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Abstract This paper deals with a heat system coupled via local and localized sources sub-

ject to null Dirichlet boundary conditions. Based on a complete classification for all the four

nonlinear parameters, we establish multiple blow-up rates for the system under various domi-

nations. We also determine uniform blow-up profiles for the three cases where localized source

couplings dominate the system.
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1. Introduction

In this paper, we consider the following heat system coupled via local and localized sources




ut = ∆u+ vp1 + vq1 (0, t), (x, t) ∈ Ω × (0, T ),

vt = ∆v + up2 + uq2(0, t), (x, t) ∈ Ω × (0, T ),

u = v = 0, (x, t) ∈ ∂Ω × (0, T ),

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω̄,

(1.1)

where Ω = B = {x ∈ RN : |x| < 1}, p1, p2 > 1, q1, q2 > 0; u0, v0 ∈ C2(Ω) ∩ C(Ω̄) are radial and

satisfy

(A)





u0 = u0(r), v0 = v0(r), u0, v0 ≥ 0, u0(0), v0(0) > 1;

u0(1) = v0(1) = 0, u0r, v0r < 0 for r ∈ (0, 1],

and

(B)





∆u0 + vp1

0 + vq1

0 (0) ≥ ηϕ0(v
p1

0 + vq1

0 (0), x ∈ B̄;

∆v0 + up2

0 + uq2

0 (0) ≥ ηϕ0(u
p2

0 + uq2

0 (0)), x ∈ B̄,
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where η ∈ (0, 1
2 ], ϕ0 ∈ C2(B) ∩ C(B̄) is the first eigenfunction of

∆ϕ+ λϕ = 0 in B, ϕ = 0 on ∂B, (1.2)

with the first eigenvalue λ0, normalized by ϕ0 > 0 in B and ‖ϕ0‖∞ = 1. It is easy to see that

ϕ0 is a radially symmetric with ϕ′

0 < 0 for r ∈ (0, 1]. Such u0 and v0 do exist indeed [7, 14].

It is well known that there exists a unique local solution to (1.1), which blows up in finite

time for large initial data [1–3]. Denote by T the maximum existence time of the solution.

System (1.1) can be viewed as a combination of the following two coupled problems: the

system with local coupling

ut = ∆u + vp1 , vt = ∆v + up2 , (x, t) ∈ Ω × (0, T ), (1.3)

and the system with localized coupling

ut = ∆u+ vq1(0, t), vt = ∆v + uq2(0, t), (x, t) ∈ Ω × (0, T ), (1.4)

subject to null Dirichlet boundary conditions. It was known that the blow-up solutions of (1.3)

with p1p2 > 1 must be single point blow-up [3, 8]. While for (1.4) with q1q2 > 1, the blow-up

occurs everywhere in Ω = B (see [6]), where the uniform blow-up profile was observed. It is

easy to understand the system (1.1) may admit both single point blow-up and uniform blow-up

profiles.

In this paper, we will study the multiple blow-up rates for (1.1), by using the scaling

technique [5], under various dominations. To get a complete classification for the discussion,

introduce the following characteristic algebraic system [12, 15] associate with (1.1):
(

−1 θ1p1 + (1 − θ1)q1
θ2p2 + (1 − θ2)q2 −1

) (
α

β

)
=

(
1

1

)
(1.5)

with θ1, θ2 ∈ {0, 1}, namely,

(α, β) =






(α1, β1) =
( p1 + 1

p1p2 − 1
,
p2 + 1

p1p2 − 1

)
for θ1 = 1, θ2 = 1;

(α2, β2) =
( p1 + 1

p1q2 − 1
,
q2 + 1

p1q2 − 1

)
for θ1 = 1, θ2 = 0;

(α3, β3) =
( q1 + 1

p2q1 − 1
,
p2 + 1

p2q1 − 1

)
for θ1 = 0, θ2 = 1;

(α4, β4) =
( q1 + 1

q1q2 − 1
,
q2 + 1

q1q2 − 1

)
for θ1 = 0, θ2 = 0.

(1.6)

It will be shown that all possible blow-up rates can be described via such (αi, βi), i = 1, . . . , 4.

