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Abstract Let S be a primitive non-powerful symmetric loop-free signed digraph on even n

vertices with base 3 and minimum number of arcs. In [Lihua YOU, Yuhan WU. Primitive non-

powerful symmetric loop-free signed digraphs with given base and minimum number of arcs.

Linear Algebra Appl., 2011, 434(5), 1215–1227], authors conjectured that D is the underlying

digraph of S with exp(D) = 3 if and only if D is isomorphic to EDn,3,3, where EDn,3,3 = (V, A)

is a digraph with V = {1, 2, . . . , n}, A = {(1, i), (i, 1) | 3 ≤ i ≤ n} ∪ {(2i− 1, 2i), (2i, 2i− 1) |
2 ≤ i ≤ n

2
} ∪ {(2, 3), (3, 2), (2, 4), (4, 2)}). In this paper, we show the conjecture is true and

completely characterize the underlying digraphs which have base 3 and the minimum number

of arcs.

Keywords primitive; symmetric; non-powerful; base; signed digraph.

MR(2010) Subject Classification 05C22; 05C50; 15B35

1. Introduction

A sign pattern matrix is a matrix each of whose entries is a sign 1, −1 or 0. For a square
sign pattern matrix M , notice that in the computations of the entries of the power Mk, the
“ambiguous sign” may arise when we add a positive sign 1 to a negative sign −1. Then a new
symbol “#” was introduced in [1] to denote the ambiguous sign. The set Γ = {0, 1,−1,#} is
defined as the generalized sign set and the addition and multiplication involving the symbol #
are defined as follows (the addition and multiplication which do not involve # are obvious):

(−1) + 1 = 1 + (−1) = #; a + # = # + a = #, for all a ∈ Γ,

0 ·# = # · 0 = 0; b ·# = # · b = #, for all b ∈ Γ \ {0}.

In [1, 2], the matrices with entries in the set Γ are called generalized sign pattern matrices.
The addition and multiplication of generalized sign pattern matrices are defined in the usual
way, then the sum and product of the generalized sign pattern matrices are still generalized sign
pattern matrices. In this paper, we only consider the operations of matrices over Γ.
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Definition 1 ([1]) A square generalized sign pattern matrix M is called powerful if each power

of M contains no # entry.

Definition 2 ([3]) Let M be a square generalized sign pattern matrix of order n and M, M2,M3, . . .

be the sequence of powers of M . Suppose M b is the first power that is repeated in the sequence.

Namely, suppose b is the least positive integer such that there is a positive integer p such that

M b = M b+p. (1.1)

Then b is called the generalized base (or simply base) of M , and is denoted by b(M). The least

positive integer p such that (1.1) holds for b = b(M) is called the generalized period (or simply

period) of M , and is denoted by p(M).

We now introduce some theoretical concepts of graph.

Let D = (V, A) denote a digraph on n vertices. Loops are permitted, but no multiple
arcs. A u → v walk in D is a sequence of vertices u, u1, . . . , uk = v and a sequence of arcs
e1 = (u, u1), e2 = (u1, u2), . . . , ek = (uk−1, v), where the vertices and the arcs are not necessarily
distinct. We use the notation u → u1 → u2 → · · · → uk−1 → v to refer to this u → v walk. A
closed walk is a u → v walk where u = v. A path is a walk with distinct vertices. A cycle is a
closed u → v walk with distinct vertices except for u = v. The length of a walk W is the number
of arcs in W , denoted by l(W ). A k-cycle is a cycle of length k, denoted by Ck.

A signed digraph S is a digraph where each arc of S is assigned a sign 1 or −1. A generalized
signed digraph S is a digraph where each arc of S is assigned a sign 1, −1 or #.

The sign of the walk W in a (generalized) signed digraph, denoted by sgnW , is defined to
be

∏k
i=1 sgn(ei), where e1, e2, . . . , ek is the sequence of arcs of W .

Let M = (mij) be a square (generalized) sign pattern matrix of order n. The associated
digraph D(M) = (V, A) of M (possibly with loops) is defined to be the digraph with vertex set
V = {1, 2, . . . , n} and arc set A = {(i, j)|mij 6= 0}. The associated (generalized) signed digraph
S(M) of M is obtained from D(M) by assigning the sign of mij to each arc (i, j) in D(M), and
we say D(M) is the underlying digraph of S(M).

Let S be a (generalized) signed digraph on n vertices. Then there is a (generalized) sign
pattern matrix M of order n whose associated (generalized) signed digraph S(M) is S. We say
that S is powerful if M is powerful. Also the base b(S) and period p(S) are defined to be those
of M . Namely we define b(S) = b(M) and p(S) = p(M).

A digraph D is said to be strongly connected if there exists a path from u to v for all
u, v ∈ V , and D is called primitive if there is a positive integer k such that for each vertex x and
each vertex y (not necessarily distinct) in D, there exists a walk of length k from x to y. The
least such k is called the primitive exponent (or simply exponent) of D, denoted by exp(D). It
is also well-known that a digraph D is primitive if and only if D is strongly connected and the
greatest common divisor (simply g.c.d.) of the lengths of all the cycles of D is 1. A (generalized)
signed digraph S is called primitive if the underlying digraph D is primitive, and in this case we
define exp(S) = exp(D).
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A digraph D is symmetric if for every arc (u, v) in D, the arc (v, u) is also in D. A
(generalized) signed digraph S is called symmetric if the underlying digraph D is symmetric. If
a digraph (or a generalized signed digraph) D (or S) is symmetric, then D (or S) can be regarded
as an undirected graph (possibly with loops).

