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Abstract We investigate the restart of the Restarted Shifted GMRES method for solving shifted

linear systems. Recently the variant of the GMRES(m) method with the unfixed update has been

proposed to improve the convergence of the GMRES(m) method for solving linear systems, and

shown to have an efficient convergence property. In this paper, by applying the unfixed update

to the Restarted Shifted GMRES method, we propose a variant of the Restarted Shifted GMRES

method. We show a potentiality for efficient convergence within the variant by some numerical

results.
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1. Introduction

We consider solving large and sparse shifted linear systems of the form:

(A + σiI)x(σi) = b, i = 1, 2, . . . , t, (1)

where A ∈ R
n×n, x(σi), b ∈ R

n and σi ∈ R. The coefficient matrices A(σi) := A + σiI are

assumed to be nonsymmetric and nonsingular for all σi. Such shifted linear systems (1) arise

from higher-order implicit methods for solving time-dependent partial differential equations,

control theory, lattice gauge computations in quantum chromodynamics and so on.

One of the simplest ideas for solving the shifted linear systems (1) is to apply some Krylov

subspace method with a powerful preconditioner to each linear system one by one. If the powerful

preconditioner is constructed, then the shifted linear systems (1) can be efficiently solved. In this

regard, however, the efficient preconditioners depend heavily on σi, therefore how to construct the

powerful preconditioner is critical in this approach for the preconditioning techniques specialized

in the shifted linear systems [1].
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As another approach, the shifted Krylov subspace methods have been recently proposed and

actively studied to solve the shifted linear systems (1) at once. The shifted Krylov subspace

methods are based on the shift-invariance property of the Krylov subspaces: if the initial vectors

are collinear, then the Krylov subspaces corresponding to the matrix A(σi) are equal for any σi;

the details will be shown in Section 2. The shift-invariance property makes it possible to reuse the

basis of the Krylov subspace whose construction can be one of the most time-consuming parts of

the Krylov subspace methods. Thus the shifted Krylov subspace methods have attracted much

attention for large and sparse shifted linear systems, typically in the case that the number of

shift t is large.

The general ideas of the shifted Krylov subspace methods were firstly introduced by Freund

in [2] as an extension of the CG method [3]. Since then, several authors have well studied on the

efficient algorithms for large shifted linear systems (1) such as the shifted QMR method [4], the

shifted Bi-CGSTAB(l) method [5] and the shifted GMRES method [6].

The shifted GMRES method, which is a natural extension of the GMRES method [7], finds the

minimum residual solutions for each system based on the Arnoldi procedure and the minimum

residual condition. As well as the GMRES method, the long-term recurrence based on the

Arnoldi procedure causes difficulties in terms of computational cost and storage requirements,

therefore it is naturally expected to apply so-called the restart to the shifted GMRES method.

Unfortunately, it is known that the residual vectors obtained from the shifted GMRES method

are not collinear in general, so that the shifted GMRES method cannot be efficiently restarted.

To overcome this difficulty, the Restarted Shifted GMRES method was proposed in 1998

by Frommer and Glässner [8] which imposes the collinearity condition on the residuals. The

collinearity condition makes it possible to apply the restart for the shifted linear systems.

We investigate the restart of the Restarted Shifted GMRES method. Recently the variant of

the GMRES(m) method with the unfixed update has been proposed to improve the convergence

of the GMRES(m) method for solving linear systems, and shown to have an efficient convergence

property [9]. In this paper, by applying the unfixed update to the Restarted Shifted GMRES

method, we propose a variant of the Restarted Shifted GMRES method with the unfixed update.

Then, we show a potentiality for efficient convergence within the variant by some numerical

results.

This paper is organized as follows. In Section 2, we briefly describe the basic definitions of the

shifted Krylov subspace methods and introduce the algorithm of the Restarted Shifted GMRES

method. In Section 3, we briefly introduce the unfixed update for the GMRES(m) method, then

we propose a variant of the Restarted Shifted GMRES method with the unfixed update. In

Section 4, we test the performance of the variant of the Restarted Shifted GMRES method from

some numerical experiments. For the end of this paper, we make some conclusions in Section 5.

Throughout this paper, I denotes the identity matrix, 0 denotes the zero vector and (x, y)

for vectors x, y ∈ R
n denotes the inner product: (x, y) =

∑n

i=1 xiyi = yTx.

