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Abstract In this paper, we introduce the fundamental notions of closure operator and closure

system in the framework of quantaloid-enriched category. We mainly discuss the relationship

between closure operators and adjunctions and establish the one-to-one correspondence be-

tween closure operators and closure systems on quantaloid-enriched categories.
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1. Introduction

A quantaloid Q is a category enriched in the closed symmetric monoidal category of suplat-

tices. By a series of papers of Stubbe [16–18], the theory of categories enriched in a quantaloid

has been developed. Actually, the study of categories enriched in a quantaloid goes back to a

series of work of Rosenthal [12, 14] with the purpose to study automata theory.

Since a quantaloid is a particular bicategory, Q-category theory is a particular case of the

theory of “W-category theory” as pioneered by [4, 9, 15, 22]. Nevertheless, as pointed out by

Stubbe, this particular case is also of particular interest: many examples of bicategory-enriched

categories are really quantaloid-enriched. Also, without becoming trivial, quantaloid enrichment

often behaves remarkably better than general bicategory-enrichment: essentially because all

diagrams of 2-cells in a quantaloid commute.

On the other hand, since quantaloids are a categorical generalization of quantales [13, 14],

Q-categories can be viewed as a generalization of Ω-categories studied by Wagner [20, 21], Lai

and Zhang [10]. The main differences between Ω-categories and Q-categories lies in the base

structures for enrichment: the former are commutative quantales, categorically speaking, they

are symmetric monoidal categories, while the later are quantaloids, categorically speaking, they

are bicategories. This difference results in two main differences between Ω-categories and Q-

categories, one is that the universe of a Q-category must be a Q-typed set, and the other is that

in general it does not make sense for the composition g ◦ f of two arrows f, g to be “symmetric”
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in a Q-category. Notably, as a particular case of Ω-category, L-enriched categories (here L is a

complete residuated lattice) were studied extensively under the name L-ordered sets [7, 23, 25],

with the purpose to provide a framework for quantitative domain theory.

Q-categories have at least two main important applications. One is in theoretical computer

science, where they are applied to study fuzzy automata theory [12, 14] and study semantics of

programming languages [5, 8, 19–21, 24, 28]. The other is in fuzzy set theory: Zhang [26] used

Ω-category to provide a new approach to many valued topology, and more recently he argued

that the theory of enriched categories is a usful tool for fuzzy set theorists in [27].

So it is necessary to study the intrinsic qualities of Q-categories. Although many structures

related to Q-categories are established in the pioneer work of Stubbe, there are other aspects of

Q-categories which need to be explored. As a continuation of Stubbe’s work, this paper is devoted

to explain the notions of closure operator and closure system in the framework of Q-category. It is

well known that closure operators play a significant role in both pure and applied mathematics,

which have close relation with another important concept Galois connection [6]. Since such

notions as Galois connection are naturally generalized to Q-category, it is natural to ask whether

or not we can introduce the concept of closure operator (and some other related concepts) in

Q-category. Recently, Bělohlávek studied fuzzy closure and fuzzy interior operators in [1–3], Yao

studied kernel systems, Guo studied fuzzy closure systems on L-ordered sets in [7, 25], which

really give us inspiration. The difficulty lies in that we must cope with the differences between

Ω-categories and Q-categories.

In this paper we will illustrate how to define such notions as closure operator and closure

system naturally in Q-categories, so as to smoothly extend the classical results to the new

framework. We mainly discuss the relation between closure operators and adjunctions and the

relation between closure operators and closure systems.

2. Preliminaries

This paper is based on the theory of categorical structures enriched in a base quantaloid

developed by Stubbe. To make this paper reasonably self-contained, we recall some definitions

and notations. For details we refer to [14, 16, 17], and we keep all the notations introduced there.

For the classical notions of closure operator and closure system on poset please refer to [6],

where one can find more applications of them, and for fuzzy versions of such notions and their

applications please refer to [1–3, 7, 23, 25].

A quantaloid Q is a category enriched in the symmetric monoidal closed category Sup of

complete lattices and morphisms that preserve arbitrary suprema. In elementary terms, a quan-

taloid Q is a category whose hom-sets are actually suplattices, in which composition distributes

on both sides over arbitrary suprema of morphisms. A homomorphism F : Q → Q′ is a functor

of (the underlying) categories that preserves arbitrary suprema of morphisms.

