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Abstract Let N be a nest on a Banach space X, and AlgN be the associated nest algebra.

It is shown that, if there exists a non-trivial element N in N which is complemented in X and

dim N 6= 1, then every additive biderivation from AlgN into itself is an inner biderivation.

Based on this result, we give characterizations of centralizing (commuting) maps, cocentraliz-

ing derivations, and cocommuting generalized derivations on nest algebras.
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1. Introduction

Let A be an algebra (or a ring) with center Z. Then A is a Lie algebra (Lie ring) under

the Lie product [A, B] = AB − BA. Recall that a map Φ from A into itself is centralizing if

[Φ(A), A] ∈ Z for all A ∈ A; is commuting if [Φ(A), A] = 0 for all A ∈ A. The study of

centralizing maps was initiated by a well-known theorem of Posner [1] which states that the

existence of a nonzero centralizing derivation on a prime ring R implies that R is commutative.

Brešar in [2] gave the structure of arbitrary centralizing additive maps on prime rings. For other

results about centralizing maps, see [3–5] and the references therein.

The notion of additive commuting maps is closely connected with the notion of biderivations.

Recall that a biadditive map δ : A×A → A is called a biderivation if it is a derivation in each

argument; is called an inner biderivation if there exists λ ∈ Z such that δ(A, B) = λ[A, B] for

all A, B ∈ A. Zhang in [6] proved that every linear biderivation of nest algebras on a complex

separable Hilbert space H is an inner biderivation if and only if dim0+ 6= 1 or dimH⊥

−
6= 1.

Every commuting additive map Φ : A → A gives rise to a biderivation of A. Namely, linearizing

[Φ(A), A] = 0, A ∈ A, we get [Φ(A), B] = [A, Φ(B)] for all A, B ∈ A, and hence the map

(A, B) 7→ [Φ(A), B] is a biderivation.

In [7], the author gave the concepts of skew-centralizing maps and skew-commuting maps.

Recall that an additive map Φ : A → A is skew-centralizing if Φ(A)A + AΦ(A) ∈ Z for all

A ∈ A; is skew-commuting if Φ(A)A + AΦ(A) = 0 for every A ∈ A. Moreover, the author [7]
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proved that there is no nonzero additive maps that are skew-commuting on ideals of prime rings

with characteristic not 2. Later, Brešar in [8] gave the definitions of cocentralizing maps and

cocommuting maps. Two additive maps Φ : A → A and Ψ : A → A are said to be cocentralizing

if Φ(A)A − AΨ(A) ∈ Z for all A ∈ A; cocommuting if Φ(A)A = AΨ(A) for all A ∈ A.

The purpose of this paper is to consider additive biderivations, centralizing (skew-centralizing)

maps, cocentralizing derivations and cocommuting generalized derivations on nest algebras.

Let X be a Banach space over the real or complex number field F. As usual, B(X) denotes

the algebra of all bounded linear operators on X . A nest N on X is a chain of closed (under

norm topology) subspaces of X which is closed under the formation of arbitrary closed linear

span (denoted by
∨

) and intersection (denoted by
∧

), and which includes {0} and X . The nest

algebra associated to the nest N , denoted by AlgN , is a set

AlgN = {T ∈ B(X) : TN ⊆ N for all N ∈ N}.

It is clear that if N is trivial, then AlgN = B(X). When N 6= {0, X}, we say that N is non-

trivial. Since B(X) is prime, we only consider the case N 6= {0, X} in this paper. Note that

AlgN is not prime. It is easily proved that the commutant of AlgN coincides with FI.

2. Additive biderivations and centralizing maps on nest algebras

In this section, we first discuss the additive biderivations on nest algebras. The following is

our first main result.

Theorem 2.1 Let N be a nest on a Banach space X . If there exists a non-trivial element N

in N which is complemented in X and dim N 6= 1, then every additive biderivation from AlgN

into itself is an inner biderivation.

To prove Theorem 2.1, we need the following two lemmas.

Lemma 2.2 ([9, Lemma 2.3]) Let R be a ring and Φ : R ×R → R be a biderivation. Then

Φ(U, V )A[X, Y ] = [U, V ]AΦ(X, Y ) for all A, U, V, X, Y ∈ R.

Lemma 2.3 ([9, Lemma 2.2]) Let Ω be any set, R be a prime ring and C be the extended

centroid of R. If functions f, h : Ω → R satisfy f(s)Xh(t) = h(s)Xf(t) for all s, t ∈ Ω, X ∈ R

and f 6= 0, then there exists an element λ ∈ C such that h(s) = λf(s) for all s ∈ Ω.