2. The Restarted Shifted GMRES method

In Section 2.1, we describe the basic definitions of the shifted Krylov subspace methods



An efficient variant of the restarted shifted GMRES method for solving shifted linear systems 129

for solving shifted linear systems (1). In Sections 2.2 and 2.3, we introduce the algorithms of

the shifted GMRES method and the Restarted Shifted GMRES method, respectively, especially

focused on the restart part.

2.1. Basic definitions of shifted Krylov subspace methods

Let A ∈ R
n×n and the vectors v, w ∈ R

n be collinear: v = cw, c ∈ R. Then the Krylov

subspaces

Kk(A, v) := span{v, Av, A2v, . . . , Ak−1v}

satisfy

Kk(A + σiI, v) = Kk(A + σjI, w) (2)

for any σi, σj ∈ R. This is called the shift-invariance property of the Krylov subspaces.

Based on the shift-invariance property (2), the shifted Krylov subspace methods construct

the Krylov basis vectors for just one of the systems (1) termed the seed system. Then the

constructed basis can be used also for solving the rest systems called the add systems (additional

systems).

Let σseed be the shift parameter for the seed system. We also let the initial guesses x0(σi)

be set such that the initial residuals r0(σi) := b − A(σi)x0(σi) are collinear1:

r0(σi) = γ0(σi)r0(σseed), γ0(σi) ∈ R.

Then, from the shift-invariance property (2), the approximate solutions xk(σi) for all i are

extracted from affine spaces spanned by the initial guesses x0(σi) and the same Krylov subspace

as follows:

xk(σi) = x0(σi) + Vksk(σi), rk(σi) = r0(σi) − A(σi)Vksk(σi),

where Vk is an n × k matrix whose columns are the basis vectors of the Krylov subspace

Kk(A(σseed), r0(σseed)), and sk(σi) ∈ R
k.

Because of this reusability of the basis Vk, the shifted Krylov subspace methods can solve the

shifted linear systems (1) at once without matrix-vector multiplications for the add systems. As

extensions of the standard Krylov subspace methods, several shifted Krylov subspace methods

have been proposed and well studied [4–6, 8]. For the details, we refer to [10] and references

therein.

In what follows, we assume that the shift parameter for the seed system is zero, σseed = 0.

Note that this assumption does not lose the generality, because if σseed 6= 0, then we can rewrite

(1) by A := A − σseedI and σi := σi − σseed.

2.2. The shifted GMRES method

As a natural extension of the GMRES method to the shifted linear systems (1), the vectors

sk(σi) of the shifted GMRES method can be determined by the minimal residual condition as

follows:

sk(σi) = arg min
s∈Rk

‖γ0(σi)βe1 − H̃k(σi)s‖2, i = 1, 2, . . . , t,

1 This is easily achievable by e.g. x0(σi) = 0 for all i. In this case r0(σi) = b and γ0(σi) = 1 for all i.
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where H̃k(σi) ∈ R
(k+1)×k is the upper Hessenberg matrix obtained from the matrix formula of

the Arnoldi procedure, i.e.,

A(σi)Vk = Vk+1H̃k(σi), H̃k(σi) := H̃k(σseed) + σi

[
I

0T

]
∈ R

(k+1)×k, (3)

and β = ‖r0(σseed)‖2, e1 = [1, 0, . . . , 0]T ∈ R
k+1.

The shifted GMRES method can find the minimum residual solutions based on the minimum

residual condition for all linear systems in (1) with no matrix-vector multiplications for the add

systems. However, as noted in Section 1, the shifted GMRES method has difficulties due to the

long-term recurrence based on the Arnoldi procedure as well as the GMRES method. Therefore

the restart is required to apply to the shifted GMRES method.

Unfortunately, it is known that the residual vectors rk(σi) obtained from the minimum

residual condition are not collinear in general. Thus after restart, the shift-invariance property

(2) cannot be used for solving shifted linear systems2.

2.3. The Restarted Shifted GMRES method

As described in Section 2.2, the shifted GMRES method has the difficulty for the restart. To

remedy this difficulty, Frommer and Glässner proposed in 1998 the Restarted Shifted GMRES

method [8].

The basic idea of the Restarted Shifted GMRES method is to impose the collinearity condi-

tion:

rm(σi) = γm(σi)rm, γm(σi) ∈ R, (4)

instead of the minimum residual condition for the add systems, where rm := rm(σseed) is the

residual vector of the seed system and m is the restart frequency. We note that, for the seed

system, the Restarted Shifted GMRES method imposes the minimum residual condition on the

residual vector like the shifted GMRES method.

