Additive Biderivations and Centralizing Maps on Nest Algebras

Xiaofei QI

Department of Mathematics, Shanxi University, Shanxi 030006, P. R. China

Abstract Let \mathcal{N} be a nest on a Banach space X, and $\mathrm{Alg}\mathcal{N}$ be the associated nest algebra. It is shown that, if there exists a non-trivial element N in \mathcal{N} which is complemented in X and $\dim N \neq 1$, then every additive biderivation from $\mathrm{Alg}\mathcal{N}$ into itself is an inner biderivation. Based on this result, we give characterizations of centralizing (commuting) maps, cocentralizing derivations, and cocommuting generalized derivations on nest algebras.

Keywords biderivations; commuting maps; centralizing maps; nest algebra.

MR(2010) Subject Classification 47B47; 47L35

1. Introduction

Let \mathcal{A} be an algebra (or a ring) with center \mathcal{Z} . Then \mathcal{A} is a Lie algebra (Lie ring) under the Lie product [A, B] = AB - BA. Recall that a map Φ from \mathcal{A} into itself is centralizing if $[\Phi(A), A] \in \mathcal{Z}$ for all $A \in \mathcal{A}$; is commuting if $[\Phi(A), A] = 0$ for all $A \in \mathcal{A}$. The study of centralizing maps was initiated by a well-known theorem of Posner [1] which states that the existence of a nonzero centralizing derivation on a prime ring \mathcal{R} implies that \mathcal{R} is commutative. Brešar in [2] gave the structure of arbitrary centralizing additive maps on prime rings. For other results about centralizing maps, see [3–5] and the references therein.

The notion of additive commuting maps is closely connected with the notion of biderivations. Recall that a biadditive map $\delta: \mathcal{A} \times \mathcal{A} \to \mathcal{A}$ is called a biderivation if it is a derivation in each argument; is called an inner biderivation if there exists $\lambda \in \mathcal{Z}$ such that $\delta(A,B) = \lambda[A,B]$ for all $A,B \in \mathcal{A}$. Zhang in [6] proved that every linear biderivation of nest algebras on a complex separable Hilbert space H is an inner biderivation if and only if $\dim 0_+ \neq 1$ or $\dim H^{\perp}_- \neq 1$. Every commuting additive map $\Phi: \mathcal{A} \to \mathcal{A}$ gives rise to a biderivation of \mathcal{A} . Namely, linearizing $[\Phi(A), A] = 0, A \in \mathcal{A}$, we get $[\Phi(A), B] = [A, \Phi(B)]$ for all $A, B \in \mathcal{A}$, and hence the map $(A, B) \mapsto [\Phi(A), B]$ is a biderivation.

In [7], the author gave the concepts of skew-centralizing maps and skew-commuting maps. Recall that an additive map $\Phi: \mathcal{A} \to \mathcal{A}$ is skew-centralizing if $\Phi(A)A + A\Phi(A) \in \mathcal{Z}$ for all $A \in \mathcal{A}$; is skew-commuting if $\Phi(A)A + A\Phi(A) = 0$ for every $A \in \mathcal{A}$. Moreover, the author [7]

Received October 7, 2011; Accepted May 22, 2012

Supported by the National Natural Science Foundation of China (Grant No. 11101250) and Youth Foundation of Shanxi Province (Grant No. 2012021004).

E-mail address: qixf1980@126.com

proved that there is no nonzero additive maps that are skew-commuting on ideals of prime rings with characteristic not 2. Later, Brešar in [8] gave the definitions of cocentralizing maps and cocommuting maps. Two additive maps $\Phi: \mathcal{A} \to \mathcal{A}$ and $\Psi: \mathcal{A} \to \mathcal{A}$ are said to be cocentralizing if $\Phi(A)A - A\Psi(A) \in \mathcal{Z}$ for all $A \in \mathcal{A}$; cocommuting if $\Phi(A)A = A\Psi(A)$ for all $A \in \mathcal{A}$.