A digraph D is loop-free if D has no loops. In this case, if a digraph (or a generalized signed
digraph) D (or S) is symmetric and loop-free, then D (or S) can be regarded as a simple graph.

The primitive exponent and exponent set of primitive symmetric loop-free digraphs were
discussed in [4, 5] and the minimum number, h(n, k), of edges of primitive simple graphs G =
(V, E) such that |V | = n and exp(G) = k were determined completely in [6, 7].

Now the concept of exponent for primitive digraphs was extended to the concept of base
for primitive signed digraphs [3], a natural question is to study the minimum number of arcs
of primitive symmetric loop-free signed digraphs. It was shown in [1] that if a primitive signed
digraph S is powerful, then b(S) = exp(D), where D is the underlying digraph of S. Then for a
primitive powerful symmetric loop-free signed digraph, [7] gives the results. In [8, 9], the case of
the non-powerful is studied.

Theorem 3 ([9]) Let B?
n be the base set of primitive non-powerful symmetric loop-free signed

digraphs on n vertices. Then B?
n = {2, 3, . . . , 2n− 1}.

Theorem 4 ([9]) Let H(n, k) be the minimum number of arcs of the primitive non-powerful

symmetric loop-free signed digraphs S = (V, A) such that |V | = n and b(S) = k for 2 ≤ k ≤
2n− 1. Then we have

(1) H(n, 2) = 2b 5n−7
2 c.

(2) H(n, 3) = 2b 3n−2
2 c.

(3) H(n, k) = 2n for 4 ≤ k ≤ 2n− 1.

In [9], the underlying digraphs of the primitive non-powerful symmetric loop-free signed
digraphs which have H(n, k) arcs with k = 2 are completely characterized, and the case when
k = 3 is nearly characterized.

Let n = 2m + 1 be odd, ODn,3 = (V, A) be a digraph, where V = {1, 2, . . . , 2m, 2m + 1},
A = {(1, i), (i, 1) | 2 ≤ i ≤ 2m + 1} ∪ {(2i, 2i + 1), (2i + 1, 2i) | 1 ≤ i ≤ m}. Clearly, ODn,3 is a
primitive symmetric loop-free digraph on n vertices with exp(ODn,3) = 2.

Let n = 2m be even, EDn,3 = (V, A) be a digraph, where V = {1, 2, . . . , 2m− 1, 2m}, A =
{(1, i), (i, 1) | 2 ≤ i ≤ 2m}∪{(2i, 2i+1), (2i+1, 2i) | 1 ≤ i ≤ m−1}∪{(2m−1, 2m), (2m, 2m−1)}.
Clearly, EDn,3 is a primitive symmetric loop-free digraph on n vertices with exp(EDn,3) = 2.

Let n = 2m be even, EDn,3,3 = (V, A) a digraph, where V = {1, 2, . . . , 2m}, A =
{(1, i), (i, 1) | 3 ≤ i ≤ 2m} ∪ {(2i − 1, 2i), (2i, 2i − 1) | 2 ≤ i ≤ m} ∪ {(2, 3), (3, 2), (2, 4), (4, 2)}.
Clearly, EDn,3,3 is a primitive symmetric loop-free digraph on n vertices with exp(EDn,3,3) = 3.

Theorem 5 ([9]) Let n ≥ 6, S = (V (S), A(S)) be a primitive non-powerful symmetric loop-free

signed digraph on n vertices with |A(S)| = H(n, 3) and b(S) = 3. Then one of the following

conditions holds:
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(1) If n is odd, D is the underlying digraph of S if and only if D is isomorphic to the

digraph ODn,3.

(2) If n is even, D is the underlying digraph of S with exp(D) = 2 if and only if D is

isomorphic to the digraph EDn,3.

(3) If n is even, there exists D which is isomorphic to EDn,3,3 such that D is the underlying

digraph of S with exp(D) = 3.

Conjecture 6 ([9]) Let n ≥ 6 be even, S = (V (S), A(S)) be a primitive non-powerful symmetric

loop-free signed digraph on n vertices with |A(S)| = 3n − 2, exp(S) = 3, b(S) = 3. Then D is

the underlying digraph of S if and only if D is isomorphic to the digraph EDn,3,3.

In this paper, we show the Conjecture 6 is true, and completely characterize the underlying
digraphs which have base 3 and the minimum number of arcs.

2. Some preliminaries

In this section, we introduce some useful definitions and properties in the proofs of our main
results. Other definitions and results not in this article can be found in [10, 11].

A subgraph H = (VH , EH) of K = (VK , EK), denoted by H ⊆ K, is a graph if VH ⊆ VK

and EH ⊆ EK . A proper subgraph H = (VH , EH) of K = (VK , EK), denoted by H ( K, is a
graph if VH ( VK , EH ⊆ EK or VH = VK , EH ( EK .