In this paper Q always denotes a small quantaloid, and Q0 for its set of objects.
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Any quantaloid is a closed bicategory: we denote

− ◦ f ⊣ {f,−} and f ◦ − ⊣ [f,−]

for the adjoints to composition with some morphisms f : A → B in a quantaloid.

A Q-typed set X is a (small) set X together with a mapping t : X → Q0 : x 7→ tx sending

each element x ∈ X to its type tx ∈ Q0. The notation with a “t” for the types of elements in a

Q-typed set is generic.

Definition 2.1 A Q-enriched category (or Q-category for short) A consists of

objects: a Q-typed set A0,

hom-arrows: for all a, a′ ∈ A0, an arrow A(a′, a) : ta → ta′ in Q, satisfying

composition-inequalities: for all a, a′, a′′ ∈ A0, A(a′′, a′) ◦ A(a′, a) ≤ A(a′′, a) in Q,

identity-inequalities: for all a ∈ A0, 1ta ≤ A(a, a) in Q.

Definition 2.2 A distributor Φ : A −→◦ B between two Q-categories is given by

distributor-arrows: for all a ∈ A0, b ∈ B0, an arrow Φ(b, a) : ta → tb in Q satisfying

action-inequalities: for all a, a′ ∈ A0, b, b
′ ∈ B0, B(b′, b) ◦ Φ(b, a) ≤ Φ(b′, a) and

Φ(b, a) ◦ A(a, a′) ≤ Φ(b, a′) in Q.

Definition 2.3 A functor F : A → B between Q-categories is

object-mapping: a map F : A0 → B0 : a 7→ Fa satisfying

type-equalities: for all a ∈ A0, ta = t(Fa) in Q,

action-inequalities: for all a, a′ ∈ A0, A(a′, a) ≤ B(Fa′, Fa) in Q.

Proposition 2.4 Q-categories are the objects, and distributors the arrows, of a quantaloid

Dist(Q) in which

(i) the composition Ψ ⊗B Φ : A −→◦ C of two distributors Φ : A −→◦ B and Ψ : B −→◦ C has

as distributor-arrows, for a ∈ A0 and c ∈ C0,

(Ψ ⊗B Φ)(c, a) =
∨

b∈B0

Ψ(c, b) ◦ Φ(b, a);

(ii) the identity distributor on a Q-category A has as distributor-arrows precisely the hom-

arrows of the category A itself, so we simply write it as A : A −→◦ A;

(iii) the supremum
∨

i∈I Φi : A −→◦ B of given distributors (Φi : A −→◦ B)i∈I is calculated

elementwise, thus its distributor-arrows are, for a ∈ A0 and b ∈ B0,

(
∨

i∈I

Φi)(b, a) =
∨

i∈I

Φi(b, a).

For examples of quantaloids and Q-categories please refer to [9, 13, 14, 16]. We only recall

that 2 is the 2-element Boolean algebra; 2-categories are orders, distributors are ideal relations,

and functors are order-preserving maps; quantales and complete residuated lattices are specific

examples of quantaloids, hence Ω-categories [10, 20,21] and L-Fuzzy posets [5, 24], etc are specific

examples of Q-categories.
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Since Dist(Q) is a quantaloid, it is in particular closed. Let for example Θ : A −→◦ C,

Ψ : B −→◦ C and Φ : A −→◦ B be distributors between Q-categories. Then [Ψ, Θ] : A −→◦ B and

{Φ, Θ} : B −→◦ C are the distributors with distributor-arrows, for a ∈ A0, b ∈ B0, and c ∈ C0,

[Ψ, Θ](b, a) =
∧

c∈C0

[Ψ(c, b), Θ(c, a)],

{Φ, Θ}(c, b) =
∧

a∈A0

{Φ(b, a), Θ(c, a)},

where the liftings and extensions on the right are calculated in Q.

Proposition 2.5 Q-categories are the objects, and functors the arrows, of a category Cat(Q)

in which

(i) the composition G ◦F : A → C of two functors F : A → B and G : B → C is determined

by the composition of object maps G ◦ F : A0 → C0 : a 7→ G(F (a));

(ii) the identity functor 1A : A → A on a Q-category A is determined by the identity object

map 1A : A0 → A0 : a 7→ a.