The purpose of this paper is to consider additive biderivations, centralizing (skew-centralizing) maps, cocentralizing derivations and cocommuting generalized derivations on nest algebras.

Let X be a Banach space over the real or complex number field \mathbb{F} . As usual, $\mathcal{B}(X)$ denotes the algebra of all bounded linear operators on X. A nest \mathcal{N} on X is a chain of closed (under norm topology) subspaces of X which is closed under the formation of arbitrary closed linear span (denoted by V) and intersection (denoted by Λ), and which includes $\{0\}$ and X. The nest algebra associated to the nest \mathcal{N} , denoted by Alg \mathcal{N} , is a set

$$Alg \mathcal{N} = \{ T \in \mathcal{B}(X) : TN \subseteq N \text{ for all } N \in \mathcal{N} \}.$$

It is clear that if \mathcal{N} is trivial, then $\operatorname{Alg} \mathcal{N} = \mathcal{B}(X)$. When $\mathcal{N} \neq \{0, X\}$, we say that \mathcal{N} is non-trivial. Since $\mathcal{B}(X)$ is prime, we only consider the case $\mathcal{N} \neq \{0, X\}$ in this paper. Note that $\operatorname{Alg} \mathcal{N}$ is not prime. It is easily proved that the commutant of $\operatorname{Alg} \mathcal{N}$ coincides with $\mathbb{F}I$.

2. Additive biderivations and centralizing maps on nest algebras

In this section, we first discuss the additive biderivations on nest algebras. The following is our first main result.

Theorem 2.1 Let \mathcal{N} be a nest on a Banach space X. If there exists a non-trivial element N in \mathcal{N} which is complemented in X and dim $N \neq 1$, then every additive biderivation from Alg \mathcal{N} into itself is an inner biderivation.

To prove Theorem 2.1, we need the following two lemmas.

Lemma 2.2 ([9, Lemma 2.3]) Let \mathcal{R} be a ring and $\Phi : \mathcal{R} \times \mathcal{R} \to \mathcal{R}$ be a biderivation. Then $\Phi(U, V)A[X, Y] = [U, V]A\Phi(X, Y)$ for all $A, U, V, X, Y \in \mathcal{R}$.

Lemma 2.3 ([9, Lemma 2.2]) Let Ω be any set, \mathcal{R} be a prime ring and \mathcal{C} be the extended centroid of \mathcal{R} . If functions $f, h : \Omega \to \mathcal{R}$ satisfy f(s)Xh(t) = h(s)Xf(t) for all $s, t \in \Omega, X \in \mathcal{R}$ and $f \neq 0$, then there exists an element $\lambda \in \mathcal{C}$ such that $h(s) = \lambda f(s)$ for all $s \in \Omega$.

Proof of Theorem 2.1 Assume that Φ is an additive biderivation of Alg \mathcal{N} . It follows from Lemma 2.2 that

$$\Phi(U, V)Z[A, B] = [U, V]Z\Phi(A, B) \tag{2.1}$$

for all $A, B, U, V, Z \in Alg \mathcal{N}$. Next we will prove that Φ is an inner biderivation.

Since N is complemented in X, there exists a non-trivial idempotent $E \in \text{Alg } \mathcal{N}$ such that EX = N. It is clear that $E\mathcal{B}(X) \subseteq \text{Alg } \mathcal{N}$. So by Eq. (2.1), we have

$$\Phi(U, V)EY[A, B] = [U, V]EY\Phi(A, B)$$
(2.2)

248 Xiaofei QI

for all $A, B, U, V \in Alg \mathcal{N}$ and $Y \in \mathcal{B}(X)$. Multiplying E from the right side in Eq. (2.2), we get

$$\Phi(U, V)EY[A, B]E = [U, V]EY\Phi(A, B)E. \tag{2.3}$$

Now define two maps $f, h : Alg \mathcal{N} \times Alg \mathcal{N} \to \mathcal{B}(X)$ by

$$h(X,Y) = \Phi(X,Y)E$$
 and $f(X,Y) = [X,Y]E$

for all $X, Y \in Alg \mathcal{N}$. It follows from Eq. (2.3) that

$$h(U,V)Yf(A,B) = f(U,V)Yh(A,B)$$
(2.4)