If Ki = (VKi
, EKi

) ⊆ K for all i ∈ I, we define the union
⋃

i∈I Ki of Ki as the graph
(
⋃

i∈I VKi
,
⋃

i∈I EKi
). Throughout this paper, we define some subgraphs of K = (VK , EK) as

follows:

For u, v, w ∈ VK ,

L(u, v) = (VL, EL), where VL = {u, v}, EL = {{u, v}}

and

4(u, v, w) = (V4, E4) where V4 = {u, v, w}, E4 = {{u, v}, {v, w}, {w, u}}.

We say that L(u, v) is a line segment joining u and v, and 4(u, v, w) is a triangle with
vertices u, v and w.

Definition 7 ([3]) Two walks W1 and W2 in a signed digraph are called a pair of SSSD walks, if

they have the same initial vertex, same terminal vertex and same length, but they have different

signs.

From the relation between sign pattern matrices and signed digraphs, it is easy to see that a
(generalized) sign pattern matrix M is powerful if and only if the associated (generalized) signed
digraph S(M) contains no pairs of SSSD walks. Thus for a (generalized) signed digraph S, S

is powerful if and only if S contains no pairs of SSSD walks.

The following result will be useful.

Theorem 8 ([3]) Let S be a primitive non-powerful signed digraph. Then
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(1) There is an integer k such that there exists a pair of SSSD walks of length k from each

vertex x to each vertex y in S.

(2) If there exists a pair of SSSD walks of length k from each vertex x to each vertex y,

then there also exists a pair of SSSD walks of length k + 1 from each vertex x to each vertex y

in S.

(3) The minimal such k (as in (1)) is just b(S), the base of S.

3. Characterization of simple graphs G = (V, E) with exp(G) = 3 and
|E| = 3|V |−2

2

In this section, we characterize simple graphs G = (V, E) with exp(G) = 3 and |E| = 3|V |−2
2 ,

where |V | is even.

In Theorem 9, the following graphs will be used.

(1) Λ1(k1, k2, k3) = 4(u1, u2, u3) ∪4(u2, u3, u4) ∪ (
⋃k1

i=14(u1, v2i−1, v2i))∪
(
⋃k2

i=14(u2, w2i−1, w2i)) ∪ (
⋃k3

i=14(u3, x2i−1, x2i)).

(2) Λ2(k1, k2, k3) = 4(u1, u2, u3) ∪4(u2, u3, u4) ∪ (
⋃k1

i=14(u2, v2i−1, v2i))∪
(
⋃k2

i=14(v1, w2i−1, w2i)) ∪ (
⋃k3

i=14(v2, x2i−1, x2i)).

(3) Λ3(k1, k2) = L(u, v) ∪ (
⋃k1

i=14(u, u2i−1, u2i)) ∪4(u, u2k1 , u2k1+1)∪
(
⋃k2

i=14(v, v2i−1, v2i)) ∪4(v, v2k2 , v2k2+1).

(4) Λ4(k1, k2) = L(u, v) ∪ (
⋃k1

i=14(u, u2i−1, u2i)) ∪ (
⋃k2−1

i=1 4(v, v2i−1, v2i))∪
4(v, v2k2−1, vi) ∪4(v, v2k2 , vj)(i, j ∈ {1, . . . , 2k2 − 2}).

(5) Λ5(k1, k2) = L(u, v1) ∪ L(u, v2) ∪4(v1, v3, v4) ∪4(v2, v4, v5)∪
(
⋃k1

i=14(u, u2i−1, u2i)) ∪ (
⋃k2

i=14(v1, w2i−1, w2i)).

(6) Λ6(k1, k2) = 4(u1, u2, u3) ∪ L(u1, v1) ∪ L(u2, v2) ∪4(v1, v2, v3)∪
(
⋃k1

i=14(u1, w2i−1, w2i)) ∪ (
⋃k2

i=14(u2, x2i−1, x2i)).

(7) Λ7(k1, k2) = 4(u1, u2, u3) ∪ L(u1, v1) ∪ L(u2, v2) ∪4(v1, v2, v3)∪
(
⋃k1

i=14(u1, w2i−1, w2i)) ∪ (
⋃k2

i=14(v1, w2i−1, w2i)).

(8) Λ8(k) = 4(u1, u2, u3) ∪ L(u1, v1) ∪ L(u2, v2) ∪4(v1, v3, v4) ∪4(v2, v4, v5)∪
(
⋃k

i=14(v1, w2i−1, w2i)).

(9) Λ9(k1, k2) = 4(u1, u2, u3) ∪4(u1, u2, u4) ∪ L(u1, v) ∪ L(u2, w) ∪ L(v, w)∪
(
⋃k1

i=14(v, v2i−1, v2i)) ∪ (
⋃k2

i=14(w, w2i−1, w2i)).

(10) Λ10(k1, k2) = L(u, v1) ∪4(v1, v2, v3) ∪ L(v2, w) ∪ L(w, u)∪
(
⋃k1

i=14(u, u2i−1, u2i)) ∪4(u, u2k1 , u2k1+1) ∪ (
⋃k2

i=14(w, w2i−1, w2i)).

(11) Λ11(k) = 4(u1, u2, u3) ∪4(u1, u2, u4) ∪ L(u1, v1) ∪4(v1, v2, v3) ∪ L(v2, w)∪
L(w, u2) ∪ (

⋃k
i=14(w, w2i−1, w2i)).

(12) Λ12(k) = L(u, v1) ∪4(v1, v2, v3) ∪ L(v2, w1) ∪4(w1, w2, w3) ∪ L(w2, u)∪
(
⋃k

i=14(u, u2i−1, u2i)) ∪4(u, u2k, u2k+1).

