The Second Critical Exponent for a Fast Diffusion Equation with Potential

Chunxiao YANG ${ }^{1,2}$, Jin'ge YANG ${ }^{1}$, Sining ZHENG ${ }^{1, *}$
1. School of Mathematical Science, Dalian University of Technology, Liaoning 116024, P. R. China;
2. Department of Mathematics, Xi'an University of Architecture and Technology,
Shaanxi 710055, P. R. China

Abstract

This paper considers a fast diffusion equation with potential $u_{t}=\Delta u^{m}-V(x) u^{m}+$ u^{p} in $\mathbb{R}^{n} \times(0, T)$, where $1-\frac{2}{\alpha m+n}<m \leq 1, p>1, n \geq 2, V(x) \sim \frac{\omega}{|x|^{2}}$ with $\omega \geq 0$ as $|x| \rightarrow \infty$, and α is the positive root of $\alpha m(\alpha m+n-2)-\omega=0$. The critical Fujita exponent was determined as $p_{c}=m+\frac{2}{\alpha m+n}$ in a previous paper of the authors. In the present paper, we establish the second critical exponent to identify the global and non-global solutions in their co-existence parameter region $p>p_{c}$ via the critical decay rates of the initial data. With $u_{0}(x) \sim|x|^{-a}$ as $|x| \rightarrow \infty$, it is shown that the second critical exponent $a^{*}=\frac{2}{p-m}$, independent of the potential parameter ω, is quite different from the situation for the critical exponent p_{c}.

Keywords the second critical exponent; fast diffusion equation; potential; global solutions; blow-up.

MR(2010) Subject Classification 35K59; 35B33

1. Introduction

In this paper, we investigate the second critical exponent to the fast diffusion equation with source and quadratically decaying potential

$$
\begin{cases}u_{t}=\Delta u^{m}-V(x) u^{m}+u^{p}, & (x, t) \in \mathbb{R}^{n} \times(0, T), \tag{1.1}\\ u(x, 0)=u_{0}(x) \neq 0, & x \in \mathbb{R}^{n},\end{cases}
$$

where $1-\frac{2}{\alpha m+n}<m \leq 1, p>1, n \geq 2, V(x) \sim \frac{\omega}{|x|^{2}}$ with $\omega \geq 0$ as $|x| \rightarrow \infty, \alpha>0$ is an explicit parameter related to ω, determined by

$$
\alpha m(\alpha m+n-2)-\omega=0
$$

with $u_{0}(x)$ continuous and bounded.
It is well known that the Cauchy problem

$$
\begin{equation*}
u_{t}=\Delta u+u^{p} \quad \text { in } \mathbb{R}^{n} \times(0, T) \tag{1.2}
\end{equation*}
$$

Received February 19, 2012; Accepted March 27, 2012
Supported by the National Natural Science Foundation of China (Grant No. 11171048).

* Corresponding author

E-mail address: snzheng@dlut.edu.cn (Sining ZHENG)
admits a critical exponent $p_{c}=1+\frac{2}{n}$, such that the solutions blow up in finite time for any nontrivial initial data whenever $1<p \leq p_{c}$, and there are both global solutions and non-global solutions if $p>p_{c}$ (see [3]) and $[1,8,9]$ (for the critical case). From then on, the Fujita phenomena have been studied for a great deal of PDEs [2,11]. To identify the global and non-global solutions in their co-existence region, the so-called second critical exponent was introduced by Lee and Ni [10] with $a^{*}=\frac{2}{p-1}$ for the Cauchy problem (1.2). That is to say, with initial data $u_{0}(x)=\lambda \varphi(x)$ and $p>p_{c}=1+\frac{2}{n}$, there exist constants $\mu, \Lambda, \Lambda_{0}>0$ such that the solutions blow up in finite time whenever $\lim \inf _{x \rightarrow \infty}|x|^{a^{*}} \varphi(x)>\mu>0, \lambda>\Lambda$, and must be global if $a \geq a^{*}$ with $\lim \sup _{x \rightarrow \infty}|x|^{a} \varphi(x)<\infty, \lambda<\Lambda_{0}$.

For the nonlinear diffusion case

$$
\begin{equation*}
u_{t}=\Delta u^{m}+u^{p} \quad \text { in } \mathbb{R}^{n} \times(0, T) \tag{1.3}
\end{equation*}
$$

with $m>1$ or $\max \left\{0,1-\frac{2}{n}\right\}<m<1$, the critical exponent was proved as $p_{c}=m+\frac{2}{n}$ by Galaktionov et al. [4, 5], Mochizuki and Mukai [12], and Qi [16, 17]. The second critical exponent to (1.3) was obtained with $a^{*}=\frac{2}{p-m}$ by Mukai et al. [14] (for $1<m<p$) and Guo [7] (for $\left(1-\frac{2}{n}\right)<m<1$).

