0 (A0) + Jo — Au®)) (7, (A0) + 60)7)|dr+
ocC
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// ‘ Z Fijk(u(p))w;p)w,(gp)(t,x)’dtdx—l—
apoc ! 1=

/‘/ABOC} Z Qijk(u(”))w?)u,(cp)(t,x)}dtdx. (3.21)
k=1

In view of (2.40), (2.42) and (3.4), the third term on the right hand of the above inequality can

be rewritten as

// ’ Z Qijk(u(p))w;p)wl(gp)(t,I)’dtdil? (3.22)
apoc ! 5=
= // ’( Z + Z + Z )Qijk(u(p))wg»p)w,(f) (t,x)|dtdz.
ABOC " e, p} JE{p+Ln}  kE{p+1,...n}
ke{p+1,....,n} ke{l,...p} j#k

Then noting (3.1), (3.4) and the estimate of the first and second terms on the right hand side of
(3.21), from (3.21) and (3.22) it follows that

[ ar = [l g riar < COVED) + WD) + (V)¢
US(TYW(T) + Un(T)YWE(T) + U (TYWS,(T)} (3.23)

by Lemma 3.2 in [9].

Fori=p+1,...,n—1, passing through any given point A(t,z) € Df " R;(T), we draw the
j-th characteristic ¢; : € = &;(7) (7 < t). When j > i, ¢; intersects the i-th weak discontinuity
x = x;(t) at a point B(tp,zp); while when j < 4, ¢; intersects the boundary = = (x;(0) + do)t of
the domain D} at a point E(té, r3). In the meantime, the i-th characteristic ¢; : { = &(7) (7 <
t) passing through A intersects the boundary = = (\;(0) + &)t of DI at a point C(tc,xc).
Thanks to (2.35), (2.42), (3.1) and (3.4), using Stokes’ formula on the domain ABOC or ACB,
by Lemma 3.2 in [9] we obtain

[lar= [l g el < COVE )+ WL WAD) + (W ()
US(T)WA(T) + Uy(T)WE,(T) + U (T)WE(T)). (3.24)

For i = n, passing through any given point A(t,x) € DI R, (T), both the j-th character-
istic ¢j : £ =&;(7) (1 <t, j <n) and the n-th characteristic ¢,, : £ = &,(7) (7 < t) intersects the
x-axis at points B(0,zp) and C(0, z¢) respectively. By involving Stokes’ formula on the domain
ACB, similarly we have

[ uldr <OOWET) + WL @WAT) + (WL (D)4
<j

US(TYWA(T) + U(T)W (T) + U (T)W S (T)}- (3.25)
On the other hand, we can similarly estimate

/ WP Dt z)dt (i=1,....p, j=p+1,...,n) (3.26)
¢;NRp—1(T)
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and
/ WVt 2)dt (=p+1,...,n, j£i). (3.27)
Cj le 1(T)
Therefore, we infer that
Wi (T) <C{WE(T) + WE(T)W1(T) + (WS (T))*+
UL (MW(T) + U(T)W (T) + U (T)WS(T)}- (3.28)
Similarly, we get
Wi(T) <C{WE(T) + WE(T)W1(T) + (W5 (T))*+
UL (TW(T) + U(T)W (T) + U (T)WS(T)}- (3.29)

We now estimate U (T).
When A(t,z) € R(T)\ DY (i € {1,...,p}, 1 € {p,...,n — 1}), integrating (2.7) along ¢;
from 0 to ¢t and noting (2.37) gives

WDt z) = J¢ + J5, (3.30)

where ¢; is the i-th characteristic passing through the point A, and

JE —u™ (0, 2 / 3 o (W)™ (7, €, (7)) +

7,k=1
S (m—1), (m~1)
S [ b el g mpar+
m=I[+2 tim J,k=1
[ ool (e (3.31)
tiit1 =1

and

n

tl"l
Js = / Z Pijk(u uj")uggn) (1,&i(7))dr+

7,k=1

tznl 1 n
/ S Py (™ D)™ ul" D (7, () dr
tzm ]k

m=Il+2 1

/ Z Pijr(uV) ujl)u,(cl (1,&(7))dr (3.32)
tiit1 k=1
while when A € R,,(T)\ DI (i € {1,...,p}), we have
" (2) =" (0, 70) / > pun )l s+

7,k=1

[ 3 Pt uf? riran (339

7,k=1
Using (2.14), (2.15) and (2.39), by an analogous proof to (3.15) we find

(14 |z — X (0)E)) ] (¢, 2)| <C{O + UL (T)WA(T) + UL (T)WS, (T)+
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OL(T)WE(T) + US (1)1 (T) + (US,(T))%}.  (3.34)