(13) Λ13 = 4(u1, u2, u3) ∪4(u1, u2, u4) ∪ L(u1, v1) ∪4(v1, v2, v3) ∪ L(v2, w1)∪
4(w1, w2, w3) ∪ L(w2, u2).

Graphs Λ1(k1, k2, k3) and Λ2(k1, k2, k3) are shown in Figures 1-2.
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Figure 1 Λ1(k1, k2, k3) Figure 2 Λ2(k1, k2, k3)

Theorem 9 Let G = (V, E) be a primitive loop-free graph on even n vertices. If |E| = 3n−2
2

and exp(G) = 3, then G is isomorphic to one of the following graphs:

(1) Λ1(k1, k2, k3), k1 6= 0 or k2 · k3 6= 0, k1 + k2 + k3 = n−4
2 .

(2) Λ2(k1, k2, k3), k1 · k2 6= 0, k3 ≥ 0, k1 + k2 + k3 = n−4
2 .

(3) Λ3(k1, k2), k1 ≥ 1, k2 ≥ 1, k1 + k2 = n−4
2 .

(4) Λ4(k1, k2), k1 ≥ 1, k2 ≥ 2, k1 + k2 = n−2
2 .

(5) Λ5(k1, k2), k1 ≥ 1, k2 ≥ 0, k1 + k2 = n−6
2 .

(6) Λ6(k1, k2), k1 ≥ 0, k2 ≥ 0, k1 + k2 = n−6
2 .

(7) Λ7(k1, k2), k1 ≥ 0, k2 ≥ 0, k1 + k2 = n−6
2 .

(8) Λ8(k), k = n−8
2 .

(9) Λ9(k1, k2), k1, k2 ≥ 1, k1 + k2 = n−6
2 .

(10) Λ10(k1, k2), k1, k2 ≥ 1, k1 + k2 = n−6
2 .

(11) Λ11(k), k = n−8
2 ≥ 1.

(12) Λ12(k), k = n−8
2 ≥ 1.

(13) Λ13.

In order to show Theorem 9, the following lemmas are needed.

Lemma 10 Let K = (VK , EK) be a graph such that exp(K) = 3. Then for any vertex u ∈ VK ,

there are vertices v, w ∈ VK , such that 4(u, v, w) ⊆ K.

Lemma 11 ([7]) Assume that the connected graph K = (VK , EK) is the union of triangles.

If there are triangles ∆1, . . . ,∆p ⊆ K such that Hp =
⋃p

i=1 ∆i is connected, then there are

triangles ∆p+1, . . . ,∆s ⊆ K such that K =
⋃s

i=1 ∆i and Ht =
⋃t

i=1 ∆i are connected for all

t = p + 1, . . . , s.

Lemma 12 ([7]) Assume that the connected graph K = (VK , EK) is the union of triangles. If

|VK | = n, then |EK | ≥ 3n−3
2 . Let us assume that K =

⋃s
i=14i and Ht =

⋃t
i=14i are connected

for all t = 2, . . . , s.

(1) If |EK | = 3n−3
2 , then |V4t

⋂
VHt−1 | = 1 for all t = 2, . . . , s.

(2) If |EK | = 3n−2
2 , then |V4t

⋂
VHt−1 | = 1 for all t = 2, . . . , s, except in the case t = q

which satisfies |V4q

⋂
VHq−1 | = 2.

Lemma 13 Let K = (VK , EK) be a connected graph which is the union of triangles. If

exp(K) = 3, |VK | = n and |EK | = 3n−2
2 , then K is isomorphic to one of the following graphs:
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(1) K ∼= Λ1(k1, k2, k3), k1 6= 0 or k2 · k3 6= 0, k1 + k2 + k3 = n−4
2 ;

(2) K ∼= Λ2(k1, k2, k3), k1 · k2 6= 0, k3 ≥ 0, k1 + k2 + k3 = n−4
2 .

Proof We can assume K =
⋃s

i=14i and Ht =
⋃t

i=14i are connected for all t = 2, . . . , s. Then
|V4t

⋂
VHt−1 | = 1 for all t = 2, . . . , s, except in the case t = q which satisfies |V4q

⋂
VHq−1 | = 2

by (2) of Lemma 12.

Then let H = 4(u1, u2, u3) ∪ 4(u2, u3, u4). It is easy to see exp(H) = 2, and H ( K.
Without loss of generality, we can assume K = H ∪ (

⋃4
i=1 Ki) by (2) of Lemma 12, where

Ki (i = 1, 2, 3, 4) is the union of triangles or Ki = {ui}, VKi

⋂
VH = {ui}, and |VKi

| = ni, thus
ni ≥ 1 and n = n1 + n2 + n3 + n4.

Clearly, |EKi
| ≥ 3ni−3

2 for 1 ≤ i ≤ 4 by Lemma 12. Then

3n− 2
2

= |EK | = |EH |+
4∑

i=1

|EKi
| ≥ 5 +

4∑

i=1

3ni − 3
2

=
3n− 2

2
.

Hence |EKi | = 3ni−3
2 for any i ∈ {1, 2, 3, 4}.

Case 1 n1 > 1.