For the seed system, the vector sm := sm(σseed) is computed by solving the minimization

problem:

sm = arg min
s∈Rm

‖βe1 − H̃ms‖2,

where H̃m := H̃m(σseed). The residual vector rm can be written as

rm = Vm+1um+1, um+1 := βe1 − H̃msm ∈ R
m+1.

Thus, from the collinearity condition (4) for the add systems, we have

2 Since the residual vectors obtained from the Ritz-Galerkin condition are collinear, the Ritz-Galerkin based

methods can be naturally restarted. From this observation, Simoncini proposed in 2003 the Restarted Shifted
FOM method [11] as a natural extension of the FOM(m) method. Since then, improvement techniques of the

Restarted Shifted FOM method have been well studied; see [12, 13].
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Algorithm 1 One restart cycle of the Restarted Shifted GMRES method [8]

1: Compute r0 = b − Ax0 and set β = ‖r0‖2, v1 = r0/β

2: for j = 1, 2, . . . , m, do

3: Compute wj = Avj

4: for i = 1, 2, . . . , j, do

5: hi,j = (wj , vi)

6: wj = wj − hi,jvi

7: end for

8: hj+1,j = ‖wj‖2

9: vj+1 = wj/hj+1,j

10: end for

11: Define the (m + 1) × m Hessenberg matrix H̃m = {hi,j}1≤i≤m+1,1≤j≤m

12: Compute sm = argmins∈Rm ‖βe1 − H̃ms‖2 and set um+1 = βe1 − H̃msm

13: for i = 1, 2, . . . , t, do

14: Solve

[
H̃m(σi)

∣∣∣∣ um+1

] [
sm(σi)

γm(σi)

]
= γ0(σi)βe1

15: xm(σi) = x0(σi) + Vmsm(σi)

16: end for

rm(σi) = γm(σi)rm

⇔ b − A(σi){x0(σi) + Vmsm(σi)} = γm(σi)Vm+1um+1

⇔ r0(σi) − A(σi)Vmsm(σi) = Vm+1um+1γm(σi)

⇔ γ0(σi)r0 − Vm+1H̃(σi)sm(σi) = Vm+1um+1γm(σi)

⇔ Vm+1{H̃(σi)sm(σi) + um+1γm(σi)} = γ0(σi)r0

⇔ H̃(σi)sm(σi) + um+1γm(σi) = γ0(σi)βe1,

using the matrix formula of the Arnoldi procedure (3); see [8].

From the above relation, sm(σi) and γm(σi) can be written as the solution of the (m + 1)×

(m + 1) linear systems, i.e.,

[
H̃m(σi)

∣∣∣∣ um+1

] [
sm(σi)

γm(σi)

]
= γ0(σi)βe1, (5)

for i = 1, 2, . . . , t. The linear systems (5) are solved efficiently by using the Givens-rotation,

because the coefficient matrices are upper Hessenberg matrices.

Note that each system (5) has a unique solution if and only if Pm(−σi) 6= 0, where Pm(λ)

is the residual polynomial of m iterations of the GMRES method for the seed system [8, Lemma

2.4].

The algorithm of one restart cycle (m iterations) of the Restarted Shifted GMRES method

with the initial guesses x0(σi) such that r0(σi) = γ0(σi)r0 is given in Algorithm 1. Then

the restarted version of Algorithm 1, the Restarted Shifted GMRES method, can be shown in

Algorithm 2 by the simplified description.

If the coefficient matrix A is positive definite: (Ax, x) > 0, ∀x 6= 0, and σi > 0 for all i, then
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Algorithm 2 The Restarted Shifted GMRES method [8]

1: Choose the restart frequency m and the initial guesses x
(1)
0 (σi) such that r

(1)
0 (σi) =

γ
(1)
0 (σi)r

(1)
0 , e.g., x

(1)
0 (σi) = 0 for all i

2: for l = 1, 2, . . . , until convergence do

3: Run m iterations of Algorithm 1 with the initial guesses x
(l)
0 (σi) and γ

(l)
0 (σi), and get the

approximate solutions x
(l)
m (σi) and γ

(l)
m (σi)

4: Update x
(l+1)
0 (σi) := x

(l)
m (σi) and γ

(l+1)
0 (σi) := γ

(l)
m (σi) for all i

5: end for

Algorithm 3 The GMRES(m) method [7]

1: Choose the restart frequency m and the initial guess x
(1)
0

2: for l = 1, 2, . . . , until convergence do

3: Solve (approximately) Ax = b by m iterations of the GMRES method

with the initial guess x
(l)
0 , and get the approximate solution x

(l)
m

4: Update the initial guess x
(l+1)
0 := x

(l)
m

5: end for

the Restarted Shifted GMRES method (Algorithm 2) converges for the seed and the add systems

for every restart frequency m, because in this case Eq. (5) has a unique solution [8, Theorem 3.3].