Recently, the Fujita phenomena for reaction-diffusion equations with potentials have been thoroughly studied as well. Zhang [19] studied the influence of the potential on the critical exponent, without considering the quadratically decaying potential, which was shown as $p_{c}=$ $1+\frac{2}{\alpha+n}$ by Ishige [15] for (1.1) with $m=1$, and $p_{c}=m+\frac{2}{\alpha m+n}$ for $1-\frac{2}{\alpha m+n}<m<1$ by the authors [18].

The present paper aims to investigate the second critical exponent for the problem (1.1) with obtaining $a^{*}=\frac{2}{p-m}$. It is interesting that, differently from the situation for the critical Fujita exponent p_{c}, the second critical exponent a^{*} is independent of the quadratically decaying potential.

Denote by $C_{b}\left(\mathbb{R}^{n}\right)$ the space of all bounded continuous functions in \mathbb{R}^{n}, and let

$$
\begin{aligned}
& \mathbb{I}_{a}=\left\{\left.\varphi(x) \in C_{b}\left(\mathbb{R}^{n}\right)\left|\varphi(x) \geq 0, \liminf _{|x| \rightarrow \infty}\right| x\right|^{a} \varphi(x)>0\right\}, \\
& \mathbb{I}^{a}=\left\{\left.\varphi(x) \in C_{b}\left(\mathbb{R}^{n}\right)\left|\varphi(x) \geq 0, \limsup _{|x| \rightarrow \infty}\right| x\right|^{a} \varphi(x)<\infty\right\} .
\end{aligned}
$$

The main result of the paper is the following two theorems.
Theorem 1 Let $p>p_{c}=m+\frac{2}{\alpha m+n}, n \geq 2, V(x) \leq \frac{\omega}{|x|^{2}}$ for $|x|$ large, the initial data $u_{0}=\lambda \varphi(x), \varphi(x) \in \mathbb{I}_{a}$ for $\lambda>0$. If $a \in\left(0, a^{*}\right)$, or $a \geq a^{*}$ with λ large enough, then the solution of (1.1) blows up in finite time.

Theorem 2 Let $p>p_{c}=m+\frac{2}{\alpha m+n}, V(x) \geq \frac{\omega}{|x|^{2}}$ in $\mathbb{R}^{n} \backslash\{0\}$, $u_{0}=\lambda \varphi(x)$ with $\varphi(x)=$ $|x|^{\alpha} \psi(x) \in \mathbb{I}^{a}$ and $\lambda>0$. If $a>a^{*}$, then there exist $\lambda_{0}, C_{1}>0$ such that the solution u is global in time and satisfies

$$
\|u(\cdot, t)\|_{L^{\infty}} \leq C_{1} t^{-\frac{a}{2-a(1-m)}} \quad \text { for all } t>0
$$

whenever $\lambda \in\left(0, \lambda_{0}\right)$.

We will prove the two theorems in Sections 2 and 3, respectively.

2. Non-global solutions

In this section, we deal with the blow-up of solutions to prove Theorem 1.
Proof of Theorem 1 Let $U(r, t)$ be a radial solution to (1.1) with initial data $0 \leq U_{0}(r)=$ $\lambda \bar{\varphi}(r) \leq u_{0}(x)=\lambda \varphi(x), \bar{\varphi}(r) \in \mathbb{I}_{a}, \bar{\varphi}^{\prime}(r) \leq 0$. Similarly to [18], we introduce a series of transformations. Set $U(r, t)=r^{\alpha} v(r, t), v(r, t)=\xi(\rho, t)$ with

$$
\begin{equation*}
\rho=\rho(r)=\frac{2}{\alpha(1-m)+2} r^{\frac{\alpha(1-m)+2}{2}} . \tag{2.1}
\end{equation*}
$$

Then due to $V(x) \leq \frac{\omega}{|x|^{2}}$ for $|x|$ large, we have

$$
\xi_{t} \geq\left(\xi^{m}\right)_{\rho \rho}+\frac{N-1}{\rho}\left(\xi^{m}\right)_{\rho}+C_{0} \rho^{q} \xi^{p}, \quad \rho>\rho_{0}, t \in(0, T)
$$

for ρ_{0} large enough, with

$$
\xi(\rho, 0)=\lambda\left(\frac{\alpha(1-m)+2}{2} \rho\right)^{-\frac{2 \alpha}{\alpha(1-m)+2}} \bar{\varphi}\left(\left(\frac{\alpha(1-m)+2}{2} \rho\right)^{\frac{2}{\alpha(1-m)+2}}\right), \quad \rho>\rho_{0}
$$

where

$$
\begin{equation*}
N=\frac{2 \alpha+2 \alpha m+2 n}{\alpha(1-m)+2}, \quad C_{0}=\left[\frac{\alpha(1-m)+2}{2}\right]^{\frac{2 \alpha(p-1)}{\alpha(1-m)+2}}, \quad q=\frac{2 \alpha(p-1)}{\alpha(1-m)+2} . \tag{2.2}
\end{equation*}
$$