Proof of Theorem 2.1 Assume that Φ is an additive biderivation of AlgN . It follows from

Lemma 2.2 that

Φ(U, V )Z[A, B] = [U, V ]ZΦ(A, B) (2.1)

for all A, B, U, V, Z ∈ AlgN . Next we will prove that Φ is an inner biderivation.

Since N is complemented in X , there exists a non-trivial idempotent E ∈ AlgN such that

EX = N . It is clear that EB(X) ⊆ AlgN . So by Eq. (2.1), we have

Φ(U, V )EY [A, B] = [U, V ]EY Φ(A, B) (2.2)
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for all A, B, U, V ∈ AlgN and Y ∈ B(X). Multiplying E from the right side in Eq. (2.2), we get

Φ(U, V )EY [A, B]E = [U, V ]EY Φ(A, B)E. (2.3)

Now define two maps f, h : AlgN × AlgN → B(X) by

h(X, Y ) = Φ(X, Y )E and f(X, Y ) = [X, Y ]E

for all X, Y ∈ AlgN . It follows from Eq. (2.3) that

h(U, V )Y f(A, B) = f(U, V )Y h(A, B) (2.4)

for all A, B, U, V ∈ AlgN and Y ∈ B(X). Note that dimN > 1. There exist A0, B0 ∈ AlgN

such that [A0, B0]E 6= 0, and so f 6= 0. Hence by Eq. (2.4) and Lemma 2.3, there exists λ ∈ F

such that h(U, V ) = λf(U, V ) for all U, V ∈ AlgN , that is,

Φ(U, V )E = λ[U, V ]E for all U, V ∈ AlgN . (2.5)

Combining Eq. (2.5) with Eq. (2.2), one obtains

[U, V ]EB(X)(λ[A, B] − Φ(A, B)) = {0} for all A, B, U, V ∈ AlgN .

Take U = A0 and V = B0 in the above equation. Since [A0, B0]E 6= 0 and B(X) is prime, it

follows that Φ(A, B) = λ[A, B] for all A, B ∈ AlgN , that is, Φ is an inner biderivation. The

proof of the theorem is completed. �

By Theorem 2.1, we can give the second main result in this section, which discusses cen-

tralizing additive maps on nest algebras.

Theorem 2.4 Let N be a nest on a Banach space X over the real or complex number field

F. Suppose that Φ : AlgN → AlgN is a centralizing additive map (i.e., [Φ(A), A] ∈ FI, ∀A).

If there exists a non-trivial element N in N which is complemented in X and dimN 6= 1, then

Φ(A) = λA + φ(A)I for all A ∈ AlgN , where λ ∈ F and φ : AlgN → F is an additive map.

Proof Note that the unit I cannot be a commutator [A, B]. Hence Φ is commuting, that is,

[Φ(A), A] = 0 for all A ∈ AlgN . Replacing A by A + B in [Φ(A), A] = 0, we get [Φ(A), B] +

[Φ(B), A] = 0, that is, [Φ(A), B] = [A, Φ(B)] for all A, B ∈ AlgN . Let δ(A, B) = [Φ(A), B]

for each A, B ∈ AlgN . It is easy to prove that δ is an additive biderivation of AlgN . So

by Theorem 2.1, there exists λ ∈ F such that δ(A, B) = λ[A, B] for all A, B ∈ AlgN . Hence

[Φ(A), B] = λ[A, B], that is, (Φ(A) − λA)B = B(Φ(A) − λA) for all A, B ∈ AlgN . Since B

is arbitrary, we have Φ(A) − λA ∈ FI. Thus we can suppose that Φ(A) − λA = φ(A)I, where

φ : AlgN → F is a map. It is clear that φ is additive and Φ(A) = λA + φ(A)I. The proof is

completed. �

In [9], the author gave the following concept: a map Φ : A → A is additive modulo Z if

Φ(A + B) − Φ(A) − Φ(B) ∈ Z for all A, B ∈ A.

Corollary 2.5 Let N be a nest on a Banach space X over the real or complex number field F.

Assume that Φ is additive modulo FI and is commuting from AlgN into itself. If there exists a

non-trivial element N in N which is complemented in X and dim N 6= 1, then there exist λ ∈ F
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and a map φ : AlgN → F such that Φ(A) = λA + φ(A)I for all A ∈ AlgN .

Proof The proof is similar to that of Theorem 2.4. We omit it here. �

In addition, if Φ in Theorem 2.4 is a derivation (generalized derivation), we have the following

theorems.

Theorem 2.6 Let N be a nest on a Banach space X over the real or complex number field

F. Suppose that Φ is an additive centralizing derivation on AlgN . If there exists a non-trivial

element N in N which is complemented in X and dimN 6= 1, then Φ ≡ 0.