Moreover if the smallest σi is chosen as the seed, and the initial guesses x0(σi) of the 1st restart

cycle are set at x0(σi) = 0, then the add systems converge more rapidly than the seed system

[8, Theorem 3.3]. Therefore in this case, we do not need to use the shift switching technique3.

3. A variant of the Restarted Shifted GMRES method

In this section, we briefly introduce the unfixed update for the GMRES(m) method proposed

in [9], then we propose a variant of the Restarted Shifted GMRES method with the unfixed

update 4.

3.1. The variant of the GMRES(m) method with the unfixed update for solving

linear systems

In this section, we focus on the GMRES(m) method for solving linear systems, especially we

investigate the restart itself. Then we briefly introduce the unfixed update for the GMRES(m)

method proposed in [9].

The restart of the GMRES(m) method is composed of the following three major parts:

Part 1 Choose the restart frequency m and the initial guess x
(1)
0 of the 1st restart cycle.

Part 2 Solve (approximately) Ax = b by m iterations of the GMRES method with the initial

guess x
(l)
0 , and get the approximate solution x

(l)
m .

Part 3 Update the initial guess of the next restart cycle, i.e., x
(l+1)
0 := x

(l)
m .

Based on these three major parts, the algorithm of the GMRES(m) method can be simplified

as shown in Algorithm 3.

3 In general, the seed system may converge faster than the add systems. In this case, for efficient computation,

we need to change the seed into one of the rest systems, this technique is called the seed switching technique [14].
4 It is expected that a variant of the Restarted Shifted FOM method can also be proposed as an improvement of

Restarted Shifted FOM [11] in essentially the same way.
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Algorithm 4 The variant of the GMRES(m) method with the unfixed update [9]

1: Choose the restart frequency m and the initial guess x
(1)
0

2: for l = 1, 2, . . . , until convergence do

3: Solve (approximately) Ax = b by m iterations of the GMRES method

with the initial guess x
(l)
0 , and get the approximate solution x

(l)
m

4: Set the vector y(l+1) ∈ R
n based on a certain strategy

5: Update the initial guess x
(l+1)
0 := x

(l)
m + y(l+1)

6: end for

The restart remedies the difficulties of the GMRES method due to the long-term recurrence

of the Arnoldi procedure; however, the restart generally slows the convergence of the GMRES

method. Therefore, several improvement techniques have been recently proposed for Part 1 and

Part 2; see [9,10] and references therein.

On the other hand, Part 3 has been regarded only as the connection in terms of convergence.

Thus, in the algorithm of the GMRES(m) method, also with some improvement techniques, the

initial guess of each restart cycle is updated such that

x
(l+1)
0 := x(l)

m , (6)

which is the same as original paper [7].

Instead of this fixed update (6), the unfixed update

x
(l+1)
0 := x(l)

m + y(l+1) (7)

has been introduced in [9], where y(l+1) ∈ R
n is determined by a certain strategy. Then the

algorithm of the efficient variant of GMRES(m) method with the unfixed update (7) have been

introduced as shown in Algorithm 4. Note that the variant of GMRES(m) method with the

unfixed update can be regarded as a natural extension of the GMRES(m) method in terms of

the error equations and the iterative refinement scheme [9].

Here, in general, an arbitrary vector y(l+1) cannot guarantee good convergence. Thus, we

require a suitable strategy to define y(l+1) for efficient convergence compared with the traditional

GMRES(m) method. In [9], one example of such strategy has been provided, i.e.,

y(l+1) =

{
0, l = 1,

µ(l)∆x(l), l ≥ 2,
(8)

where ∆x(l) := x
(l)
m − x

(l−1)
0 and µ(l) = argminµ∈R ‖r

(l)
m − µA∆x(l)‖2. From some numerical

experiments, the variant of the GMRES(m) method with this strategy (8) has been shown to

have more efficient convergence property than the GMRES(m) method [9].