for all $A, B, U, V \in \operatorname{Alg} \mathcal{N}$ and $Y \in \mathcal{B}(X)$. Note that dim N > 1. There exist $A_0, B_0 \in \operatorname{Alg} \mathcal{N}$ such that $[A_0, B_0]E \neq 0$, and so $f \neq 0$. Hence by Eq. (2.4) and Lemma 2.3, there exists $\lambda \in \mathbb{F}$ such that $h(U, V) = \lambda f(U, V)$ for all $U, V \in \operatorname{Alg} \mathcal{N}$, that is,

$$\Phi(U, V)E = \lambda[U, V]E \text{ for all } U, V \in \text{Alg } \mathcal{N}.$$
(2.5)

Combining Eq. (2.5) with Eq. (2.2), one obtains

$$[U, V]E\mathcal{B}(X)(\lambda[A, B] - \Phi(A, B)) = \{0\} \text{ for all } A, B, U, V \in Alg \mathcal{N}.$$

Take $U = A_0$ and $V = B_0$ in the above equation. Since $[A_0, B_0]E \neq 0$ and $\mathcal{B}(X)$ is prime, it follows that $\Phi(A, B) = \lambda[A, B]$ for all $A, B \in \text{Alg } \mathcal{N}$, that is, Φ is an inner biderivation. The proof of the theorem is completed. \square

By Theorem 2.1, we can give the second main result in this section, which discusses centralizing additive maps on nest algebras.

Theorem 2.4 Let \mathcal{N} be a nest on a Banach space X over the real or complex number field \mathbb{F} . Suppose that $\Phi: \operatorname{Alg} \mathcal{N} \to \operatorname{Alg} \mathcal{N}$ is a centralizing additive map (i.e., $[\Phi(A), A] \in \mathbb{F}I$, $\forall A$). If there exists a non-trivial element N in \mathcal{N} which is complemented in X and $\dim N \neq 1$, then $\Phi(A) = \lambda A + \phi(A)I$ for all $A \in \operatorname{Alg} \mathcal{N}$, where $\lambda \in \mathbb{F}$ and $\phi: \operatorname{Alg} \mathcal{N} \to \mathbb{F}$ is an additive map.

Proof Note that the unit I cannot be a commutator [A,B]. Hence Φ is commuting, that is, $[\Phi(A),A]=0$ for all $A\in \operatorname{Alg}\mathcal{N}$. Replacing A by A+B in $[\Phi(A),A]=0$, we get $[\Phi(A),B]+[\Phi(B),A]=0$, that is, $[\Phi(A),B]=[A,\Phi(B)]$ for all $A,B\in\operatorname{Alg}\mathcal{N}$. Let $\delta(A,B)=[\Phi(A),B]$ for each $A,B\in\operatorname{Alg}\mathcal{N}$. It is easy to prove that δ is an additive biderivation of $\operatorname{Alg}\mathcal{N}$. So by Theorem 2.1, there exists $\lambda\in\mathbb{F}$ such that $\delta(A,B)=\lambda[A,B]$ for all $A,B\in\operatorname{Alg}\mathcal{N}$. Hence $[\Phi(A),B]=\lambda[A,B]$, that is, $(\Phi(A)-\lambda A)B=B(\Phi(A)-\lambda A)$ for all $A,B\in\operatorname{Alg}\mathcal{N}$. Since B is arbitrary, we have $\Phi(A)-\lambda A\in\mathbb{F}I$. Thus we can suppose that $\Phi(A)-\lambda A=\phi(A)I$, where $\phi:\operatorname{Alg}\mathcal{N}\to\mathbb{F}$ is a map. It is clear that ϕ is additive and $\Phi(A)=\lambda A+\phi(A)I$. The proof is completed. \square

In [9], the author gave the following concept: a map $\Phi : \mathcal{A} \to \mathcal{A}$ is additive modulo \mathcal{Z} if $\Phi(A+B) - \Phi(A) - \Phi(B) \in \mathcal{Z}$ for all $A, B \in \mathcal{A}$.