The category Cat(Q) inherits the local structure from the quantaloid Dist(Q) via the

functor Cat(Q) → Dist(Q): we put, for two functors F, G : A ⇉ B,

F ≤ G ⇐⇒ B(−, F−) ≤ B(−, G−)(⇐⇒ B(G−,−) ≤ B(F−,−)).

For an object A of a quantaloid Q, denote by ∗A the one-object Q-category whose homarrow

is the identity 1A. Given a Q-category A, the set {a ∈ A0 | ta = A} is in bijection with

Cat(Q)(∗A, A) : any such object a determines a “constant” functor △a : ∗A → A; and any such

functor F : ∗A → A “picks out” an object a ∈ A. Hence, without confuse we will not distinguish

an element in A0 from the corresponding functor. The underlying order (A0,≤) of a Q-category

A is defined as follows: for two objects a, a′ ∈ A0 we have that a′ ≤ a if and only if A := ta = ta′

and for all x ∈ A0, A(x, a′) ≤ A(x, a) in Q, or equivalently A(a′, x) ≥ A(a, x), or equivalently

1A ≤ A(a′, a). Whenever two objects of A are equivalent in A’s underlying order (a ≤ a′ and

a′ ≤ a), then we say that they are isomorphic objects (and write a ∼= a′).

An arrow F : A → B is left adjoint to an arrow G : B → A in Cat(Q) (and G is then right

adjoint to F ), written F ⊣ G, if 1A ≤ G◦F and F ◦G ≤ 1B. Further, F : A → B is an equivalence

in Cat(Q) if there exists a G : B → A such that G ◦ F ∼= 1A and F ◦ G ∼= 1B. We say A and B

are equivalent provided that there is an equivalence F : A → B.

Proposition 2.6 F : A → B is left adjoint to G : B → A in Cat(Q) if and only if B(F−,−) =

A(−, G−) : B −→◦ A in Dist(Q).

We consider a functor F : A → B and a distributor Θ : C −→◦ A between Q-categories.

A functor G : C → B is the Θ-weighted colimit of F if: B(G−,−) = [Θ, B(F−,−)]. If the

Θ-weighted colimit of F exists, then it is necessarily essentially unique. It therefore makes sense

to speak of “the” colimit and to denote it by colim(Θ, F ); its universal property is thus that

B(colim(Θ, F )−,−) = [Θ, B(F−,−)] in Dist(Q).
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For a distributor Φ : B −→◦ C in Dist(Q) and a functor F : B → A in Cat(Q), the

Φ-weighted limit of F is–whenever it exists–a functor lim(Φ, F ) : C → A in Cat(Q) such that

A(−, lim(Φ, F )−) = {Φ, A(−, F−)} in Dist(Q).

The following lemma will be used frequently.

Lemma 2.7 Let A be a Q-category, A ∈ Q0, Φ : A −→◦ ∗A be a distributor. Then x ∼= lim(Φ, 1A)

if and only if (1) Φ(y) ≤ A(x, y) for all y ∈ A0, and (2) {Φ, A(−,−)}(y) ≤ A(y, x).

Proof Suppose x ∼= lim(Φ, 1A) i.e., A(−, x) = {Φ, A}. Then, {Φ, A}(y) ≤ A(y, x) holds clearly,

and A(x, x) = {Φ, A}(x) =
∧

z∈A0

{Φ(z), A(x, z)} ≤ {Φ(y), A(x, y)}. Hence, Φ(y) ≤ A(x, y).

Conversely, by (2) we know A(−, x) ≥ {Φ, A}. Hence, in order to prove x ∼= lim(Φ, 1A) we

only need to show that {Φ, A} ≥ A(−, x). Since for each z ∈ A0 and y ∈ A0, A(y, x) ◦ Φ(z) ≤

A(y, x) ◦ A(x, z) ≤ A(y, z), we have A(y, x) ≤
∧

z∈A0
{Φ(z), A(y, z)} = {Φ, A}(y). �

3. Closure operators on Q-categories

In this section, we will introduce closure operator on Q-categories and discuss their relation

to adjunctions on Q-categories.

Definition 3.1 Let F : A → A be a functor on a Q-category A. Then

(1) F is called a projection operator if F ∼= F ◦ F ,

(2) F is called a closure operator if F is a projection operator with 1A ≤ F ,

(3) F is called a kernel operator if F is a projection operator with 1A ≥ F .