Let w solve

$$
\begin{cases}w_{t}=\left(w^{m}\right)_{\rho \rho}+\frac{N-1}{\rho}\left(w^{m}\right)_{\rho}+C_{0} \rho^{q} w^{p}, & (\rho, t) \in\left(\rho_{0}, \infty\right) \times(0, T) \\ w\left(\rho_{0}, t\right)=\left.U\right|_{\rho=\rho_{0}}, & t \in(0, T) \\ w(\rho, 0)=\lambda\left(\frac{\alpha(1-m)+2}{2} \rho\right)^{-\frac{2 \alpha}{\alpha(1-m)+2}} \bar{\varphi}\left(\left(\frac{\alpha(1-m)+2}{2} \rho\right)^{\frac{2}{\alpha(1-m)+2}}\right), & \rho \in\left(\rho_{0}, \infty\right)\end{cases}
$$

It suffices to prove the finite time blow-up of w when $\bar{\varphi}(r) \in \mathbb{I}_{a}$ for $0<a<a^{*}$, or $a \geq a^{*}$ with λ large enough.

Set

$$
\begin{equation*}
S_{\varepsilon}(r)=\zeta_{R}(r) \mathrm{e}^{-\varepsilon(r-R)^{2}} \quad \text { in }(R, \infty) \tag{2.3}
\end{equation*}
$$

with

$$
\zeta_{R}(r)= \begin{cases}\frac{r-R}{r}, & N \geq 3 \\ \log r-\log R, & 2 \leq N<3\end{cases}
$$

By Lemmas 4.1 and 4.2 in [13] with a simple computation, we know that $S_{\varepsilon} \in C^{2}(R, \infty)$ and satisfies

$$
\begin{aligned}
& S_{\varepsilon}^{\prime \prime}+\frac{N-1}{r} S_{\varepsilon}^{\prime} \geq-2(N+2) \varepsilon S_{\varepsilon} \text { in }(R, \infty) \\
& S_{\varepsilon}(R)=S_{\varepsilon}(\infty)=0 \\
& S_{\varepsilon}>0 \quad \text { in }(R, \infty) \text { with } \int_{R}^{\infty} S_{\varepsilon}(r) r^{N-1} \mathrm{~d} r<\infty
\end{aligned}
$$

Moreover,

$$
\begin{align*}
& \lim _{\varepsilon \rightarrow 0} \varepsilon^{N / 2} \int_{R}^{\infty} S_{\varepsilon}(r) r^{N-1} \mathrm{~d} r=\pi^{\frac{N}{2}}, \quad N \geq 3, \tag{2.4}\\
& \lim _{\varepsilon \rightarrow 0} \varepsilon^{\frac{N}{2}}\left[\log \varepsilon^{-\frac{1}{2}}\right]^{-1} \int_{R}^{\infty} S_{\varepsilon}(r) r^{N-1} \mathrm{~d} r=\pi^{\frac{N}{2}}, \quad 2 \leq N<3 . \tag{2.5}
\end{align*}
$$

Since $\bar{\varphi}(r) \in \mathbb{I}_{a}$, there are $L, R_{1}>0$ such that $\bar{\varphi}(r) \geq L r^{-a}$ for all $r \geq R_{1}$, and hence $\bar{\varphi}\left(\left(\frac{\alpha(1-m)+2}{2} \rho\right)^{\frac{2}{\alpha(1-m)+2}}\right) \geq L\left(\frac{\alpha(1-m)+2}{2} \rho\right)^{-\frac{2 a}{\alpha(1-m)+2}}$ for all $\rho \geq \rho_{1}$ with ρ_{1} large enough. Set $\rho_{2}=\max \left\{\rho_{0}, \rho_{1}\right\}$, and denote

$$
\begin{equation*}
\psi_{\varepsilon}(\rho)=C_{\varepsilon} S_{\varepsilon}(\rho) \quad \text { in }\left(\rho_{2}, \infty\right) \tag{2.6}
\end{equation*}
$$

with

$$
\begin{equation*}
C_{\varepsilon}=\left(\int_{\rho_{2}}^{\infty} S_{\varepsilon}(\rho) \rho^{N-1} \mathrm{~d} \rho\right)^{-1} \tag{2.7}
\end{equation*}
$$

Define

$$
y(t)=\int_{\rho_{2}}^{\infty} w(\rho, t) \psi_{\varepsilon}(\rho) \rho^{N-1} \mathrm{~d} \rho
$$