Corollary 2.5 Let \mathcal{N} be a nest on a Banach space X over the real or complex number field \mathbb{F} . Assume that Φ is additive modulo $\mathbb{F}I$ and is commuting from $Alg \mathcal{N}$ into itself. If there exists a non-trivial element N in \mathcal{N} which is complemented in X and $\dim N \neq 1$, then there exist $\lambda \in \mathbb{F}$ and a map $\phi: \operatorname{Alg} \mathcal{N} \to \mathbb{F}$ such that $\Phi(A) = \lambda A + \phi(A)I$ for all $A \in \operatorname{Alg} \mathcal{N}$.

Proof The proof is similar to that of Theorem 2.4. We omit it here. \Box

In addition, if Φ in Theorem 2.4 is a derivation (generalized derivation), we have the following theorems.

Theorem 2.6 Let \mathcal{N} be a nest on a Banach space X over the real or complex number field \mathbb{F} . Suppose that Φ is an additive centralizing derivation on $Alg \mathcal{N}$. If there exists a non-trivial element N in \mathcal{N} which is complemented in X and dim $N \neq 1$, then $\Phi \equiv 0$.

Proof By Theorem 2.4, we have $[\Phi(A), A] = 0$ for all $A \in Alg \mathcal{N}$. Replacing A by A + B in $[\Phi(A), A] = 0$, we get

$$[\Phi(A), B] = [A, \Phi(B)], \quad \forall A, B \in \text{Alg } \mathcal{N}. \tag{2.6}$$

In particular,

$$\begin{split} [\Phi(A), BA] = & [A, \Phi(BA)] = [A, \Phi(B)A + B\Phi(A)] \\ = & [A, \Phi(B)A] + [A, B\Phi(A)]] \\ = & [A, \Phi(B)]A + \Phi(B)[A, A] + B[\Phi(A), A] + [A, B]\Phi(A) \\ = & [A, \Phi(B)]A + [A, B]\Phi(A). \end{split} \tag{2.7}$$

On the other hand, using Eq. (2.6), we have

$$[\Phi(A), BA] = [\Phi(A), B]A + B[\Phi(A), A] = [\Phi(A), B]A = [A, \Phi(B)]A. \tag{2.8}$$

Combining Eq. (2.8) with Eq. (2.7), one gets $[A, B]\Phi(A) = 0$ for all $A, B \in Alg \mathcal{N}$. Substituting CB for B in this equation, we have $0 = [A, CB]\Phi(A) = C[A, B]\Phi(A) + [A, C]B\Phi(A) = [A, C]B\Phi(A)$. That is,

$$[A, C]B\Phi(A) = 0, \quad \forall A, B, C \in \text{Alg } \mathcal{N}. \tag{2.9}$$

Since N is complemented in X, there exists a non-trivial idempotent $E \in \mathcal{B}(X)$ such that EX = N. So $E\mathcal{B}(X) \subseteq \operatorname{Alg} \mathcal{N}$. Thus, by Eq. (2.9), we get $[A, C]ET\Phi(A) = 0$ for all $A, C \in \operatorname{Alg} \mathcal{N}$ and all $T \in \mathcal{B}(X)$. Since $\mathcal{B}(X)$ is prime, for every $A \in \operatorname{Alg} \mathcal{N}$, we have [A, C]E = 0 or $\Phi(A) = 0$. It is well known that a group cannot be the union of its two proper subgroups. Note that $\dim N > 1$. There exist $A_0, C_0 \in \operatorname{Alg} \mathcal{N}$ such that $[A_0, C_0]E \neq 0$. Hence $\operatorname{Alg} \mathcal{N} \neq \{A \in \operatorname{Alg} \mathcal{N} : [A, C]E = 0\}$, which implies that $\Phi(A) = 0$ for all $A \in \operatorname{Alg} \mathcal{N}$. The proof is completed. \square

Theorem 2.7 Let \mathcal{N} be a nest on a Banach space X over the real or complex number field \mathbb{F} . Suppose that Φ is an additive centralizing generalized derivation on $\operatorname{Alg} \mathcal{N}$. If there exists a non-trivial element N in \mathcal{N} which is complemented in X and $\dim N \neq 1$, then there exists $\lambda \in \mathbb{F}$ such that $\Phi(A) = \lambda A$ for all $A \in \operatorname{Alg} \mathcal{N}$.