Proposition 3.2 Let F : A → A be a functor on a Q-category A. Then

(1) F is a closure operator if and only if A(x, Fy) = A(Fx, Fy) for all x, y ∈ A0,

(2) F is a kernel operator if and only if A(Fx, y) = A(Fx, Fy) for all x, y ∈ A0.

Example 3.3 Take Q = 2. Then closure and kernel operators on skeletal 2-categories are just

closure and kernel operators on posets.

Example 3.4 Take Q to be a complete residuated lattice. Then closure and kernel operators

on Q-categories were studied under the name fuzzy closure operator by Guo in [7] and L-kernel

operator by Yao in [25], respectively.

Hence, all the results in the present paper can be applied to those particular cases, and we

will not mention this each time.

We know closure operators and kernel operators have close relation with Golois connections

[6]. Now we are going to discuss the relation between closure operators and adjunctions on Q-

categories.

Proposition 3.5 If F : A → B is left adjoint to G : B → A in Cat(Q), then G ◦F : A → A is a

closure operator and F ◦ G : B → B is a kernel operator.



28 Min LIU and Bin ZHAO

Proof By definition of adjoint in Cat(Q) we know G ◦ F ≥ 1A and F ◦ G ≤ 1B. Hence,

G ◦ F = G ◦ F ◦ 1A ≤ G ◦ F ◦ G ◦ F = G ◦ (F ◦ G) ◦ F ≤ G ◦ 1B ◦ F = G ◦ F , and F ◦ G =

F ◦ 1A ◦G ≤ F ◦G ◦F ◦G ≤ F ◦G ◦ 1B ≤ F ◦G. Thus, G ◦ F is a closure operator and F ◦G is

a kernel operator. �

For a functor F : A → A on a Q-category A, denote the image of F by FA, that is to

say, FA is the Q-category with objects (FA)0 = {Fa|a ∈ A0} and hom-arrows inherit from

A, i.e., FA(b, a) = A(b, a) for all a, b ∈ (FA)0. Denote the co-restriction of F to its image by

F ◦ : A → FA, and the inclusion functor of its image into B by F◦ : FA → A.

Proposition 3.6 Let F : A → A be a functor on a Q-category A. Then we have the following

two groups of equivalent statements:

(a) F is a closure operator,

(b) F ◦ : A → FA is left adjoint to F◦ : FA → A in Cat(Q);

(a′) F is a kernel operator,

(b′) F◦ : FA → A is left adjoint to F ◦ : A → FA in Cat(Q).

Proof (a) implies (b). For every y ∈ (FA)0, there exists an x ∈ A such that Fx = y. Thus

F ◦ ◦ F◦(y) = F ◦ ◦ F◦(Fx) = F ◦(Fx) ∼= F ◦x = y, and for every x ∈ A0, F◦ ◦ F ◦(x) = F ◦x ≥ x.

Therefore, F ◦ ⊣ F◦.

(b) implies (a) is direct consequence of proposition 3.5. �

Lemma 3.7 ([16, Proposition 5.12]) If F ′ : B → B′ is a left adjoint in Cat(Q), then it is

cocontinuous.

Corollary 3.8 The co-restriction F ◦ : A → FA of a closure operator is cocontinuous.

Theorem 3.9 Let F : A → A be a closure operator, I : FA → A be the inclusion functor,

Θ : D −→◦ FA be a distributor. If colim(A(−, I−) ⊗FA Θ, 1A) exists, denote it by G, then

F ◦ G ∼= colim(Θ, 1FA).

The following diagram pictures the situation

D

FA FA

A(−, I−) ◦

Θ ◦
colim(Θ, 1FA)

G

1FA

1A

F

A A

?

6

?

-

-

~

^

Diagram 1 Θ-weighted colimit of 1F A
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Proof If colim(A(−, I−) ⊗FA Θ, 1A) exists, then

FA(F ◦ colim(A(−, I−) ⊗FA Θ, 1A)−,−)

= A(colim(A(−, I−) ⊗FA Θ, 1A)−, I−)

= [A(−, I−) ⊗FA Θ, A(−, I−)]

= [Θ, FA(−,−)]. �

Recall that a functor F : A → B is fully faithful if

∀a, a′ ∈ A0 : A(a′, a) = B(Fa′, Fa) in Q.