By Hölder's inequality,

$$
\begin{aligned}
y^{\prime}(t) & =\int_{\rho_{2}}^{\infty} w^{m} \rho^{N-1}\left(\psi_{\varepsilon}^{\prime \prime}+\frac{N-1}{\rho} \psi_{\varepsilon}^{\prime}\right) \mathrm{d} \rho+C_{0} \int_{\rho_{2}}^{\infty} \rho^{N+q-1} \psi_{\varepsilon} w^{p} \mathrm{~d} \rho \\
& \geq-2(N+2) \varepsilon y^{m}(t)+C_{0}\left(\int_{\rho_{2}}^{\infty} \rho^{N-1-\frac{q}{p-1}} \psi_{\varepsilon} \mathrm{d} \rho\right)^{-(p-1)} y^{p}(t) \\
& =y^{p}(t)\left(C_{0}\left(\int_{\rho_{2}}^{\infty} \rho^{N-1-\frac{q}{p-1}} \psi_{\varepsilon} \mathrm{d} \rho\right)^{-(p-1)}-2(N+2) \varepsilon y^{-(p-m)}(t)\right)
\end{aligned}
$$

and thus

$$
\begin{equation*}
y^{\prime}(t) \geq \frac{C_{0}}{2}\left(\int_{\rho_{2}}^{\infty} \rho^{N-1-\frac{q}{p-1}} \psi_{\varepsilon} \mathrm{d} \rho\right)^{-(p-1)} y^{p}(t) \tag{2.8}
\end{equation*}
$$

provided

$$
y^{-(p-m)}(t) \leq \frac{C_{0}\left(\int_{\rho_{2}}^{\infty} \rho^{N-1-\frac{q}{p-1}} \psi_{\varepsilon} \mathrm{d} \rho\right)^{-(p-1)}}{4(N+2) \varepsilon}
$$

or equivalently,

$$
y(t) \geq C_{0}^{-\frac{1}{p-m}}\left(\int_{\rho_{2}}^{\infty} \rho^{N-1-\frac{q}{p-1}} \psi_{\varepsilon} \mathrm{d} \rho\right)^{\frac{p-1}{p-m}}(4(N+2) \varepsilon)^{\frac{1}{p-m}}
$$

which is ensured by

$$
\begin{equation*}
y(0) \geq C_{0}^{-\frac{1}{p-m}}\left(\int_{\rho_{2}}^{\infty} \rho^{N-1-\frac{q}{p-1}} \psi_{\varepsilon} \mathrm{d} \rho\right)^{\frac{p-1}{p-m}}(4(N+2) \varepsilon)^{\frac{1}{p-m}} \tag{2.9}
\end{equation*}
$$

We deduce from (2.8) that

$$
y(t) \geq\left(y^{-(p-1)}(0)-\frac{C_{0}}{2}\left(\int_{\rho_{2}}^{\infty} \rho^{N-1-\frac{q}{p-1}} \psi_{\varepsilon} \mathrm{d} \rho\right)^{-(p-1)}(p-1) t\right)^{-\frac{1}{p-1}}
$$

and hence, $y(t) \rightarrow \infty$ as $t \rightarrow T=\frac{2}{C_{0}(p-1)}\left(\int_{\rho_{2}}^{\infty} \rho^{N-1-\frac{q}{p-1}} \psi_{\varepsilon} \mathrm{d} \rho\right)^{p-1} y^{-(p-1)}(0)$. This concludes that w blows up in finite time for large initial data required by (2.9).

Now we verify that the condition (2.9) is valid under either $a \in\left(0, a^{*}\right)$, or $a \geq a^{*}$ with λ large. By (2.3) and (2.6),

$$
\begin{align*}
y(0) & =\int_{\rho_{2}}^{\infty} w(\rho, 0) \psi_{\varepsilon}(\rho) \rho^{N-1} \mathrm{~d} \rho \\
& \geq \lambda L\left(\frac{\alpha(1-m)+2}{2}\right)^{-\frac{2(a+\alpha)}{\alpha(1-m)+2}} C_{\varepsilon} \int_{\rho_{2}}^{\infty} \rho^{N-1-\frac{2(a+\alpha)}{\alpha(1-m)+2}} \zeta_{\rho_{2}}(\rho) \mathrm{e}^{-\varepsilon\left(\rho-\rho_{2}\right)^{2}} \mathrm{~d} \rho \\
& =\lambda L\left(\frac{\alpha(1-m)+2}{2}\right)^{-\frac{2(a+\alpha)}{\alpha(1-m)+2}} C_{\varepsilon} \varepsilon^{-\frac{N}{2}+\frac{a+\alpha}{\alpha(1-m)+2}} \int_{\sqrt{\varepsilon} \rho_{2}}^{\infty} \tau^{N-1-\frac{2(a+\alpha)}{\alpha(1-m)+2}} \zeta_{\rho_{2}}\left(\frac{\tau}{\sqrt{\varepsilon}}\right) \mathrm{e}^{-\left(\tau-\sqrt{\varepsilon} \rho_{2}\right)^{2}} \mathrm{~d} \tau . \tag{2.10}
\end{align*}
$$