We need the auxiliary function φ solving heat equation

φt = ∆φ in B ×R+, φ = 0 on ∂B, φ(x, 0) = ϕ0(x) on B̄. (1.7)

The maximum principle yields

sup
B×R+

|φ| ≤ 1. (1.8)

Next, we will deal with the multiple blow-up rates in Section 2, and then consider the

uniform blow-up profiles in Section 3.
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2. Multiple blow-up rates

The maximum principle with the assumptions (A) and (B) implies that u, v are radial, and

max[0,1] u(·, t) = u(0, t), max[0,1] v(·, t) = v(0, t) for t ∈ (0, T ), ut, vt ≥ 0 for (x, t) ∈ B̄ × [0, T ).

We have furthermore:

Lemma 2.1 The solution (u, v) of (1.1) satisfies

ut ≥ ηφ[vp1 + vq1(0, t)], vt ≥ ηφ[up2 + uq2(0, t)], (x, t) ∈ B̄ × [0, T ) (2.1)

with η ≤ 1/2.

Proof Introduce auxiliary functions

I(x, t) = ut − ηφ[vp1 + vq1(0, t)], J(x, t) = vt − ηφ[up2 + uq2(0, t)]

with φ defined by (1.7). A simple computation shows

It − ∆I − p1v
p1−1J ≥ 0, q1v

q1−1(0, t)vt(0, t)(1 − ηφ) + 2ηp1v
p1−1∇v · ∇φ.

Notice that ∇v ·∇φ ≥ 0, since both v and φ are radially symmetric and monotonically decreasing

with respect to r = |x|, and vt(0, t) ≥ 0. We have

It − ∆I − p1v
p1−1J ≥ 0, (x, t) ∈ B × (0, T ), (2.2)

and similarly,

Jt − ∆J − p2u
p2−1I ≥ 0, (x, t) ∈ B × (0, T ). (2.3)

On the other hand,

I = J = 0 on ∂B × [0, T ) (2.4)

due to φ = u = v = 0 on ∂B × [0, T ). The assumption (B) yields

I(x, 0) = ∆u0 + vp1

0 (x) + vq1

0 (0) − ηϕ0[v
p1

0 (x) + vq1

0 (0)] ≥ 0, x ∈ B̄, (2.5)

J(x, 0) = ∆v0 + up2

0 (x) + uq2

0 (0) − ηϕ0[u
p2

0 (x) + uq2

0 (0)] ≥ 0, x ∈ B̄. (2.6)

The maximum principle with (2.2)–(2.6) concludes that I, J ≥ 0 on B̄ × [0, T ). �

Lemma 2.2 Let (u, v) be a blow-up solution of (1.1). Then

c ≤ u−
1
2α (0, t)v

1
2β (0, t) ≤ C, t ∈ (0, T ) (2.7)

where (α, β) = (αi, βi), i = 1, . . . , 4, are defined by (1.6), and c and C denote positive constants

independent of t, which may be different from line to line throughout the paper.

Proof Notice that u(0, t), v(0, t) are nondecreasing in (0, T ) and any blow-up in (1.1) must be

simultaneous. Thus, ‖u(·, t)‖∞ = u(0, t), ‖v(·, t)‖∞ = v(0, t) tend to infinity monotonously as

t→ T−.

We follow the technique in [4, 13]. If the lower bound estimate in (2.7) does not hold, then

there exists a sequence tj → T− as j → +∞ such that

u−
1
2α (0, t)v

1
2β (0, t) → 0 as j → +∞.



64 Jinhuan WANG and Liang HONG

Let λj = u−
1
2α (0, tj). Since α > 0, u(0, tj) diverges as j → +∞, it follows that λj =

u−
1
2α (0, tj) → 0 as j → +∞. Scale (u, v) to (ϕλj , ψλj ) as

ϕλj (y, s) = λ2α
j u(λjy, λ

2
js+ tj), ψ

λj (y, s) = λ2β
j v(λjy, λ

2
js+ tj) (2.8)

for (y, s) ∈ B̄λj
× (−tj/λ

2
j , (T − tj)/λ

2
j) with Bλj

= {y ∈ R
N : λjy ∈ B}.