First, we claim that n4 = 1. Otherwise, for any pair of vertices x ∈ VK1\{u1}, y ∈ VK4\{u4},
there is no walk of length 3 from vertex x to vertex y, contradicting the fact that exp(K) = 3.

Secondly, we claim that K1
∼= ⋃k1

i=14(u1, v2i−1, v2i) for some k1 ≥ 1. For any vertex
x ∈ VK1 \{u1}, there is a walk of length 3 from vertex x to vertex u4, {x, u1} ∈ EK1 holds. Thus
the result follows from |EK1 | = 3n1−3

2 and (1) of Lemma 12.

Finally, similarly to the above proof, we have K2
∼= ⋃k2

i=14(u2, w2i−1, w2i) and K3
∼= ⋃k3

i=1

4(u3, x2i−1, x2i) for some k2, k3 ≥ 0, and thus K ∼= Λ1(k1, k2, k3), where k1 ≥ 1 and k1+k2+k3 =
n−4

2 .

Case 2 n4 > 1.

The proof is similar to that in Case 1.

Case 3 n1 = 1, n4 = 1, n2 > 1.

Subcase 3.1 n3 > 1.

Similarly to Case 1, we have K2
∼= ⋃k2

i=14(u2, w2i−1, w2i) and K3
∼= ⋃k3

i=14(u3, x2i−1, x2i)
for some k2, k3 ≥ 1. Thus K ∼= Λ1(0, k2, k3), where k2 · k3 6= 0 and k2 + k3 = n−4

2 .

Subcase 3.2 n3 = 1.

There are two vertices v1, v2 ∈ VK2\{u2}, such that 4(u2, v1, v2) ⊆ K2 by Lemma 10 and
n2 > 1. If K2 =

⋃k1
i=14(u2, v2i−1, v2i), k1 ≥ 1, then exp(K) = 2. It is a contradiction. Hence⋃k1

i=14(u2, v2i−1, v2i) ( K2(k1 ≥ 1) and there exists triangle 4′ ⊆ K2 \
⋃k1

i=14(u2, v2i−1, v2i).
Without loss of generality, we can assume 4′ = 4(v1, w1, w2). Then we can assume K2

∼=
(
⋃k1

i=14(u2, v2i−1, v2i)) ∪(
⋃k2

i=14(v1, w2i−1, w2i)) ∪ (
⋃k3

i=14(v2, x2i−1, x2i)) for some k1, k2 ≥ 1
by |EK2 | = 3n2−3

2 , exp(K) = 3 and (1) of Lemma 12. Thus we have K ∼= Λ2(k1, k2, k3), where
k1 · k2 6= 0, k3 ≥ 0, and k1 + k2 + k3 = n−4

2 .
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Case 4 n1 = 1, n4 = 1, n2 = 1.

The proof is similar to that in Subcase 3.2. ¤

Lemma 14 Let K1 = (VK1 , EK1),K2 = (VK2 , EK2) be the unions of triangles which are

connected and VK1

⋂
VK2 = ∅. Let K = L(u, v)

⋃
K1

⋃
K2, where u ∈ VK1 , v ∈ VK2 . If

|VK | = n, |EK | = 3n−2
2 and exp(K) = 3, then K is isomorphic to one of the following graphs:

(1) K ∼= Λ3(k1, k2), k1 ≥ 1, k2 ≥ 1, k1 + k2 = n−4
2 ;

(2) K ∼= Λ4(k1, k2), k1 ≥ 1, k2 ≥ 2, k1 + k2 = n−2
2 .

Proof Clearly, n is even by the fact that |EK | = 3n−2
2 . Suppose |VKi

| = ni (i = 1, 2). Then we
have n1 + n2 = n, and n1, n2 have the same parity.

Case 1 Both n1 and n2 are even.

By Lemma 12, |EKi
| ≥ 3ni−2

2 (i = 1, 2). Then

3n− 2
2

= |EK | = |EK1 |+ |EK2 |+ 1 ≥ 3n1 − 2
2

+
3n2 − 2

2
+ 1 =

3n− 2
2

.

Hence |EKi
| = 3ni−2

2 (i = 1, 2).

It follows from (2) of Lemma 12 and exp(K) = 3 that K1
∼= (

⋃k1
i=14(u, u2i−1, u2i)) ∪

4(u, u2k1 , u2k1+1),K2
∼= (

⋃k2
i=14(v, v2i−1, v2i)) ∪ 4(v, v2k2 , v2k2+1) for some k1, k2 ≥ 1. Thus

K ∼= Λ3(k1, k2), where k1 ≥ 1, k2 ≥ 1 and k1 + k2 = n−4
2 .

Case 2 Both n1 and n2 are odd.

By Lemma 12, |EKi | ≥ 3ni−3
2 (i = 1, 2). For all i = 1, 2, if |EKi | ≥ 3ni−1

2 , then

3n− 2
2

= |EK | = |EK1 |+ |EK2 |+ 1 ≥ 3n1 − 1
2

+
3n2 − 1

2
+ 1 =

3n

2
.