Lemma 3.10 ([16, Corollary 5.13]) Consider a fully faithful right adjoint G : A → B in Cat(Q);

if B is cocomplete, then so is A.

Corollary 3.11 If F : A → A is a closure operator on a cocomplete Q-category A, then FA is

cocomplete.

Theorem 3.12 If F ⊣ G : A → A in Cat(Q), then the following conditions are equivalent:

(1) F is a kernel operator;

(2) G is a closure operator;

(3) F ◦ G ∼= F ;

(4) G ◦ F ∼= G.

Proof (1) implies (2). Suppose F is a kernel operator, then A(−, G−) = A(F−,−) ≥ A(−,−),

i.e., 1A ≤ G, and A(−, G ◦ G) = A(F−, G−) = A(F ◦ F,−) = A(F−,−) = A(−, G−), i.e.,

G ∼= G ◦ G. Hence, G is a closure operator.

(2) implies (3). Suppose G is a closure operator, then A(F ◦G−,−) = A(G, G) = A(G−, G◦

G−) ≥ A(−, G−) = A(F−,−). Hence, F ◦ G ≤ F . Conversely, F ≤ F ◦ G is obvious, since

G ≥ 1A. Therefore, F ◦ G ∼= F .

(3) ⇐⇒ (4). If F ◦ G ∼= F , then G ◦ F ∼= G ◦ F ◦ G ∼= G. Conversely, if G ◦ F ∼= G, then

F ◦ G ∼= F ◦ G ◦ F ∼= F .

(3) and (4) imply (1). For every x ∈ A0, A(Fx, x) ≥ A(Fx, FGx)◦A(FGx, x) = A(Fx, Fx)◦

A(Gx, Gx) ≥ 1tx, i.e., F ≤ 1A, and A(F−, F ◦ F−) = A(−, G ◦ F ◦ F−) = A(−, G ◦ F−) =

A(F−, F−) ≥ A(−,−), i.e., F ≤ F ◦ F . Hence we can conclude that F is a kernel operator. �

Similarly, we have

Theorem 3.13 If F ⊣ G : A → A in Cat(Q), then the following conditions are equivalent:

(1) F is a closure operator;

(2) G is a kernel operator;

(3) G ◦ F ∼= F ;

(4) F ◦ G ∼= G.

For a projection operator F : A → A on a Q-category, we define FixF = {x ∈ A0|Fx ∼= x}.

Theorem 3.14 If F : A → A is a closure operator, G : A → A is a kernel operator, then F ⊣ G
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if and only if FixF = FixG.

Proof If F ⊣ G, then for every a ∈ FixF , A(a, Ga) = A(Fa, a) = A(a, a) ≥ 1ta, i.e., a ≤ Ga.

Hence a ∼= Ga, i.e., a ∈ FixG. Similarly, we can prove FixG ⊆ FixF . Thus FixF = FixG.

Conversely, if FixF = FixG, then for every x ∈ A0, since Fx ∈ FixF , GFx ∼= Fx. Hence,

A(Fx, y) ≤ A(GFx, Gy) = A(Fx, Gy) ≤ A(x, Fx) ◦ A(Fx, Gx) ≤ A(x, Gy). Similarly, we have

A(x, Gy) ≤ A(Fx, y). Hence, A(F−,−) = A(−, G−), i.e., F ⊣ G in Cat(Q). �

4. Closure systems

In this section, we will explain the notion of closure system on Q-categories. As expected

we will establish the relation between closure systems and closure operators on Q-categories.

Recall that for a Q-category A the co-Yoneda embedding Y ′
A

: A → P†A is defined as

Y ′
A
(a) = A(a,−) : A −→◦ ∗ta, for each a ∈ A0.

Definition 4.1 Let A be a Q-category. A sub-Q-category B of A is called a closure system,

provided that for every a ∈ A0, lim(Y ′
A
(a)|B, 1B) exists and a ≤ lim(Y ′

A
(a)|B, 1B).

The following lemma is the dual of Lemma 5.2(4) in [16].

Lemma 4.2 For Φ : A −→◦ C and F : A → B, lim(Φ, F ) exists if and only if, for all objects

c ∈ C0, lim(Φ(c,−), F ) exists; then lim(Φ, F )(c) ∼= lim(Φ(c,−), F ).