For s ∈ (−tj/λ
2
j , 0], we have 0 ≤ ϕλj ≤ 1, ϕλj (0, 0) = 1,

0 ≤ ψλj ≤ (u(0, tj))
−

β
α v(0, tj) → 0, j → +∞. (2.9)

Moreover, (ϕλj , ψλj ) solves




ϕs = ∆ϕ+ λ2+2α−2p1β
j ψp1 + λ2+2α−2q1β

j ψq1(0, s),

ψs = ∆ψ + λ2+2β−2p2α
j ϕp2 + λ2+2β−2q2α

j ϕq2(0, s).
(2.10)

If p1 ≥ q1, p2 ≥ q2, then θ1 = θ2 = 1, i.e., (α, β) = (α1, β1) = ( p1+1
p1p2−1 ,

p2+1
p1p2−1 ), and thus for

j → ∞,

µ1 = 2 + 2α− 2p1β = 0, ε1 = λµ1

j = 1;

µ2 = 2 + 2α− 2q1β ≥ 0, ε2 = λµ2

j ∈ {0, 1};

µ3 = 2 + 2β − 2p2α = 0, ε3 = λµ3

j = 1;

µ4 = 2 + 2β − 2q2α ≥ 0, ε4 = λµ4

j ∈ {0, 1}.

If p1 ≥ q1, p2 ≤ q2, then θ1 = 1, θ2 = 0, i.e., (α, β) = (α2, β2), and

µ1 = µ4 = 0, ε1 = ε4 = 1; µ2, µ3 ≥ 0, ε2, ε3 ∈ {0, 1}.

If p1 ≤ q1, p2 ≥ q2, then θ1 = 0, θ2 = 1, i.e., (α, β) = (α3, β3), and

µ2 = µ3 = 0, ε2 = ε3 = 1; µ1, µ4 ≥ 0, ε1, ε4 ∈ {0, 1}.

If p1 ≤ q1, p2 ≤ q2, then θ1 = 0, θ2 = 0, i.e., (α, β) = (α4, β4), and

µ2 = µ4 = 0, ε2 = ε4 = 1; µ1, µ3 ≥ 0, ε1, ε3 ∈ {0, 1}.

The general parabolic estimates yield a subsequence converging uniformly on compact sub-

sets of RN × (−∞, 0] to (ϕ̃, ψ̃) such that




ϕ̃s = ∆ϕ̃+ ε1ψ̃
p1 + ε2ψ̃

q1(0, s), (y, s) ∈ RN × (−∞, 0],

ψ̃s = ∆ψ̃ + ε3ϕ̃
p2 + ε4ϕ̃

q2(0, s), (y, s) ∈ RN × (−∞, 0]

with εi = 0 or 1 (i = 1, 2, 3, 4), and there always exist i ∈ {1, 2}, j ∈ {3, 4} such that εi = εj = 1.

On the other hand, ψ̃ ≡ 0 by (2.9). This contradicts the second equation with ϕ̃(0, 0) = 1.

If the upper bound estimate in (2.7) does not hold, then there exists a sequence tj → T−

as j → +∞ such that

u−
1
2α (0, t)v

1
2β (0, t) → +∞ as j → +∞.

Let λj = v−
1
2β (0, tj), and define (ϕλj , ψλj ) as (2.8). Then (ϕλj , ψλj ) is the solution of (2.10),

such that

0 ≤ ψλj ≤ 1, ψλj (0, 0) = 1, 0 ≤ ϕλj ≤ u(0, tj)(v(0, tj))
−

α
β → 0, j → +∞.
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Proceeding as before, we will get a contradiction. Thus (2.7) is established. �

Next, we study blow-up rates of maximum point for solutions to (1.1), which would be

helpful for the further study on uniform blow-up profiles of solutions. The sources for u (v) in

the model consist of vp1 and vq1(0, t) (up2 and uq2(0, t)). There are four different dominations

of the sources, corresponding to four possible simultaneous blow-up rates of solutions. All these

are clearly described via the characteristic algebraic system (1.6). In the sequel, always denote

by T the blow-up time for (1.1).