Proof By Theorem 2.4, we have [Φ(A), A] = 0 for all A ∈ AlgN . Replacing A by A + B in

[Φ(A), A] = 0, we get

[Φ(A), B] = [A, Φ(B)], ∀A, B ∈ AlgN . (2.6)

In particular,

[Φ(A), BA] =[A, Φ(BA)] = [A, Φ(B)A + BΦ(A)]

=[A, Φ(B)A] + [A, BΦ(A)]]

=[A, Φ(B)]A + Φ(B)[A, A] + B[Φ(A), A] + [A, B]Φ(A)

=[A, Φ(B)]A + [A, B]Φ(A). (2.7)

On the other hand, using Eq. (2.6), we have

[Φ(A), BA] = [Φ(A), B]A + B[Φ(A), A] = [Φ(A), B]A = [A, Φ(B)]A. (2.8)

Combining Eq. (2.8) with Eq. (2.7), one gets [A, B]Φ(A) = 0 for all A, B ∈ AlgN . Substitut-

ing CB for B in this equation, we have 0 = [A, CB]Φ(A) = C[A, B]Φ(A) + [A, C]BΦ(A) =

[A, C]BΦ(A). That is,

[A, C]BΦ(A) = 0, ∀A, B, C ∈ AlgN . (2.9)

Since N is complemented in X , there exists a non-trivial idempotent E ∈ B(X) such that EX =

N . So EB(X) ⊆ AlgN . Thus, by Eq. (2.9), we get [A, C]ETΦ(A) = 0 for all A, C ∈ AlgN and

all T ∈ B(X). Since B(X) is prime, for every A ∈ AlgN , we have [A, C]E = 0 or Φ(A) = 0. It is

well known that a group cannot be the union of its two proper subgroups. Note that dimN > 1.

There exist A0, C0 ∈ AlgN such that [A0, C0]E 6= 0. Hence AlgN 6= {A ∈ AlgN : [A, C]E = 0},

which implies that Φ(A) = 0 for all A ∈ AlgN . The proof is completed. �

Theorem 2.7 Let N be a nest on a Banach space X over the real or complex number field

F. Suppose that Φ is an additive centralizing generalized derivation on AlgN . If there exists a

non-trivial element N in N which is complemented in X and dimN 6= 1, then there exists λ ∈ F

such that Φ(A) = λA for all A ∈ AlgN .

Proof Since Φ is a centralizing map on AlgN , by Theorem 2.4, Φ has the form Φ(A) =

λA+φ(A)I for all A ∈ AlgN , where λ ∈ F and φ : AlgN → F is an additive map. Since Φ is an

additive generalzied derivation, there exsits an additive derivation τ : AlgN → AlgN such that
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Φ(AB) = Φ(A)B + Aτ(B) for all A, B ∈ AlgN . Thus λAB + φ(AB)I = Φ(AB) = Φ(A)B +

Aτ(B) = λAB + φ(A)B + Aτ(B), and so Aτ(B) = −φ(A)B + φ(AB)I for all A, B ∈ AlgN .

Taking A = I, we get τ(B) = −φ(I)B + φ(B)I for all B ∈ AlgN . It is easy to check that τ is

a commuting derivation. By Theorem 2.6, τ = 0. Now we have proved that φ(I)A = φ(A)I for

all A ∈ AlgN . If φ(I) 6= 0, then A = φ(I)−1φ(A)I for all A ∈ AlgN , which is impossible. So

φ(I) = 0, and therefore, Φ(A) = λA for all A ∈ AlgN . The proof of the theorem is completed. �

3. Cocentralizing derivations and cocommuting generalized derivations

on nest algebras

In this section, we first consider the cocentralizing derivations on nest algebras.

Theorem 3.1 Let N be a nest on a Banach space X over the real or complex number field F.

Suppose that δ and δ′ are any two additive cocentralizing derivations on AlgN . If there exists

a non-trivial element N in N which is complemented in X and dim N 6= 1, then δ = δ′ ≡ 0.

Proof By the assumption and the definition of cocentralizing maps, we have

δ(A)A − Aδ′(A) ∈ FI, ∀A ∈ AlgN . (3.1)

Replacing A by A + B in Eq. (3.1), we get

δ(A)B + δ(B)A − Aδ′(B) − Bδ′(A) ∈ FI. (3.2)

In particular, taking B = I in Eq. (3.2), and noting that δ(I) = δ′(I) = 0, we have

δ(A) − δ′(A) ∈ FI, ∀A ∈ AlgN . (3.3)

Let Φ(A) = δ(A) − δ′(A) for all A ∈ AlgN . It is obvious that Φ is also an additive derivation

of AlgN . Moreover, it follows from Eq. (3.3) that Φ is a centralizing derivation. So by Theorem

2.6, we get Φ ≡ 0, that is, δ = δ′. Thus Eq. (3.1) becomes δ(A)A−Aδ(A) ∈ FI for all A ∈ AlgN ,

which means that δ is an additive centralizing derivation from AlgN into itself. By Theorem

2.6 again, it follows that δ = 0. The proof is completed. �

By Theorem 3.1, the following corollary is obvious.