On the other hand, (2.9) is equivalent to

$$
\begin{align*}
y(0) & \geq C_{0}^{-\frac{1}{p-m}} C_{\varepsilon}^{\frac{p-1}{p-m}}\left(\int_{\rho_{2}}^{\infty} \rho^{N-1-\frac{q}{p-1}} \zeta_{\rho_{2}}(\rho) \mathrm{e}^{-\varepsilon\left(\rho-\rho_{2}\right)^{2}} \mathrm{~d} \rho\right)^{\frac{p-1}{p-m}}(4(N+2) \varepsilon)^{\frac{1}{p-m}} \\
& =B_{0} C_{\varepsilon}^{\frac{p-1}{p-m}} \varepsilon^{-\frac{N(p-1)}{2(p-m)}+\frac{q}{2(p-m)}+\frac{1}{p-m}}\left(\int_{\sqrt{\varepsilon} \rho_{2}}^{\infty} \tau^{N-1-\frac{q}{p-1}} \zeta_{\rho_{2}}\left(\frac{\tau}{\sqrt{\varepsilon}}\right) \mathrm{e}^{-\left(\tau-\sqrt{\varepsilon} \rho_{2}\right)^{2}} \mathrm{~d} \tau\right)^{\frac{p-1}{p-m}} \tag{2.11}
\end{align*}
$$

with $B_{0}=C_{0}^{-\frac{1}{p-m}}(4(N+2))^{\frac{1}{p-m}}$. We have by $(2.4),(2.5)$ and (2.7) that

$$
\begin{aligned}
& C_{\varepsilon} \int_{\sqrt{\varepsilon} \rho_{2}}^{\infty} \tau^{N-1-\frac{2(a+\alpha)}{\alpha(1-m)+2}} \zeta_{1}(\tau) \mathrm{e}^{-\tau^{2}} \mathrm{~d} \tau \geq C_{1} \varepsilon^{\frac{N}{2}} \\
& C_{\varepsilon}^{\frac{p-1}{p-m}}\left(\int_{\sqrt{\varepsilon} \rho_{2}}^{\infty} \tau^{N-1-\frac{q}{p-1}} \zeta_{\rho_{2}}\left(\frac{\tau}{\sqrt{\varepsilon}}\right) \mathrm{e}^{-\left(\tau-\sqrt{\varepsilon} \rho_{2}\right)^{2}} \mathrm{~d} \tau\right)^{\frac{p-1}{p-m}} \leq C_{2} \varepsilon^{\frac{N(p-1)}{2(p-m)}}
\end{aligned}
$$

with some $C_{1}, C_{2}>0$ independent of ε. Since $q=\frac{2 \alpha(p-1)}{\alpha(1-m)+2}$, we have

$$
\varepsilon^{\frac{a+\alpha}{\alpha(1-m)+2}} \gg \varepsilon^{\frac{q}{2(p-m)}+\frac{1}{p-m}} \quad \text { as } \quad \varepsilon \rightarrow 0
$$

provided $0<a<a^{*}=\frac{2}{p-m}$. If $a=a^{*}$, the right hand sides of (2.10) and (2.11) share the same order of ε. So, we can arrive at (2.9) by letting λ be large enough. If $a>a^{*}$, for any fixed ε, there exists $\lambda_{\varepsilon}>0$, such that (2.9) holds whenever $\lambda>\lambda_{\varepsilon}$.

3. Global solutions

In this section, we will show that the solutions must be global and decay to zero as $t \rightarrow \infty$, if $a>a^{*}$ with λ small, where $u_{0}(x)=\lambda \varphi(x)$ with $\varphi(x)=|x|^{\alpha} \psi(x) \in \mathbb{I}^{a}$.

It suffices to consider the case of $a^{*}<a<\alpha m+n$. The conclusion for $a \geq \alpha m+n$ can be proved by comparison. Introduce the following auxiliary problem

$$
\begin{cases}W_{\tau}=\left(W^{m}\right)_{\rho \rho}+\frac{N-1}{\rho}\left(W^{m}\right)_{\rho}, & (\rho, t) \in[0, \infty) \times(0, T) \tag{3.1}\\ W(\rho, 0)=M \rho^{-b}, & \rho \geq 0\end{cases}
$$

with N defined in (2.2), $b=\frac{2(a+\alpha)}{\alpha(1-m)+2}$. The condition $p>p_{c}$ with $a^{*}<a<\alpha m+n$ implies $b<N$. It was known by [6] that the problem (3.1) admits the self-similar solution

$$
\begin{equation*}
W=\tau^{-\beta b} f\left(\rho \tau^{-\beta}\right), \quad \beta=\frac{1}{2-(1-m) b}=\frac{\alpha(1-m)+2}{4-2 a(1-m)} \tag{3.2}
\end{equation*}
$$

with $f(\eta)$ satisfying

$$
\left\{\begin{array}{l}
\left(f^{m}\right)^{\prime \prime}+\frac{N-1}{\eta}\left(f^{m}\right)^{\prime}+\beta \eta f^{\prime}+\beta b f=0, \quad \eta>0 \\
f^{\prime}(0)=0, \quad \lim _{\eta \rightarrow \infty} \eta^{b} f(\eta)=M
\end{array}\right.
$$