For a sub-Q-category B of A, with I : B → A as the inclusion functor, we have Y ′
A
(a)|B =

A(a,−)|B = A(a, I−), hence lim(Y ′
A
(a)|B, 1B) exists if and only if lim(A(a, I−), 1B) exists. So we

have

Proposition 4.3 Let A be a Q-category. Then a sub-Q-category B of A is a closure system if

and only if lim(A(−, I−), 1B) exists and for all a ∈ A0, a ≤ lim(A(a, I−), 1B).

Lemma 4.4 Let B be a closure system in a Q-category A, A ∈ Q0 and Φ : B −→◦ ∗A be

a distributor. If lim(Φ ⊗B A(I−,−), 1A) exists (denote it by a), then a ∼= lim(Y ′
A
(a)|B, 1B) ∼=

lim(Φ, 1B), where I : B → A is the inclusion functor.

Proof Denote a0 = lim(Y ′
A
(a)|B, 1B). Then A(a, a0) ≥ 1ta. And,

A(a0, a) = A(a0, lim(Φ ⊗B A(I−,−), 1A))

=
∧

y∈A0

{Φ ⊗B A(I−,−)(y), A(a0, y)}

=
∧

y∈A0

{
∨

b∈B0

Φ(b) ◦ A(b, y), A(a0, y)}

=
∧

b∈B0

{Φ(b),
∧

y∈A0

{A(b, y), A(a0, y)}}

=
∧

b∈B0

{Φ(b), A(a0, b)}
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=
∧

b∈B0

{Φ(b), B(lim(Y ′
A(a)|B, 1B), b)}

≥
∧

b∈B0

{Φ(b), Y ′
A(a)|B(b)}

=
∧

b∈B0

{Φ(b), A(lim(Φ ⊗B A(I−,−), 1A), b)}

≥
∧

b∈B0

{Φ(b), Φ ⊗B A(I−,−)(b)}

≥
∧

b∈B0

{Φ(b), Φ(b)}

≥ 1A.

Hence, a ∼= a0. For every b ∈ B0, we have

B(b, a) = A(b, lim(Φ ⊗B A(I−,−), 1A))

= {Φ ⊗B A(I−,−), A}(b)

=
∧

x∈A0

{Φ ⊗B A(I−,−)(x), A(b, x)}

=
∧

x∈A0

{
∨

y∈B0

Φ(y) ◦ A(y, x), A(b, x)}

=
∧

y∈B0

{Φ(y),
∧

x∈A0

{A(y, x), A(b, x)}}

=
∧

y∈B0

{Φ(y), B(b, y)}

= {Φ, B(−, 1B−)}(b).

Thus a ∼= lim(Φ, 1B). �

Theorem 4.5 Let B be a closure system in A, I : B → A be the inclusion fuctor, Φ : B −→◦ C

be a distributor. If lim(Φ ⊗B A(I−,−), 1A) exists (denote it by F ), then F is equivalent to

I ◦ lim(Φ, 1B).

The following diagram pictures the situation

C

B B

A(I−,−) ◦

Φ ◦
lim(Φ, 1B)

F

1B

1A

I

A A

6

?

6

-

-

~

^

Diagram 2 Φ-weighted limit of 1B
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Proof If lim(Φ ⊗B A(I−,−), 1A) exists, then for every c ∈ C0, lim(Φ(c,−) ⊗B A(I−,−), 1A)

exists and is equivalent to lim(Φ ⊗B A(I−,−), 1A)(c). By Lemma 4.4, we know lim(Φ(c,−) ⊗B

A(I−,−), 1A) is equivalent to lim(Φ(c,−), 1B). Hence, lim(Φ⊗B A(I−,−), 1A)(c) is equivalent to

lim(Φ(c,−), 1B). Thus, lim(Φ, 1B) exists and for every c ∈ C0, lim(Φ, 1B)(c) ∼= lim(Φ(c,−), 1B) ∼=

lim(Φ ⊗B A(I−,−), 1A)(c). Therefore, lim(Φ ⊗B A(I−,−), 1A) ∼= I ◦ lim(Φ, 1B). �

Corollary 4.6 If B is a closure system in a complete Q category A, then for every distributor

Φ : B −→◦ C, lim(Φ, 1B) exists and I ◦ lim(Φ, 1B) ∼= lim(Φ ⊗B A(I−,−), 1A).