The computational cost for computing the vector y(l+1) based on (8) is one matrix-vector

multiplication and some AXPY5 and inner products. We also note that this strategy (8) guar-

antees the monotonic decrease in the residual 2-norm as well as the GMRES(m) method, i.e.,

‖r(l+1)
m ‖2 ≤ ‖r

(l+1)
0 ‖2 = ‖r(l)

m − Ay(l+1)‖2 ≤ ‖r(l)
m ‖2.

3.2. A variant of Restarted Shifted GMRES with the unfixed update for solving

shifted linear systems

5 Addition of scaled vectors.
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In this section, we propose a variant of the Restarted Shifted GMRES method with the

unfixed update described in Section 3.1.

As shown in Algorithm 2, the initial guesses x
(l+1)
0 (σi) of each restart cycle are updated by

the fixed update, i.e.,

x
(l+1)
0 (σi) := x(l)

m (σi), i = 1, 2, . . . , t,

like the GMRES(m) method; see Eq. (6). We note that this is not only for the traditional

algorithm in [8], but also for its improvement techniques [15, 16]. Here we can also consider the

unfixed update:

x
(l+1)
0 (σi) := x(l)

m (σi) + y(l+1)(σi), i = 1, 2, . . . , t, (9)

instead of the fixed update under the same idea as introduced in [9].

Notice that, for the Restarted Shifted GMRES method to solve shifted linear systems (1),

the vectors y(l+1)(σi) of the unfixed update (9) are required to set such that the initial residual

vectors r
(l+1)
0 (σi) = r

(l)
m (σi)−A(σi)y

(l+1)(σi) of the (l+1)th restart cycle satisfy the collinearity

condition:

r
(l+1)
0 (σi) = γ

(l+1)
0 (σi)r

(l+1)
0 , γ

(l+1)
0 ∈ R. (10)

The algorithm of a variant of the Restarted Shifted GMRES method with the unfixed update

(9) is shown in Algorithm 5.

Algorithm 5 A variant of the Restarted Shifted GMRES method with the unfixed update

1: Choose the restart frequency m and the initial guesses x
(1)
0 (σi) such that r

(1)
0 (σi) =

γ
(1)
0 (σi)r

(1)
0 , e.g., x

(1)
0 (σi) = 0 for all i

2: for l = 1, 2, . . . , until convergence do

3: Run m iterations of Algorithm 1 with the initial guesses x
(l)
0 (σi) and γ

(l)
0 (σi), and get the

approximate solutions x
(l)
m (σi) and γ

(l)
m (σi)

4: Set the vectors y(l+1)(σi) ∈ R
n such that the residual vectors r

(l+1)
0 (σi) = r

(l)
m (σi) −

A(σi)y
(l+1)(σi) are collinear: r

(l+1)
0 (σi) = γ

(l+1)
0 r

(l+1)
0

5: Update x
(l+1)
0 (σi) := x

(l)
m (σi) + y(l+1)(σi) for all i

6: end for

3.3. An example of how to define y(l+1)(σi) for efficient convergence

As well as the variant of the GMRES(m) method, an arbitrary vector y(l+1)(σi) cannot

guarantee good convergence, then we require a suitable strategy to define y(l+1)(σi) for efficient

convergence compared with the traditional Restarted Shifted GMRES method. In this section,

we provide an example of how to define y(l+1)(σi) for efficient convergence based on the strategy

(8) introduced in [9].

Now we let ∆x(l)(σi) and ∆r(l)(σi) be

∆x(l)(σi) := x(l)
m (σi) − x

(l−1)
0 (σi), ∆r(l)(σi) := r(l)

m (σi) − r
(l−1)
0 (σi),

respectively, then we consider setting the vectors y(l+1)(σi) as follows:

y(l+1)(σi) = µ(l)(σi)∆x(l)(σi), µ(l)(σi) ∈ R. (11)
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From the relation ∆r(l)(σi) = −A(σi)∆x(l)(σi), the initial approximate solutions and corre-

sponding residuals for the (l + 1)th restart cycle can be shown by
{

x
(l+1)
0 (σi) = x(l)

m (σi) + µ(l)(σi)∆x(l)(σi),

r
(l+1)
0 (σi) = r(l)

m (σi) + µ(l)(σi)∆r(l)(σi).
(12)

Here from the strategy (11) and the collinearity condition (10), we now have the following

proposition.