It is easy to verify that there exists $M_{0}>0$ such that

$$
\begin{equation*}
\left\|\eta^{\frac{2 \alpha}{\alpha(1-m)+2}} f(\eta)\right\|_{L^{\infty}} \leq\left\|(\eta+1)^{-\frac{2 a}{\alpha(1-m)+2}}\left((\eta+1)^{b} f\right)\right\|_{L^{\infty}} \leq M_{0} \tag{3.3}
\end{equation*}
$$

Lemma 3.1 Let $a^{*}<a<\alpha m+n, M_{1}, \tau_{0}>0$, and $(h(t), \tau(t))$ solve the ODE system

$$
\begin{cases}h^{\prime}(t)=\lambda^{p-1} M_{1}^{p-1}\left(\lambda^{m-1} \tau(t)+\tau_{0}\right)^{-\frac{a(p-1)}{2-a(1-m)}} h^{p}(t), & t>0 \tag{3.4}\\ \tau^{\prime}(t)=h^{m-1}(t) & t>0 \\ h(0)=1, \quad \tau(0)=0 & \end{cases}
$$

Then there is $\lambda_{0}>0$ such that $h(t)$ is bounded in $[0, \infty)$ whenever $\lambda \in\left[0, \lambda_{0}\right)$.
Proof The local existence and uniqueness of solutions to (3.4) follow from the standard ODE theory. Since $h^{\prime}(t)>0$ for $t>0$, the solution $h(t) \geq 1$ can be continued whenever $h(t)$ is finite.

Suppose $h(s)$ exists in $[0, t]$. Then $\tau(t)=\int_{0}^{t} h^{m-1}(s) d s$. Since $0<m \leq 1, h^{\prime}(t)>0$, we have

$$
h^{m-1}(t) t \leq \tau(t) \leq h^{m-1}(0) t=t
$$

By (3.4), we know

$$
\begin{align*}
h^{\prime}(t) & \leq \lambda^{p-1} M_{1}^{p-1}\left(\lambda^{m-1} h^{m-1}(t) t+\tau_{0}\right)^{-\frac{a(p-1)}{2-a(1-m)}} h^{p}(t) \\
& =\lambda^{p-1} M_{1}^{p-1}\left(\lambda^{m-1} t+h^{1-m}(t) \tau_{0}\right)^{-\frac{a(p-1)}{2-a(1-m)}} h^{p+\frac{a(p-1)(1-m)}{2-a(1-m)}} \\
& \leq \lambda^{p-1} M_{1}^{p-1}\left(\lambda^{m-1} t+\tau_{0}\right)^{-\frac{a(p-1)}{2-a(1-m)}} h^{p+\frac{a(p-1)(1-m)}{2-a(1-m)}}, \tag{3.5}
\end{align*}
$$

for $h(t) \geq 1$. Due to $a>a^{*}=\frac{2}{p-m}$, integrate (3.5) to get

$$
\begin{align*}
1-h^{1-p-\frac{a(p-1)(1-m)}{2-a(1-m)}} & \leq\left(p+\frac{a(p-1)(1-m)}{2-a(1-m)}-1\right) \lambda^{p-1} M_{1}^{p-1} \int_{0}^{t}\left(\lambda^{m-1} s+\tau_{0}\right)^{-\frac{a(p-1)}{2-a(1-m)}} \mathrm{d} s \\
& \leq\left(p+\frac{a(p-1)(1-m)}{2-a(1-m)}-1\right) \frac{\lambda^{p-m} M_{1}^{p-1} \tau_{0}^{-\left(\frac{a(p-1)}{2-a(1-m)}-1\right)}}{\frac{a(p-1)}{2-a(1-m)}-1} \tag{3.6}
\end{align*}
$$

Let $\lambda_{0}>0$ satisfy

$$
\left(p+\frac{a(p-1)(1-m)}{2-a(1-m)}-1\right) \frac{\lambda_{0}^{p-m} M_{1}^{p-1} \tau_{0}^{-\left(\frac{a(p-1)}{2-a(1-m)}-1\right)}}{\frac{a(p-1)}{2-a(1-m)}-1}=1
$$