Theorem 2.1 Let (u, v) be a blow-up solution of (1.1). Then there are positive constants c, C

such that

c ≤ u(0, t)(T − t)α ≤ C, c ≤ v(0, t)(T − t)β ≤ C, t ∈ (0, T ), (2.11)

where (α, β) = (αi, βi), i = 1, . . . , 4, are defined by (1.6).

Proof Without loss of generality, we only consider the case with vp1 , up2 dominating the system,

i.e., p1 ≥ q1, p2 ≥ q2. Thus, (α, β) = (α1, β1), defined by (1.6). For the component u, notice

that maxB̄ u(·, t) = u(0, t) implies ∆u(0, t) ≤ 0 and u(0, t) blows up as t→ T . We have from the

first equation of (1.1) that

ut(0, t) ≤ vp1(0, t) + vq1(0, t) ≤ 2vp1(0, t).

By Lemma 2.2 and the assumption of the theorem, we know v(0, t) ≤ Cu
β1
α1 (0, t) = Cu

p2+1
p1+1 , and

thus

ut(0, t) ≤ Cu
p1(p2+1)

p1+1 (0, t) as t→ T. (2.12)

It follows from (2.12) that

u(0, t) ≥ c(T − t)
−

p1+1
p1p2−1 as t→ T.

On the other hand, Lemma 2.1 says

ut(0, t) ≥ ηφ(0, t)[vp1 + vq1 (0, t)]

≥ ηφ(0, t)vp1 (0, t) ≥ ηφ(0, t)cu
p1(p2+1)

p1+1 (0, t),

and so u(0, t) ≤ C(T − t)
−

p1+1
p1p2−1 = C(T − t)−α1 is true. For the component v, similarly to above,

we also have

c ≤ v(0, t)(T − t)β1 ≤ C. �

3. Uniform blow-up profiles

This section considers uniform blow-up profiles of solutions to (1.1). We will use the tech-

nique in [9–11] with Theorem 2.1 to establish the uniform blow-up profiles of solutions. There

are three cases to be considered: (a) p1 ≥ q1, p2 < q2; (b) p1 < q1, p2 ≥ q2; (c) p1 < q1, p2 < q2.

Let us first treat the case (a) with p1 ≥ q1, p2 < q2, where vp1 and uq2(0, t) play a dominance

role:
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Theorem 3.1 (i) If p1 > q1, p2 < q2, then

lim
t→T

(T − t)
p1+1

p1q2−1u(x, t) =
( q2 + 1

p1 + 1

) p1
p1q2−1

( p1 + 1

p1q2 − 1

) p1+1
p1q2−1

, (3.1)

lim
t→T

(T − t)
q2+1

p1q2−1 v(x, t) =
(p1 + 1

q2 + 1

) q2
p1q2−1

( q2 + 1

p1q2 − 1

) q2+1
p1q2−1

(3.2)

uniformly on compact subsets of Ω.

(ii) If p1 = q1, p2 < q2, then

lim
t→T

(T − t)
p1+1

p1q2−1 u(x, t) = 2−
1

p1q2−1

( q2 + 1

p1 + 1

) p1
p1q2−1

( p1 + 1

p1q2 − 1

) p1+1

p1q2−1

, (3.3)

lim
t→T

(T − t)
q2+1

p1q2−1 v(x, t) = 2
−

q2
p1q2−1

(p1 + 1

q2 + 1

) q2
p1q2−1

( q2 + 1

p1q2 − 1

) q2+1

p1q2−1

(3.4)

uniformly on compact subsets of Ω.

Proof (i) By Theorem 2.1 with p1 ≥ q1 and p2 ≤ q2,

c ≤ u(0, t)(T − t)α2 ≤ C, c ≤ v(0, t)(T − t)β2 ≤ C, t ∈ (0, T ).