Proposition 1 Let the vectors r, r̂ ∈ R
n and rold, r̂old ∈ R

n be the collinear respectively:

r̂ = γr, r̂old = γoldrold, where γ, γold ∈ R, and we assume that r is not parallel to rold. We also

let the vectors rnew, r̂new be defined by

rnew = r + µ(r − rold), r̂new = r̂ + µ̂(r̂ − r̂old),

where µ, µ̂ ∈ R.

Then, rnew and r̂new satisfy the collinearity condition:

r̂new = γnewrnew, γnew ∈ R, (13)

if and only if the parameters µ̂, γnew are obtained by the solution of the linear system:
[

1 + µ −γ

µ −γold

][
γnew

µ̂

]
=

[
γ

0

]
.

Proof From the required collinearity condition (13), we have

r̂new = γnewrnew

⇔ γ(1 + µ̂)r − γoldµ̂rold = γnew{(1 + µ)r − µrold}

⇔

{
γ(1 + µ̂)

γoldµ̂

= γnew(1 + µ)

= γnewµ

⇔

[
1 + µ −γ

µ −γold

][
γnew

µ̂

]
=

[
γ

0

]
.

Therefore the proposition is proved.

Proposition 1 means that the residual vectors r
(l+1)
0 (σi) obtained from Eq. (12) based on the

solutions of the linear systems
[

1 + µ(l) −γ
(l)
m (σi)

µ(l) −γ
(l−1)
0 (σi)

][
γ

(l+1)
0 (σi)

µ(l)(σi)

]
=

[
γ

(l)
m (σi)

0

]
(14)

satisfy the collinearity condition (10), where µ(l) := µ(l)(σseed).

If µ(l) are set at 0 for all restart cycle l, then the algorithm is mathematically equivalent to

the Restarted Shifted GMRES method, because in this case µ(l)(σi) obtained by Eq. (14) are

also 0. In this paper, we set µ(l) as follows:

µ(l) := µ(l)(σseed) = argmin
µ∈R

‖r(l)
m (σseed) − µA(σseed)∆x(l)(σseed)‖2

as well as [9].
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Notice that the linear systems (14) have no solutions if the coefficient matrix of (14) is singular

and the right-hand side of (14) does not belong to the range space of the coefficient matrix of

(14). This corresponds to the case that r
(l+1)
0 is parallel to ∆r(l)(σi).

For the seed systems, the variant of the Restarted Shifted GMRES method is mathematically

equivalent to the variant of the GMRES(m) method proposed in [9]. Therefore, if we focus only

on the seed system, the residual 2-norm of the variant of the Restarted Shifted GMRES method

monotonically decreases. However, we note that monotonical decrease of the residual 2-norm of

the add systems is not guaranteed as well as the Restarted Shifted GMRES method.

4. Numerical experiments and results

In this section, we test the performance of the Restarted Shifted GMRES method and the

variant of the Restarted Shifted GMRES method with (11) for solving shifted linear systems

(1). The performance of these methods is evaluated by the test problems from The University of

Florida Sparse Matrix Collection [17] with five shift parameters which are set at σi = 0.0, 1.0 ×

10−4, . . . , 4.0 × 10−4.

Matrix name n Nnz Ave.Nnz Application area

CAVITY05 1182 32747 27.70 Computational fluid dynamics

CAVITY16 4562 138187 30.29 Computational fluid dynamics

COUPLED 11341 98523 8.69 Circuit simulation

EPB1 14734 95053 6.45 Thermal problem

FEM 3D THERMAL2 147900 3489300 23.59 Thermal problem

MEMPLUS 17758 126150 7.10 Electronic circuit design

NS3DA 20414 1679599 82.28 Computational fluid dynamics

POISSON3DB 85623 2374949 27.74 Computational fluid dynamics

RAEFSKY1 3242 294276 90.77 Computational fluid dynamics

RAEFSKY2 3242 294276 90.77 Computational fluid dynamics

RAJAT03 7602 32653 4.30 Circuit simulation

RDB5000 5000 29600 5.92 Computational fluid dynamics

XENON1 48600 1181120 24.30 Materials problem

XENON2 157464 3866688 24.56 Materials problem

Table 1 Characteristics of the coefficient matrices of the test problems for the Restarted Shifted GMRES

method and the variant of the Restarted Shifted GMRES method.

The characteristics of the coefficient matrices of the test problems are shown in Table 1,

where n, Nnz and Ave.Nnz denote the number of dimension, the number of nonzero elements

and the average nonzero elements per row or column respectively.