Proof Since Φ is a centralizing map on $\operatorname{Alg} \mathcal{N}$, by Theorem 2.4, Φ has the form $\Phi(A) = \lambda A + \phi(A)I$ for all $A \in \operatorname{Alg} \mathcal{N}$, where $\lambda \in \mathbb{F}$ and $\phi : \operatorname{Alg} \mathcal{N} \to \mathbb{F}$ is an additive map. Since Φ is an additive generalized derivation, there exists an additive derivation $\tau : \operatorname{Alg} \mathcal{N} \to \operatorname{Alg} \mathcal{N}$ such that

250 Xiaofei QI

 $\Phi(AB) = \Phi(A)B + A\tau(B)$ for all $A, B \in \text{Alg } \mathcal{N}$. Thus $\lambda AB + \phi(AB)I = \Phi(AB) = \Phi(A)B + A\tau(B) = \lambda AB + \phi(A)B + A\tau(B)$, and so $A\tau(B) = -\phi(A)B + \phi(AB)I$ for all $A, B \in \text{Alg } \mathcal{N}$. Taking A = I, we get $\tau(B) = -\phi(I)B + \phi(B)I$ for all $B \in \text{Alg } \mathcal{N}$. It is easy to check that τ is a commuting derivation. By Theorem 2.6, $\tau = 0$. Now we have proved that $\phi(I)A = \phi(A)I$ for all $A \in \text{Alg } \mathcal{N}$. If $\phi(I) \neq 0$, then $A = \phi(I)^{-1}\phi(A)I$ for all $A \in \text{Alg } \mathcal{N}$, which is impossible. So $\phi(I) = 0$, and therefore, $\Phi(A) = \lambda A$ for all $A \in \text{Alg } \mathcal{N}$. The proof of the theorem is completed. \square

3. Cocentralizing derivations and cocommuting generalized derivations on nest algebras

In this section, we first consider the cocentralizing derivations on nest algebras.

Theorem 3.1 Let \mathcal{N} be a nest on a Banach space X over the real or complex number field \mathbb{F} . Suppose that δ and δ' are any two additive cocentralizing derivations on $Alg \mathcal{N}$. If there exists a non-trivial element N in \mathcal{N} which is complemented in X and $\dim N \neq 1$, then $\delta = \delta' \equiv 0$.

Proof By the assumption and the definition of cocentralizing maps, we have

$$\delta(A)A - A\delta'(A) \in \mathbb{F}I, \quad \forall A \in Alg \mathcal{N}.$$
 (3.1)

Replacing A by A + B in Eq. (3.1), we get

$$\delta(A)B + \delta(B)A - A\delta'(B) - B\delta'(A) \in \mathbb{F}I. \tag{3.2}$$

In particular, taking B = I in Eq. (3.2), and noting that $\delta(I) = \delta'(I) = 0$, we have

$$\delta(A) - \delta'(A) \in \mathbb{F}I, \quad \forall A \in \text{Alg } \mathcal{N}.$$
 (3.3)

Let $\Phi(A) = \delta(A) - \delta'(A)$ for all $A \in \operatorname{Alg} \mathcal{N}$. It is obvious that Φ is also an additive derivation of $\operatorname{Alg} \mathcal{N}$. Moreover, it follows from Eq. (3.3) that Φ is a centralizing derivation. So by Theorem 2.6, we get $\Phi \equiv 0$, that is, $\delta = \delta'$. Thus Eq. (3.1) becomes $\delta(A)A - A\delta(A) \in \mathbb{F}I$ for all $A \in \operatorname{Alg} \mathcal{N}$, which means that δ is an additive centralizing derivation from $\operatorname{Alg} \mathcal{N}$ into itself. By Theorem 2.6 again, it follows that $\delta = 0$. The proof is completed. \square

By Theorem 3.1, the following corollary is obvious.