Set

F (t) =

∫ t

0

vp1(0, τ)dτ, G(t) =

∫ t

0

uq2(0, τ)dτ, (3.5)

and hence F (t), G(t) → ∞, as t → T−. Since ∆v(0, t) ≤ 0 by v(0, t) = maxΩ̄ u(·, t), it follows

that

vt(0, t) ≤ up2(0, t) + uq2(0, t), 0 < t < T. (3.6)

Integrate (3.6) over (0, t) to get

v(0, t) − v0(0) ≤

∫ t

0

up2(0, s)ds+

∫ t

0

uq2(0, s)ds, 0 < t < T,

which implies

lim sup
t→T

v(0, t)
∫ t

0
up2(0, s)ds+G(t)

≤ 1.

Since p2 < q2, we have

lim
t→T

∫ t

0
up2(0, s)ds

G(t)
= 0.

So, there holds

lim sup
t→T

v(0, t)

G(t)
≤ 1. (3.7)

Let λ0 and ψ0 be the first eigenvalue and eigenfunction of −∆ with the null Dirichlet

boundary condition, normalized by
∫
Ω
ψ0(x)dx = 1. Multiplying the second equation of (1.1) by

ψ0, and then integrating over Qt = Ω × (0, t) for 0 < t < T , we obtain
∫

Ω

vψ0dx −

∫

Ω

v0ψ0dx = −λ0

∫∫

Qt

vψ0dxds+

∫∫

Qt

up2ψ0dxds+G(t). (3.8)
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By (i), we know v(0, t) ≥ cu
q2+1
p1+1 (0, t), and thus

0 ≤ lim
t→T

∫∫
Qt
vψ0dxds

G(t)
≤ lim

t→T

∫ t

0 v(0, s)ds

G(t)
= 0,

0 ≤ lim
t→T

∫∫
Qt
up2ψ0dxds

G(t)
≤ 0.

Combining (3.8) gives

lim inf
t→T

v(0, t)

G(t)
≥ lim

t→T

∫
Ω
vψ0dx

G(t)
= 1. (3.9)

Due to (3.7) and (3.9), we conclude

lim
t→T

v(0, t)

G(t)
= 1, (3.10)

namely,

v(0, t) ∼ G(t), t→ T. (3.11)

On the other hand, by (3.9) and (3.10),

lim
t→T

∫
Ω
vψ0dx

v(0, t)
= 1,

and hence

lim
t→T

v(x, t)

v(0, t)
= 1 for a.e. x ∈ Ω

due to
∫
Ω
ψ0dx = 1. Since ur ≤ 0, we have furthermore

v(x, t) ∼ v(0, t) ∼ G(t), x ∈ Ω, t→ T. (3.12)

Similarly to (3.7), we have

lim sup
t→T

u(0, t)

F (t)
≤ 1. (3.13)

Multiplying the first equation of (1.1) by ψ0, and then integrating over Qt = Ω × (0, t) for

t ∈ (0, T ), we obtain
∫

Ω

uψ0dx−

∫

Ω

u0ψ0dx = −λ0

∫∫

Qt

uψ0dxds+

∫∫

Qt

vp1ψ0dxds+

∫∫

Qt

vq1(0, t)ψ0dxds. (3.14)

Due to u(0, t) ≥ cv
p1+1
q2+1 (0, t) by (i), we have

lim
t→T

∫∫
Qt
uψ0dxds

F (t)
= 0. (3.15)

We know from (3.12) that
∫ t

0 v
p1(x, s)ds ∼

∫ t

0 u
p1(0, s)ds uniformly on compact subsets of Ω =

B1. Denoting Ωn = B1−1/n, we have

lim
t→T

∫∫
Qt
vp1ψ0dxds

F (t)
= lim

n→+∞

∫

Ωn

lim
t→T

∫ t

0
vp1(x, s)ds

F (t)
ψ0dx = 1. (3.16)

It follows from (3.14)–(3.16) that

lim inf
t→T

u(0, t)

F (t)
≥ lim

t→T

∫
Ω
uψ0dx

F (t)
= 1. (3.17)
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Combining (3.13) with (3.17), we conclude

u(0, t) ∼ F (t), t→ T. (3.18)