And define

$$
\begin{align*}
& C_{\lambda}=\left(p+\frac{a(p-1)(1-m)}{2-a(1-m)}-1\right) \frac{\lambda^{p-m} M_{1}^{p-1} \tau_{0}^{-\left(\frac{a(p-1)}{2-a(1-m)}\right)-1}}{\frac{a(p-1)}{2-a(1-m)}-1} \tag{3.7}\\
& h_{\lambda}=\left(\frac{1}{1-C_{\lambda}}\right)^{\frac{a(p-1)(1-m)}{p+\frac{a(1-m)}{2-1}}} \tag{3.8}
\end{align*}
$$

for $\lambda \in\left(0, \lambda_{0}\right)$. It follows from (3.6)-(3.8) that $h(t) \leq h_{\lambda}$.
Proof of Theorem 2 Since $\varphi(x)=|x|^{\alpha} \psi(x) \in \mathbb{I}^{a}$, we get $\psi(x) \in \mathbb{I}^{a+\alpha}$. There is $D>0$ such that

$$
\psi(x) \leq D(1+|x|)^{-(a+\alpha)} \quad \text { for all } x \in \mathbb{R}^{n}
$$

Without loss of generality, assume $\psi(x)$ is radial with $r=|x|$. Let M in (3.1) be large so that $M>D\left(\frac{2}{\alpha(1-m)+2}\right)^{b}$. With ρ defined in (2.1), we have

$$
W(\rho(r), 0)=M \rho^{-b}=M\left(\frac{2}{\alpha(1-m)+2}\right)^{-b} r^{-(a+\alpha)}>D(1+r)^{-(a+\alpha)} \geq \psi(r)
$$

So, there is $\tau_{0} \in(0,1)$ such that $\psi(r)<W\left(\rho(r), \tau_{0}\right)$. Denote $\zeta(\rho, \tau)=\lambda W\left(\rho, \lambda^{m-1} \tau+\tau_{0}\right)$ with $\lambda>0$. Then ζ satisfies

$$
\begin{cases}\zeta_{\tau}=\left(\zeta^{m}\right)_{\rho \rho}+\frac{N-1}{\rho}\left(\zeta^{m}\right)_{\rho}, & (\rho, t) \in[0, \infty) \times(0, T) \\ \zeta(x, 0)=\lambda W\left(\rho, \tau_{0}\right), & \rho \geq 0\end{cases}
$$

Set $\bar{u}=r^{\alpha} h(t) \zeta(\rho(r), \tau(t))$, with $(h(t), \tau(t))$ solving (3.4). It is easy to verify that

$$
\begin{aligned}
& \bar{u}_{t}-\left(\bar{u}^{m}\right)_{r r}-\frac{n-1}{r}\left(\bar{u}^{m}\right)_{r}+V(r) \bar{u}^{m}-\bar{u}^{p} \geq \bar{u}_{t}-\left(\bar{u}^{m}\right)_{r r}-\frac{n-1}{r}\left(\bar{u}^{m}\right)_{r}+\frac{\omega}{r^{2}} \bar{u}^{m}-\bar{u}^{p} \\
& \quad=r^{\alpha} \zeta(\rho, \tau)\left(h^{\prime}(t)-r^{\alpha(p-1)} h^{p}(t) \zeta^{p-1}(\rho, \tau)\right) \\
& \bar{u}(r, 0)=r^{\alpha} \zeta(\rho(r), 0)=\lambda r^{\alpha} W\left(\rho(r), \tau_{0}\right) \geq \lambda r^{\alpha} \psi(r)=\lambda \varphi(x)
\end{aligned}
$$

To check \bar{u} is a supersolution of (1.1), it suffices to show

$$
\begin{equation*}
h^{\prime}(t) \geq\left(r^{\alpha} \zeta(\rho, \tau)\right)^{p-1} h^{p}(t) \tag{3.9}
\end{equation*}
$$

Actually, by (3.2) and (3.3),

$$
\begin{aligned}
& \left\|r^{\alpha} \zeta(\rho, \tau)\right\|_{L^{\infty}} \\
& \quad=\lambda\left(\frac{\alpha(1-m)+2}{2}\right)^{\frac{2 \alpha}{\alpha(1-m)+2}}\left\|\rho^{\frac{2 \alpha}{\alpha(1-m)+2}}\left(\lambda^{m-1} \tau(t)+\tau_{0}\right)^{-\beta b} f\left(\rho\left(\lambda^{m-1} \tau(t)+\tau_{0}\right)^{-\beta}\right)\right\|_{L^{\infty}} \\
& \quad=\lambda\left(\frac{\alpha(1-m)+2}{2}\right)^{\frac{2 \alpha}{\alpha(1-m)+2}}\left(\lambda^{m-1} \tau(t)+\tau_{0}\right)^{-\beta b+\frac{2 \alpha \beta}{\alpha(1-m)+2}}\left\|\eta^{\frac{2 \alpha}{\alpha(1-m)+2}} f(\eta)\right\|_{L^{\infty}} \\
& \quad \leq \lambda M_{1}\left(\lambda^{m-1} \tau(t)+\tau_{0}\right)^{-\frac{a}{2-a(1-m)}},
\end{aligned}
$$