Proposition 4.7 If F : A → A is a closure operator, then FA is a closure system.

Proof Take a ∈ A0. Then for every b ∈ (FA)0, we have

{Y ′
A(a)|FA, FA(−,−)}(b) =

∧

x∈(FA)0

{Y ′
A(a)|FA(x), FA(b, x)}

=
∧

x∈(FA)0

{A(a, x), FA(b, x)}

=
∧

x∈(FA)0

{FA(Fa, x), FA(b, x)}

= FA(−, Fa)(b).

Hence, Fa ∼= lim(Y ′
A
(a)|FA, 1FA) and Y ′

A
(a)(lim(Y ′

A
(a)|FA, 1FA)) = Y ′

A
(a)(Fa) = A(a, Fa) ≥ 1ta.

Therefore, FA is a closure system. �

If B is a closure system on a Q-category A, then by definition for each a ∈ A0, lim(Y ′
A
(a)|B, 1B)

exists, and such a limit “picks out” an object of type ta in B. Therefore, we will treat it just as

that object. Hence, for each a ∈ A0, we can assign an element lim(Y ′
A
(a)|B, 1B) to it, that is to

say, we can define a map FB : A0 → A0 by FB(a) = lim(Y ′
A
(a)|B, 1B).

Proposition 4.8 Let B be a closure system on a Q-category A. Then the map FB is a closure

operator on A with FBA equivalent to B.

Proof (1) For x, y ∈ A0 we have

B(Fx, Fy) = B(Fx, lim(Y ′
A(y)|B, 1B))

=
∧

z∈B0

{Y ′
A(y)(z), B(Fx, z)}

=
∧

z∈B0

{Y ′
A(y)(z), B(lim(Y ′

A(x)|B, 1B), z)}

=
∧

z∈B0

{A(y, z),
∧

b∈B0

[B(b, lim(Y ′
A(x)|B, 1B)), B(b, z)]}

=
∧

z∈B0

∧

b∈B0

{A(y, z), [
∧

p∈B0

{A(x, p), B(b, p)}, B(b, z)]}

≥
∧

z∈B0

∧

b∈B0

{A(y, z), [{A(x, z), B(b, z)}, B(b, z)]}
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≥
∧

z∈B0

{A(y, z), A(x, z)}

≥ A(x, y).

(2) For every x ∈ A0, A(x, Fx) = A(x, lim(Y ′
A
(x)|B, 1B)) ≥ 1tx.

(3) For every x ∈ A0, A(FFx, Fx) = A(lim(Y ′
A
(Fx)|B, 1B), Fx) ≥ Y ′

A
(Fx)|B(Fx) =

A(Fx, Fx) ≥ 1tx.

By (1)–(3), we can conclude that F is a closure operator.

For every b ∈ B0, since Y ′
A
(b)|B = Y ′

B
(b), whence lim(Y ′

A
(b)|B, 1B) ∼= lim(Y ′

B
(b), 1B) ∼= b.

Hence, FB(b) ∼= b. Therefore, we can deduce that the inclusion functor I : FBA → B is an

equivalence. �

Convention 4.9 If J : A → A is a closure operator, denote by TJ the closure system induced

by J . Conversely, if T is a closure system on A, denote by JT the closure operator induced by T

as defined in Proposition 4.8, then we have:

Theorem 4.10 Let A be a Q-category, J : A → A be a closure operator, T be a closure system.

Then:

(1) JTJ

∼= J ,

(2) TJT

∼= T.

Proof (1) Since for every x ∈ A0, y ∈ (TJ )0, Y ′
A
(x)|TJ

(y) = A(x, y) ≤ A(Jx, Jy) = A(Jx, y)

and Y ′
A
(x)|TJ

(Jx) = A(x, Jx) ≥ 1tx. Hence, by Lemma 2.7, Jx ∼= lim(Y ′
A
(x)|TJ

, 1TJ
) = JTJ

(x).

(2) For every x ∈ T0, JT(x) = lim(Y ′
A
(x)|T, 1T) ∼= x. If x ∈ (TJT

)0, then there exists y ∈ A0

such that x = JT(y) ∈ T0. Hence, (TJT
)0 ⊆ (T)0. Thus it is easy to see that the inclusion functor

I : TJT
→ T is an equivalence. �
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