Similarly to above, we have

lim
t→T

u(x, t)

u(0, t)
= 1 for a.e. x ∈ Ω,

and thus

u(x, t) ∼ u(0, t) ∼ F (t), x ∈ Ω, t→ T (3.19)

due to ur(r, t) ≤ 0. In summary of (3.11), (3.18) and (3.5),

F ′(t) ∼ Gp1(t), G′(t) ∼ F q2(t), t→ T. (3.20)

It follows from (3.20) that G(t) ∼ (p1+1
q2+1 )

1
p1+1F

q2+1
p1+1 (t) (t→ T ), and consequently,

lim
t→T

(T − t)
p1+1

p1q2−1F (t) =
( q2 + 1

p1 + 1

) p1
p1q2−1

( p1 + 1

p1q2 − 1

) p1+1

p1q2−1

,

lim
t→T

(T − t)
q2+1

p1q2−1G(t) =
(p1 + 1

q2 + 1

) q2
p1q2−1

( q2 + 1

p1q2 − 1

) q2+1
p1q2−1

.

Combined with (3.12) and (3.19), the required uniform blow-up profiles are proved.

(ii) Similarly to (3.12),

v(x, t) ∼ v(0, t) ∼ G(t), x ∈ Ω, t→ T. (3.21)

By (3.6), we get

lim sup
t→T

u(0, t)

F (t)
≤ 2. (3.22)

On the other hand, multiplying the first equation of (1.1) by ψ0, and then integrating over

Qt = Ω × (0, t) for t ∈ (0, T ), we have
∫

Ω

uψ0dx−

∫

Ω

u0ψ0dx = −λ0

∫∫

Qt

uψ0dxds+

∫∫

Qt

vp1ψ0dxds+

∫∫

Qt

vq1(0, t)ψ0dxds. (3.23)

Repeating the argument for (i), we can get

lim inf
t→T

u(0, t)

F (t)
≥ lim

t→T

∫
Ω
uψ0dx

F (t)
= 2. (3.24)

Combining (3.22) with (3.24) gives

u(0, t) ∼ 2F (t), t→ T. (3.25)

Similarly to (3.10),

u(x, t) ∼ u(0, t) ∼ 2F (t), x ∈ Ω, t→ T (3.26)

due to ur(r, t) ≤ 0. In summary of (3.21), (3.25) and (3.5),

F ′(t) ∼ Gp1(t), G′(t) ∼ (2F )q2(t), t→ T. (3.27)
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Clearly, (3.27) implies that G(t) ∼ 2
q2

p1+1 (p1+1
q2+1 )

1
p1+1F

q2+1
p1+1 (t) (t → T ). Combining with (3.21)

and (3.26), we obtain

lim
t→T

(T − t)
p1+1

p1q2−1 u(x, t) = 2−
1

p1q2−1

( q2 + 1

p1 + 1

) p1
p1q2−1

( p1 + 1

p1q2 − 1

) p1+1
p1q2−1

,

lim
t→T

(T − t)
q2+1

p1q2−1 v(x, t) = 2−
q2

p1q2−1

(p1 + 1

q2 + 1

) q2
p1q2−1

( q2 + 1

p1q2 − 1

) q2+1

p1q2−1

.

This completes the proof. �

The case (b) with p1 < q1, p2 ≥ q2 can be treated by exchanging the roles of u and v in

Theorem 3.1.

Finally we consider the third situation with vq1(0, t) and uq2(0, t) dominating the system.

That is the following theorem. The proof is similar to (i) of Theorem 3.1, and omitted here.

Theorem 3.2 Assume p1 < q1, p2 < q2. Then there holds

lim
t→T

(T − t)
q1+1

q1q2−1u(x, t) =
(q2 + 1

q1 + 1

) q1
q1q2−1

( q1 + 1

q1q2 − 1

) q1+1
q1q2−1

,

lim
t→T

(T − t)
q2+1

q1q2−1 v(x, t) =
(q1 + 1

q2 + 1

) q2
q1q2−1

( q2 + 1

q1q2 − 1

) q2+1
q1q2−1

uniformly on all compact subsets of Ω. �
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