Corollary 3.2 Let \mathcal{N} be a nest on a Banach space X over the real or complex number field \mathbb{F} . Suppose that δ is an additive skew-centralizing (skew-commuting) derivation on $Alg \mathcal{N}$. If there exists a non-trivial element N in \mathcal{N} which is complemented in X and $\dim N \neq 1$, then $\delta \equiv 0$.

Now we consider additive cocommuting generalized derivations on nest algebras.

Theorem 3.3 Let \mathcal{N} be a nest on a Banach space X over the real or complex number field \mathbb{F} . Suppose that δ and δ' are any two additive cocommuting generalized derivations on $\operatorname{Alg} \mathcal{N}$. If there exists a non-trivial element N in \mathcal{N} which is complemented in X and $\dim N \neq 1$, then there exists some $S \in \operatorname{Alg} \mathcal{N}$ such that $\delta(A) = AS$ and $\delta'(A) = SA$ for all $A \in \operatorname{Alg} \mathcal{N}$.

We first prove the following lemma.

Lemma 3.4 Let \mathcal{N} be a nest on a Banach space X over the real or complex number field \mathbb{F} .

Suppose that $\Phi: \operatorname{Alg} \mathcal{N} \to \operatorname{Alg} \mathcal{N}$ is additive modulo $\mathbb{F}I$. If there exists a non-trivial element N in \mathcal{N} which is complemented in X and dim $N \neq 1$, and if $[A, \Phi(BA) - \Phi(B)A] = 0$ for all $A, B \in \operatorname{Alg} \mathcal{N}$, then there exist $\lambda \in \mathbb{F}$ and a map $f: \operatorname{Alg} \mathcal{N} \to \mathbb{F}$ such that

$$\Phi(A) = (\lambda I + \Phi(I))A + f(A)I$$

for all $A \in Alg \mathcal{N}$.

Proof For each $A \in \text{Alg } \mathcal{N}$, we define $\Psi(A) = \Phi(A) - \Phi(I)A$. It is clear that $[\Psi(A), A] = 0$ for all $A \in \text{Alg } \mathcal{N}$. For any $B \in \text{Alg } \mathcal{N}$, we have

$$\begin{split} \Psi(A+B) - \Psi(A) - \Psi(B) = & \Phi(A+B) - \Phi(I)(A+B) - \Phi(A) + \Phi(I)A - \Phi(B) + \Phi(I)B \\ = & \Phi(A+B) - \Phi(A) - \Phi(B) \in \mathbb{F}I. \end{split}$$

So Ψ is additive modulo $\mathbb{F}I$. Replacing A by A+B in $[\Psi(A),A]=0$, we have that the map $\delta(A,B)=[\Psi(A),B]$ is an additive biderivation of $\mathrm{Alg}\mathcal{N}$. By Theorem 2.1, there exists $\lambda\in\mathbb{F}$ such that $[\Psi(A),B]=\lambda[A,B]$ for all $A,B\in\mathrm{Alg}\,\mathcal{N}$, that is, $[\Psi(A)-\lambda A,B]=0$ for all $A,B\in\mathrm{Alg}\,\mathcal{N}$. Since $(\mathrm{Alg}\,\mathcal{N})'=\mathbb{F}I$, there exists a map $f:\mathrm{Alg}\,\mathcal{N}\to\mathbb{F}$ such that $\Psi(A)-\lambda A=f(A)I$. Hence $\Phi(A)=\Phi(A)-\Phi(I)A=\lambda A+f(A)I$, that is, $\Phi(A)=(\lambda I+\Phi(I))A+f(A)I$ for all $A\in\mathrm{Alg}\,\mathcal{N}$. The proof is completed. \square