We set b = [1, 1, . . . , 1]T as the right-hand side, x
(1)
0 (σi) = [0, 0, . . . , 0]T for the initial guess

of each systems. We also set m = 30, 50 as the restart frequency and stopping criterion was set

as ‖rk(σi)‖2/‖b‖2 ≤ 10−10 for all σi. The seed system is firstly set at σ1 = 0.0, then the seed is

switched every restart cycle to the latest system in terms of the residual 2-norm.
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All the numerical experiments were carried out in double precision arithmetic on OS: CentOS

64bit, CPU: 1 core of Intel Xeon X5550 2.67GHz, Memory: 48GB, Compiler: GNU Fortran ver.

4.1.2, Compile option: -O3.

[Numerical results]

Firstly, we present the numerical results in Tables 2 and 3. We analyze the results in terms

of two aspects: convergence rate of each system and total computation time.

Matrix Method Number of restart (NRestart) Time[sec.]

σ1 σ2 σ3 σ4 σ5 tTotal

CAVITY05 RS-GMRES 574 163 99 82 69 2.15 × 100

Variant 271 109 80 66 58 1.03 × 100

CAVITY16 RS-GMRES † 708 246 174 142 †

Variant 1797 160 106 91 78 2.72 × 101

COUPLED RS-GMRES † † † † † †

Variant 2735 2720 2681 2642 2629 7.86 × 101

EPB1 RS-GMRES 94 38 27 21 18 2.81 × 100

Variant 67 31 22 18 16 2.01 × 100

FEM 3D THERMAL2 RS-GMRES 36 25 20 17 15 2.03 × 101

Variant 20 16 14 13 12 1.13 × 101

MEMPLUS RS-GMRES 221 39 27 22 18 8.41 × 100

Variant 77 26 19 15 14 2.97 × 100

NS3DA RS-GMRES 78 75 73 70 68 1.71 × 101

Variant 78 75 73 70 68 1.69 × 101

POISSON3DB RS-GMRES 24 22 19 18 16 1.15 × 101

Variant 19 16 15 14 13 9.01 × 100

RAEFSKY1 RS-GMRES 142 125 112 98 85 3.00 × 100

Variant 86 70 61 54 49 1.81 × 100

RAEFSKY2 RS-GMRES 235 213 195 179 166 4.97 × 100

Variant 195 177 163 151 141 4.17 × 100

RAJAT03 RS-GMRES † † † † † †

Variant 400 304 257 240 234 6.03 × 100

RDB5000 RS-GMRES 31 31 31 31 31 3.25 × 10−1

Variant 34 34 34 34 34 3.60 × 10−1

XENON1 RS-GMRES 384 384 384 384 384 7.46 × 101

Variant 63 63 63 63 63 1.22 × 101

XENON2 RS-GMRES 523 523 523 523 523 3.24 × 102

Variant 80 80 80 80 80 5.06 × 101

Table 2 Convergence results (NRestart: number of restart cycles for each system and tTotal: total

computation time) of the Restarted Shifted GMRES method and the variant of the Restarted Shifted

GMRES method for the restart frequency m = 30.
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Matrix Method Number of restart (NRestart) Time[sec.]