It is a contradiction. Hence we can assume |EK1 | = 3n1−3
2 and |EK2 | = 3n2−1

2 . Thus we have
K1

∼= (
⋃k1

i=14(u, u2i−1, u2i)) for some k1 ≥ 1 and K2
∼= (

⋃k2−1
i=1 4(v, v2i−1, v2i))∪4(v, v2k2−1, vi)∪

4(v, v2k2 , vj) where i, j ∈ {1, . . . , 2k2−2} for some k2 ≥ 2 by Lemma 12 and exp(K) = 3. There-
fore, K ∼= Λ4(k1, k2), where k1 ≥ 1, k2 ≥ 2, k1 + k2 = n−2

2 . ¤

Lemma 15 Let K not be the union of triangles and K = L(u1, v1)
⋃

L(u2, v2)
⋃

K1

⋃
K2,

where K1 = (VK1 , EK1),K2 = (VK2 , EK2) are connected and are unions of triangles, u1, u2 ∈
VK1 , v1, v2 ∈ VK2 . If |VK | = n, |EK | = 3n−2

2 and exp(K) = 3, then K is isomorphic to one of

the following graphs:

(1) Λ5(k1, k2), k1 ≥ 1, k2 ≥ 0, k1 + k2 = n−6
2 .

(2) Λ6(k1, k2), k1 ≥ 0, k2 ≥ 0, k1 + k2 = n−6
2 .

(3) Λ7(k1, k2), k1 ≥ 0, k2 ≥ 0, k1 + k2 = n−6
2 .

(4) Λ8(k), k = n−8
2 .

Proof Clearly, n is even by the fact that |EK | = 3n−2
2 . Suppose |VK1 | = n1, |VK2 | = n2. We

have n1 + n2 = n, and n1, n2 have the same parity.

We claim that both n1 and n2 are odd. Otherwise, if both n1 and n2 are even, then
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|EKi
| ≥ 3ni−2

2 for all i = 1, 2 by Lemma 12, and thus

3n− 2
2

= |EK | = |EK1 |+ |EK2 |+ 2 ≥ 3n1 − 2
2

+
3n2 − 2

2
+ 2 =

3n

2
.

It is a contradiction. By Lemma 12,

3n− 2
2

= |EK | = |EK1 |+ |EK2 |+ 2 ≥ 3n1 − 3
2

+
3n2 − 3

2
+ 2 =

3n− 2
2

.

Then |EKi
| = 3ni−3

2 for all i = 1, 2. And for any pair of triangles 41,42 ⊆ Ki (i = 1, 2), they
have at most one common vertex by (1) of Lemma 12.

For any pair of vertices u ∈ EK1 \ {u1, u2}, v ∈ EK2 \ {v1, v2}, there is a walk of length
3 from vertex u to vertex v by exp(K) = 3. Hence {u, u1} ∈ EK1 (or {u, u2} ∈ EK1), and
{v, v1} ∈ EK2 (or {v, v2} ∈ EK2).

For all i = 1, 2, let Sui
= {4 ⊆ K1|ui ∈ V4}, Svi

= {4 ⊆ K2|vi ∈ V4}. Thus |Sui
| ≥ 1 and

|Svi
| ≥ 1 by the fact that Ki (i = 1, 2) is connected and is the union of triangles.

Case 1 u1 = u2.
Then v1 6= v2, and {v1, v2} /∈ EK2 since K is not the union of triangles.
Since K2 is the union of triangles and |EK2 | = 3n2−3

2 , there is one pair of triangles 41 ∈ Sv1 ,
42 ∈ Sv2 , such that they have exact one common vertex. Assume that 41 = 4(v1, v3, v4),42 =
4(v2, v4, v5).

If |Svi | > 1 for all i = 1, 2, then for any pair of vertices x ∈ VSv1\41 , y ∈ VSv2\42 , there is
no walk of length 3 from vertex x to vertex y, contradicting the fact that exp(K) = 3. So we
can assume |Sv2 | = 1, then K2

∼= 4(v1, v3, v4)∪4(v2, v4, v5)∪ (
⋃k2

i=14(v1, w2i−1, w2i)) for some
k2 ≥ 0.

On the other hand, by Lemma 10 and (1) of Lemma 12, we have K1
∼= ⋃k1

i=14(u, u2i−1, u2i)
for some k1 ≥ 1. Thus k ∼= Λ5(k1, k2), k1 ≥ 1, k2 ≥ 0, k1 + k2 = n−6

2 .

Case 2 v1 = v2.
Then u1 6= u2. The proof is similar to that in Case 1.

Case 3 u1 6= u2 and v1 6= v2.

Subcase 3.1 {u1, u2} ∈ EK1 and {v1, v2} ∈ EK2 .
By Lemma 10, 4′ = 4(u1, u2, u3) ⊆ K1,4′′ = 4(v1, v2, v3) ⊆ K2. Then 4′ ∈ Sui ,4′′ ∈

Svi for all i = 1, 2.
If |Su1 | > 1 and |Sv2 | > 1, then for any pair of vertices x ∈ VSu1\4′ , y ∈ VSv2\4′′ , there is no

walk of length 3 from vertex x to vertex y, contradicting the fact exp(K) = 3. Hence |Su1 | ≥ 1
and |Sv2 | = 1 hold, or |Sv2 | ≥ 1 and |Su1 | = 1 hold.

Similarly, we have |Su2 | = 1 when |Sv1 | ≥ 1, and |Sv1 | = 1 when |Su2 | ≥ 1.

Subcase 3.1.1 |Su1 | > 1 and |Su2 | > 1.
Then |Sv1 | = |Sv2 | = 1. It is easy to see that K ∼= Λ6(k1, k2), k1, k2 ≥ 1, k1 + k2 = n−6

2 .