On the other hand, when A(t,z) € R(T)\ D} (i € {p+1,...,n}, 1 € {p—1,...,n}),
noting (2.14), (2.15) and (2.41), we can similarly estimate. Thus, we have

US(T) <C{0 + UL (T)Wy(T) + US (T)WE, (T)+
UL (T)WE(T) + US(T)UL(T) + (U (T))?}. (3.35)

We now estimate Uy (T).
For i = 1,...,p, similarly to (3.21), by (2.17) and noting (2.37), using Stokes’ formula on
the domain ABOC, we get

/t [ (g (w®) = A@®)) (r, & (7)) |dr
<

- / [u” (A0) + 8 = A™) (7, (A(0) + do)T)ldr+
ocC
" F (0P ®
//ABOC‘J,%_:1 Fije (u™ )uj”wy (faiﬂ)‘dtd,m-

/ / ‘ 3 Pijk(u@))ugp)u,gp)(t,a:)‘dtdx. (3.36)
apoc | 1=

Applying (2.39) and (2.41), the third term on the right hand of the above inequality can be

rewritten as

// ‘ Z ij(u(p))ug-p)u,(cp)(t,:v)‘dtdx (3.37)
apoc! =
= // ‘( Z + Z + Z )Pijk(u(p))u;p)u,(f) (t,z)|dtdz.
ABOC je(1,.p}  je{ptl..n}  jke{p+l,.n}
ke{p+1,....n} ke{l,...,p} J#k

Taking into account the estimate of the first and second terms on the right hand side of (3.36),
by (3.1), (3.4) and Lemma 3.2 in [9], from (3.36) and (3.37) it follows that

[ 1l <OUEE) + U EWED) + UL (DWA (L) + U DWE D)+
cj
Uso(T)US(T)W1(T) + Ur(T)UE(T) + (U (T))*}. (3.38)
Fori=p+1,...,n, noting (2.41), we can similarly deduce that
/ [ul?|dr <C{O+ US(T) + Uy (T)WE,(T) + US(T)Wi (T) + US, (T)WE,(T)+
Uso(TYUS(TYW1(T) + U (T)US(T) + (UL (T))?}. (3.39)
On the other hand, we can similarly estimate

/ |u§p—1)(t,:1:)|dt (i=1,....p, j=p+1,...,n) (3.40)
¢jNRp—1(T)

and
/ Wl ()|t (G=p+1,...,n, j£i) (3.41)
C]‘ﬂRifl(T)
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Hence, we get

U(T) <C{0+ UL (T)+ U (TYWS(T) + UL (TYW(T) + UL (TYWE(T)+
Uss(D)US(T)W(T) + Un(T)US(T) + (US,(T))*}- (3.42)
By an analogous argument, we can prove
UL(T) <C{0+UL(T)+ U (TYWL(T) + UL (TYWA(T) + UL (T)WS(T)+
Uso(T)US(T)W(T) + Un(T)US(T) + (US(T))*} (3.43)
The combination of (3.20), (3.28), (3.29), (3.35), (3.42) and (3.43) gives (3.7)~(3.10) (see
[12]). This completes the proof of Lemma 3.2. 0

Proof of Theorem 1.1 To prove the sufficiency part of Theorem 1.1, we only need to estimate
Uso(T) and Weo(T). For any given point (¢,z) € R(T), similarly to [2], by Lemma 3.2 we can
get

lu(t, z)| < C{O + WE(T) + Wi(T) + US(T) + U1 (T)} < C6. (3.44)

This gives the validity of hypothesis (3.4), and
Woo(T) <C{0 + (WS (T))? + W (T)Weo(T) + UL (T)(Weo(T)*+
US(TWL(T) + Uso (TYWS(T) 4+ Use (T)Weo(T) }
<O+ W (T) + (Wao (T))?3, (3.45)

which implies
W (T) < C6. (3.46)

Finally, we prove the necessity part of Theorem 1.1. In normalized coordinates, by (1.13),
fort=1,...,p, there holds

aik(zp:uheh>5 /\(Zu}leh), e (3.47)
h=1

h=1
0, ki
and by (1.14), for i = p+1,...,n, there holds
Ai(ugei), k=1,
0, k #i.

Then similarly to the proof of the necessity part of Theorem 1.1 in [2], noting (1.16) and (1.17),

we can prove the necessity part. [J
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