σ1 σ2 σ3 σ4 σ5 tTotal

CAVITY05 RS-GMRES 495 135 97 78 61 3.63 × 100

Variant 111 45 36 33 28 8.19 × 10−1

CAVITY16 RS-GMRES † 100 69 54 44 †

Variant 589 68 50 39 35 1.74 × 101

COUPLED RS-GMRES 748 732 717 703 689 4.50 × 101

Variant 543 538 532 528 525 3.22 × 101

EPB1 RS-GMRES 40 18 13 11 10 2.66 × 100

Variant 36 17 13 11 10 2.39 × 100

FEM 3D THERMAL2 RS-GMRES 16 12 10 9 8 1.78 × 101

Variant 12 10 8 8 7 1.34 × 101

MEMPLUS RS-GMRES 119 18 12 9 8 1.01 × 101

Variant 38 13 10 8 7 3.25 × 100

NS3DA RS-GMRES 47 45 44 42 41 1.77 × 101

Variant 39 38 37 35 35 1.47 × 101

POISSON3DB RS-GMRES 16 14 12 11 10 1.42 × 101

Variant 11 10 9 9 8 9.80 × 100

RAEFSKY1 RS-GMRES 77 63 53 46 41 2.85 × 100

Variant 47 39 34 31 28 1.74 × 100

RAEFSKY2 RS-GMRES 126 115 105 96 90 4.71 × 100

Variant 66 61 57 54 51 2.46 × 100

RAJAT03 RS-GMRES † † † † † †

Variant 165 113 96 81 78 5.41 × 100

RDB5000 RS-GMRES 15 15 15 15 15 3.43 × 10−1

Variant 14 14 14 14 15 3.42 × 10−1

XENON1 RS-GMRES 141 141 141 141 141 5.33 × 101

Variant 38 38 38 38 38 1.43 × 101

XENON2 RS-GMRES 190 190 190 190 190 2.35 × 102

Variant 47 47 47 47 47 5.76 × 101

Table 3 Convergence results (NRestart: number of restart cycles for each system and tTotal: total

computation time) of the Restarted Shifted GMRES method and the variant of the Restarted Shifted

GMRES method for the restart frequency m = 50.

We consider the number of restart cycles (NRestart) of both methods. In most cases, the vari-

ant of the Restarted Shifted GMRES method shows lower NRestart than the Restarted Shifted

GMRES method especially for the latest system. We can also see from the high convergence rate

of the systems for all σi that the strategy (11) well played even for the add systems. Especially,

for CAVITY16 (m = 30, 50), COUPLED (m = 30) and RAJAT03 (m = 30, 50), the Restarted

Shifted GMRES method did not converge within 100000 iteration; on the other hand, the vari-

ant of the Restarted Shifted GMRES method converged to the solution satisfying the required

accuracy.
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We also consider the total computation time (tTotal). From the smaller NRestart, we can

see that the variant of the Restarted Shifted GMRES method converged within much smaller

computation time except the case for RDB5000 (m = 30).

Next, we present in Figure 1 the relative residual 2-norm histories of the Restarted Shifted

GMRES method and the variant of the Restarted Shifted GMRES method with m = 30 versus

computation time for CAVITY05, MEMPLUS, RAEFSKY2 and RDB5000. In this figure, we

also compare the GMRES(m) method [7] and the variant of the GMRES(m) method [9] for the

linear systems described in Section 3.1. These methods are applied to each linear system of (1)

one by one. In this regard, however, the obtained approximate solution of the previous shift

parameter is used for the initial guess of the next system: x0(σi+1) := xk(σi).
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Figure 1 The relative residual 2-norm history versus computation time of the GMRES(m) method,

the variant of the GMRES(m) method, the Restarted Shifted GMRES method and the variant of the

Restarted Shifted GMRES method for CAVITY05, MEMPLUS, RAEFSKY2 and RDB5000.

The residual 2-norm histories of the GMRES(m) method and the variant of the GMRES(m)

method have five peaks, which means that these methods were applied to each system sequen-

tially. Here, since the obtained approximate solution is used for the next initial guess, this

reduces the initial residual after second system, e.g., to ≈ 10−4 for RDB5000.

From Figure 1, we can see that the Restarted Shifted GMRES method and the variant of

the Restarted Shifted GMRES method show monotonic decrease in the residual 2-norm. Then

both shifted Krylov subspace methods can solve the test problems more efficiently than the
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GMRES(m) method and the variant of the GMRES(m) method. Moreover, we can see that

the strategy (11) well played, and then the variant of the Restarted Shifted GMRES method

converged in much smaller computation time than the Restarted Shifted GMRES method except

for RDB5000.

5. Conclusion

In this paper, we have investigated the restart of the Restarted Shifted GMRES method of

Frommer and Glässner for solving large and sparse shifted linear systems. In order to improve

the Restarted Shifted GMRES method, we have proposed the variant of the Restarted Shifted

GMRES method with the unfixed update.

From our numerical experiments, we have learned that the strategy (11) well played not

only for the seed system but also for the add systems, and then the variant of the Restarted

Shifted GMRES method has a high potential for efficient convergence over the Restarted Shifted

GMRES method, as well as the variant of the GMRES(m) method for linear systems proposed

in [9].

In this paper, by some numerical experiments, we have tested the performance of the variant

of the Restarted Shifted GMRES method. However, it remains our future work to apply it to

real applications and evaluate its performance. Moreover, for further improvement, we also need

to analyze the convergence behavior of the variant of the Restarted Shifted GMRES method,

and design more suitable strategy to define the vectors y(l+1)(σi).
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