Corollary 3.2 Let N be a nest on a Banach space X over the real or complex number field F.

Suppose that δ is an additive skew-centralizing (skew-commuting) derivation on AlgN . If there

exists a non-trivial element N in N which is complemented in X and dimN 6= 1, then δ ≡ 0.

Now we consider additive cocommuting generalized derivations on nest algebras.

Theorem 3.3 Let N be a nest on a Banach space X over the real or complex number field

F. Suppose that δ and δ′ are any two additive cocommuting generalized derivations on AlgN .

If there exists a non-trivial element N in N which is complemented in X and dimN 6= 1, then

there exists some S ∈ AlgN such that δ(A) = AS and δ′(A) = SA for all A ∈ AlgN .

We first prove the following lemma.

Lemma 3.4 Let N be a nest on a Banach space X over the real or complex number field F.
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Suppose that Φ : AlgN → AlgN is additive modulo FI. If there exists a non-trivial element

N in N which is complemented in X and dimN 6= 1, and if [A, Φ(BA) − Φ(B)A] = 0 for all

A, B ∈ AlgN , then there exist λ ∈ F and a map f : AlgN → F such that

Φ(A) = (λI + Φ(I))A + f(A)I

for all A ∈ AlgN .

Proof For each A ∈ AlgN , we define Ψ(A) = Φ(A)−Φ(I)A. It is clear that [Ψ(A), A] = 0 for

all A ∈ AlgN . For any B ∈ AlgN , we have

Ψ(A + B) − Ψ(A) − Ψ(B) =Φ(A + B) − Φ(I)(A + B) − Φ(A) + Φ(I)A − Φ(B) + Φ(I)B

=Φ(A + B) − Φ(A) − Φ(B) ∈ FI.

So Ψ is additive modulo FI. Replacing A by A + B in [Ψ(A), A] = 0, we have that the map

δ(A, B) = [Ψ(A), B] is an additive biderivation of AlgN . By Theorem 2.1, there exists λ ∈ F such

that [Ψ(A), B] = λ[A, B] for all A, B ∈ AlgN , that is, [Ψ(A) − λA, B] = 0 for all A, B ∈ AlgN .

Since (AlgN )′ = FI, there exists a map f : AlgN → F such that Ψ(A) − λA = f(A)I. Hence

Φ(A) = Φ(A) − Φ(I)A = λA + f(A)I, that is, Φ(A) = (λI + Φ(I))A + f(A)I for all A ∈ AlgN .

The proof is completed. �

Proof of Theorem 3.3 Linearizing δ(A)A − Aδ′(A) = 0, we get

δ(A)B + δ(B)A − Aδ′(B)A − Bδ′(A) = 0 (3.4)

for all A, B ∈ AlgN . It is easy to verify that

A[X,−δ′(BX) + δ′(B)X ] + B[X,−δ′(AX) + δ′(A)X ] = 0 (3.5)

for all A, B, X ∈ AlgN . For each X ∈ AlgN , let Φ(B) = [X,−δ′(BX) + δ′(B)X ]. It follows

from Eq. (3.5) that

AΦ(B) + BΦ(A) = 0 ∀A, B ∈ AlgN . (3.6)

Taking A = B = I in Eq. (3.6), we get Φ(I) = 0. Taking B = I in Eq. (3.6) again, we have

Φ(A) = −AΦ(I) = 0. Thus, we get that [X,−δ′(AX) + δ′(A)X ] = 0 for all A, X ∈ AlgN .

By Lemma 3.4, there exist λ ∈ F and an additive map f : AlgN → F such that −δ′(X) =

−SX + f(X)I for all X ∈ AlgN , where −S = λI − δ′(I). Next using the similar proof to that

of Theorem 3.1, one can easily check that f = 0. Hence δ′(X) = SX for all X ∈ AlgN .

Now Eq. (3.4) reduces to δ(A)B + δ(B)A − ASBA − BSA = 0, that is,

(δ(A) − AS)B + (δ(B) − BS)A = 0, ∀A, B ∈ AlgN . (3.7)

Let Ψ(A) = δ(A)−AS. Eq. (3.7) becomes Ψ(A)B +Ψ(B)A = 0. Taking A = B = I in Eq. (3.7),

we get Ψ(I) = 0. Taking B = I in Eq. (3.7) again, we have Ψ(A) = −AΨ(I) = 0. Thus we have

proved that δ(A) = AS for all A ∈ AlgN , completing the proof. �
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