Proof of Theorem 3.3 Linearizing $\delta(A)A - A\delta'(A) = 0$, we get

$$\delta(A)B + \delta(B)A - A\delta'(B)A - B\delta'(A) = 0 \tag{3.4}$$

for all $A, B \in Alg \mathcal{N}$. It is easy to verify that

$$A[X, -\delta'(BX) + \delta'(B)X] + B[X, -\delta'(AX) + \delta'(A)X] = 0$$
(3.5)

for all $A, B, X \in \text{Alg } \mathcal{N}$. For each $X \in \text{Alg } \mathcal{N}$, let $\Phi(B) = [X, -\delta'(BX) + \delta'(B)X]$. It follows from Eq. (3.5) that

$$A\Phi(B) + B\Phi(A) = 0 \quad \forall A, B \in \text{Alg } \mathcal{N}. \tag{3.6}$$

Taking A=B=I in Eq. (3.6), we get $\Phi(I)=0$. Taking B=I in Eq. (3.6) again, we have $\Phi(A)=-A\Phi(I)=0$. Thus, we get that $[X,-\delta'(AX)+\delta'(A)X]=0$ for all $A,X\in \mathrm{Alg}\,\mathcal{N}$. By Lemma 3.4, there exist $\lambda\in\mathbb{F}$ and an additive map $f:\mathrm{Alg}\,\mathcal{N}\to\mathbb{F}$ such that $-\delta'(X)=-SX+f(X)I$ for all $X\in\mathrm{Alg}\,\mathcal{N}$, where $-S=\lambda I-\delta'(I)$. Next using the similar proof to that of Theorem 3.1, one can easily check that f=0. Hence $\delta'(X)=SX$ for all $X\in\mathrm{Alg}\,\mathcal{N}$.

Now Eq. (3.4) reduces to $\delta(A)B + \delta(B)A - ASBA - BSA = 0$, that is,

$$(\delta(A) - AS)B + (\delta(B) - BS)A = 0, \quad \forall A, B \in \text{Alg } \mathcal{N}. \tag{3.7}$$

Let $\Psi(A) = \delta(A) - AS$. Eq. (3.7) becomes $\Psi(A)B + \Psi(B)A = 0$. Taking A = B = I in Eq. (3.7), we get $\Psi(I) = 0$. Taking B = I in Eq. (3.7) again, we have $\Psi(A) = -A\Psi(I) = 0$. Thus we have proved that $\delta(A) = AS$ for all $A \in \text{Alg } \mathcal{N}$, completing the proof. \square

Acknowlegement The author would like to thank the referees for valuable comments. The author is also grateful to Prof. Jinchuan HOU for his help and support.

252 Xiaofei QI

References

- $[1] \ \text{E. C. POSNER}. \ \textit{Derivations in prime rings}. \ \text{Proc. Amer. Math. Soc.}, \ 1957, \ \textbf{8}: \ 1093-1100.$
- [2] M. BREŠAR. Commuting maps: a survey. Taiwanese J. Math., 2004, 8(3): 361–397.
- [3] M. BREŠAR. Centralizing mappings on von Neumann algebras. Proc. Amer. Math. Soc., 1991, 111(2): 501–510.
- [4] J. H. MAYNE. Ideals and centralizing mappings in prime rings. Proc. Amer. Math. Soc., 1982, 86(2): 211–212.
- [5] C. R. MIERS. Centralizing mappings of operator algebras. J. Algebra, 1979, 59(1): 56-64.
- [6] Jianhua ZHANG, Shan FENG, Hongxia LI, et al. Generalized biderivations of nest algebras. Linear Algebra Appl., 2006, 418(1): 225–233.
- [7] M. BREŠAR. On skew-commuting mappings of rings. Bull. Austral. Math. Soc., 1993, 47(2): 291–296.
- [8] M. BREŠAR. Centralizing mappings and derivations in prime rings. J. Algebra, 1993, 156(2): 385–394.
- [9] M. BREŠAR. On generalized biderivations and related maps. J. Algebra, 1995, 172(3): 764–786.