Subcase 3.1.2 |Su1 | > 1 and |Su2 | = 1.
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Then |Sv2 | = 1. It is easy to check that if |Sv1 | = 1, then K ∼= Λ6(k1, 0) where k1 = n−6
2 ;

and if |Sv1 | > 1, then K ∼= Λ7(k1, k2) where k1, k2 ≥ 1 and k1 + k2 = n−6
2 .

Subcase 3.1.3 |Su1 | = 1, |Su2 | > 1.

The proof is similar to that in Subcase 3.1.2.

Subcase 3.1.4 |Su1 | = 1, |Su2 | = 1.

Then one of the following holds:

(1) If |Sv1 | = |Sv2 | = 1, then K ∼= Λ6(0, 0) where n = 6.

(2) If |Sv1 | > 1 and |Sv2 | = 1, then K ∼= Λ7(k1, 0) where k1 = n−6
2 .

(3) If |Sv1 | = 1 and |Sv2 | > 1, then K ∼= Λ7(0, k2) where k2 = n−6
2 .

(4) If |Sv1 | > 1, |Sv2 | > 1, then K ∼= Λ6(k1, k2) where k1, k2 ≥ 1, k1 + k2 = n−6
2 .

From above arguments, we have K ∼= Λ6(k1, k2) or K ∼= Λ7(k1, k2) where k1, k2 ≥ 0 and
k1 + k2 = n−6

2 .

Subcase 3.2 {u1, u2} ∈ EK1 and {v1, v2} /∈ EK2 .

Similarly to Case 1, assume 41 = 4(v1, v3, v4), 42 = 4(v2, v4, v5), and 43 = 4(u1, u2, u3).
Then K1

∼= 43 and 41,42 ⊆ K2 by Lemma 10 and (1) of Lemma 12. Otherwise, there exist
vertices x ∈ VSu1\43 (or x ∈ VSu2\43), y = v5 (or y = v3) such that there is no walk of length 3
from x to y, contradicting the fact exp(K) = 3. Hence K ∼= Λ8(k), k = n−8

2 .

Subcase 3.3 {u1, u2} /∈ EK1 and {v1, v2} ∈ EK2 .

It is similar to that in Subcase 3.2.

Subcase 3.4 {u1, u2} /∈ EK1 and {v1, v2} /∈ EK2 .

There exist vertices x ∈ VSu1
\ {u1}, y ∈ VSv2

\ {v2}, such that there is no walk of length 3
from vertex x to vertex y, contradicting the fact exp(K) = 3.

Combining the above arguments, we complete the proof. ¤

Lemma 16 Let K not be the union of triangles and

K = L(u1, v1)
⋃

L(v2, w1)
⋃

L(w2, u2)
⋃

K1

⋃
K2

⋃
K3,

where Ki = (VKi
, EKi

)(i = 1, 2, 3) is connected and is the union of triangles, u1, u2 ∈ VK1 , v1, v2 ∈
VK2 , w1, w2 ∈ VK3 . If |VK | = n, |EK | = 3n−2

2 and exp(K) = 3, then K is isomorphic to one of

the following graphs:

(1) Λ9(k1, k2), k1, k2 ≥ 1, k1 + k2 = n−6
2 .

(2) Λ10(k1, k2), k1, k2 ≥ 1, k1 + k2 = n−6
2 .

(3) Λ11(k), k = n−8
2 ≥ 1.

(4) Λ12(k), k = n−8
2 ≥ 1.

(5) Λ13.

Proof Note that n is even by |EK | = 3n−2
2 . For 1 ≥ i ≥ 3, suppose |VKi

| = ni. Then ni ≥ 3 by
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the fact that Ki is the union of triangles and n1 + n2 + n3 = n. Thus all of n1, n2, n3 are even
or one of n1, n2, n3 is even, and the other two are odd.

We claim that one of n1, n2, n3 is even, the other two are odd. Otherwise, we have |EKi | ≥
3ni−2

2 for all i = 1, 2, 3 by Lemma 12, then

3n− 2
2

= |EK | =
3∑

i=1

|EKi
|+ 3 ≥

3∑

i=1

3ni − 2
2

+ 3 =
3n

2
.

It is a contradiction.

Without loss of generality, we can assume n1 is even and n2, n3 are odd. According to
Lemma 12, we have |EK1 | ≥ 3n1−2

2 , |EKi | ≥ 3ni−3
2 (i = 2, 3). Then

3n− 2
2

= |EK | =
3∑

i=1

|EKi
|+ 3 ≥ 3n1 − 2

2
+

3n2 − 3
2

+
3n3 − 3

2
+ 3 =

3n− 2
2

.

Thus |EK1 | = 3n1−2
2 and |EKi

| = 3ni−3
2 for i = 2, 3.

Let u ∈ VK1 \ {u1, u2} and v ∈ VK2 \ {v1, v2}. Then there is a walk of length 3, namely,
u → x → y → v, for some x, y ∈ VK by the fact that exp(K) = 3. It is easy to check that
x = u1, y = v1. Thus {u, u1} ∈ EK1 for any u ∈ VK1 \ {u1, u2}, and {v, v1} ∈ EK2 for any
v ∈ VK2 \ {v1, v2}. Similarly, we have {u, u2} ∈ EK1 for any u ∈ VK1 \ {u1, u2}, {v, v2} ∈ EK2

for any v ∈ VK2 \ {v1, v2}, {w, wi} ∈ EK3 for any w ∈ VK3 \ {w1, w2} and i = 1, 2.