with $b=\frac{2(a+\alpha)}{\alpha(1-m)+2}, \beta=\frac{\alpha(1-m)+2}{4-2 a(1-m)}, M_{1}=M_{0}\left(\frac{\alpha(1-m)+2}{2}\right)^{\frac{2 \alpha}{\alpha(1-m)+2}}$. By Lemma 3.1, there exists $\lambda_{0}>0$ such that (3.9) is true whenever $\lambda<\lambda_{0}$. Consequently, $\|u(r, t)\|_{L^{\infty}} \leq\|\bar{u}(r, t)\|_{L^{\infty}} \leq$ $h_{\lambda}\left\|r^{\alpha} \zeta(\rho, \tau)\right\|_{L^{\infty}} \leq C t^{-\frac{a}{2-\alpha(1-m)}}$ for all $t>0$ with $C=M_{1}\left(h_{\lambda} \lambda\right)^{\frac{2}{2-a(1-m)}}$.

References

[1] D. G. ARONSON, H. F. WEINBERGER. Multidimensional nonlinear diffusion arising in population genetics. Adv. in Math., 1978, 30(1): 33-76.
[2] Keng DENG, H. W. LEVINE. The role of critical exponents in blow-up theorems: the sequel. J. Math. Anal. Appl., 2000, 243(1): 85-126.
[3] H. FUJITA. On the blowing up of solution of the Cauchy problem for $u_{t}=\Delta u+u^{\alpha+1}$. J. Fac. Sci. Univ. Tokyo Sect. I, 1966, 13: 109-124.
[4] V. A. GALAKTIONOV. Blow-up for quasilinear heat equations with critical Fujita's exponents. Proc. Roy. Soc. Edinburgh Sect. A, 1994, 124(3): 517-525.
[5] V. A. GALAKTIONOV, S. P. KURDYUMOV, A. P. MIKHAILOV, et al. Unbounded solutions of the Cauchy problem for the parabolic equation $u_{t}=\nabla\left(u^{\sigma} \nabla u\right)+u^{\beta}$. Dokl. Akad. Nauk SSSR, 1980, 252(6): 1362-1364. (in Russian)
[6] J. S. GUO. Similarity solution for a quasilinear parabolic equation. J. Austral. Math. Soc. Ser. B, 1995, 37(2): 253-266.
[7] J. S. GUO, Y. GUO. On a fast diffusion equation with source. Tohoku Math. J. (2), 2001, 53(4): 571-579.
[8] K. HAYAKAWA. On nonexistence of global solution os some semilinear parabolic equation. Proc. Japan Acad., 1973, 49: 503-505.
[9] K. KOBAYASHI, T. SIRAO, H. TANAKA. On the blowing up problem for semilinear heat equations. J. Math. Soc. Japan, 1977, 29: 407-424.
[10] T. Y. LEE, Weiming NI. Global existence, large time behavior and life span of solutions of a semilinear parabolic Cauchy problem. Trans. Amer. Math. Soc., 1992, 333(1): 365-378.
[11] H. A. LEVINE. The role of critical exponents in blowup theorems. SIAM Rev., 1990, 32(2): 262-288.
[12] K. MOCHIZUKI, K. MUKAI. Existence and nonexistence of global solution to fast diffusions with source. Methods Appl. Anal., 1995, 2(1): 92-102.
[13] K. MOCHIZUKI, R. SUZUKI. Critical exponent and critical blow-up for quasi-linear parabolic equations. Israel J. Math., 1997, 98: 141-156.
[14] K. MUKAI, K. MOCHIZUKI, Qing HUANG. Large time behavior and life span for a quasilinear parabolic equation with slowly decaying initial values. Nonlinear Anal., 2000, 39(1): 33-45.
[15] R. PINSKY. The Fujita exponent for semilinear heat equations with quadratically decaying potential or in an exterior domain. J. Differential Equations, 2009, 246(6): 2561-2576.
[16] Yuanwei QI. On the equation $u_{t}=\Delta u^{\alpha}+u^{\beta}$. Proc. Roy. Soc. Edinburgh Sect. A, 1993, 123(2): 373-390.
[17] Yuanwei QI. Critical exponents of degenerate parabolic equations. Sci. China Ser. A, 1995, 38(10): 11531162.
[18] Chunxiao YANG, Lizhong ZHAO, Sining ZHENG. Critical Fujita exponent for fast diffusion equation with potential. J. Math. Anal. Appl., 2013, 398(2): 879-885.
[19] Q. S. ZHANG. The quantizing effect of potentials on the critical number of reaction-diffusion equations. J. Differential Equations, 2001, 170(1): 188-214.