If u1 = u2, v1 = v2, w1 = w2, then L(u1, v2)
⋃

L(v1, w2)
⋃

L(w1, u2) = 4(u1, v1, w1), which
contradicts the fact that K is not the union of triangle.

If u1 6= u2, then {u1, u2} ∈ EK1 , and 3n1−2
2 = |EK1 | ≥ 2n1 − 3, so n1 ≤ 4. It is clear that

n1 = 4 by the fact that n1 is even and n1 ≥ 3. Thus |EK1 | = 3n1−2
2 = 5. It is easy to check that

K1
∼= 4(u1, u2, u3) ∪4(u1, u2, u4).

If v1 6= v2, then {v1, v2} ∈ EK2 , and 3n2−3
2 = |EK2 | ≥ 2n2 − 3, so n2 ≤ 3. It is clear that

n2 = 3 by the fact that n2 ≥ 3 and n2 is odd. Thus |EK2 | = 3n2−3
2 = 3. Then K2

∼= 4(v1, v2, v3).

Similarly, if w1 6= w2, then n3 = 3, and we have K3
∼= 4(w1, w2, w3).

Case 1 u1 6= u2, v1 = v2, w1 = w2.

We have K1
∼= 4(u1, u2, u3) ∪ 4(u1, u2, u4). Then K ∼= Λ9(k1, k2), where k1 ≥ 1, k2 ≥

1, k1 + k2 = n−6
2 by the (1) of Lemma 12 and exp(K) = 3.

Case 2 u1 = u2, v1 6= v2, w1 = w2.

Then K2
∼= 4(v1, v2, v3). We have K ∼= Λ10(k1, k2) where k1 ≥ 1, k2 ≥ 1, k1 + k2 = n−6

2 by
Lemma 12 and exp(K) = 3.

Case 3 u1 = u2, v1 = v2, w1 6= w2.

The proof is similar to that in Case 2.

Case 4 u1 6= u2, v1 6= v2, w1 = w2.

Then K1
∼= 4(u1, u2, u3) ∪ 4(u1, u2, u4) and K2

∼= 4(v1, v2, v3). Thus K ∼= Λ11(k) where
k = n−8

2 ≥ 1 by Lemma 12 and exp(K) = 3.
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Case 5: u1 6= u2, v1 = v2, w1 6= w2.
It is similar to that in Case 4.

Case 6 u1 = u2, v1 6= v2, w1 6= w2.
Then K2

∼= 4(v1, v2, v3) and K3
∼= 4(w1, w2, w3). Thus K ∼= Λ12(k) where k = n−8

2 ≥ 1
by (2) of Lemma 12 and exp(K) = 3.

Case 7 u1 6= u2, v1 6= v2, w1 6= w2.
Then K1

∼= 4(u1, u2, u3)∪4(u1, u2, u4), K2
∼= 4(v1, v2, v3), K3

∼= 4(w1, w2, w3). It is easy
to check that K ∼= Λ13.

Combining the above arguments, we complete the proof. ¤
Now we are ready to prove Theorem 9.

Proof of Theorem 9 Note that G = (V, E) is a primitive loop-free graph with exp(G) = 3,
then for any vertex u ∈ V , there are vertices v, w ∈ V such that 4(u, v, w) ⊆ G.

Let K = (VK , EK) be the union of all triangles of G and K1, . . . , Kt be the components of
K, where for all 1 ≤ i ≤ t, Ki = (VKi , EKi) and |VKi | = ni. Then ni ≥ 3 by the fact Ki is the
union of triangles, and |EKi | ≥ 3ni−3

2 according to Lemma 12.
Let E′ = {{u, v}|u ∈ VKi , v ∈ VKj ,where i 6= j, i, j ∈ {1, . . . , t}}. Then |E′| ≥ t − 1 by the

fact that G is connected. Then

n = |V | = |VK | =
t∑

i=1

|VKi | =
t∑

i=1

ni,

and
3n− 2

2
= |E| =

t∑

i=1

|EKi
|+ |E′| ≥

t∑

i=1

3ni − 3
2

+ |E′| = 3n− 3t

2
+ |E′|.

Thus |E′| ≤ 3t−2
2 .

For any i ∈ {1, . . . , t}, let δ(i) = |{{u, v} ∈ E′|u ∈ VKi
}|, and δ(1) = min{δ(1), . . . , δ(t)}.

Then δ(1)t ≤ ∑t
i=1 δ(i) = 2|E′| ≤ 3t− 2, so δ(1) ≤ 2.

Case 1 δ(1) = 0.
Lemma 13 implies the Theorem 9 because δ(1) = 0 if and only if t = 1.

Case 2 δ(1) = 1.
We claim that t = 2 in this case. For t ≥ 3, without loss of generality, we can assume

{u, v} ∈ E′, where u ∈ VK1 , v ∈ VK2 , then for any pair of vertices u′ ∈ VK1 \ {u}, w ∈ ⋃t
i=3 VKi

,
such that there exists a walk of length 3, namely, u′ → w1 → w2 → w for some vertices
w1, w2 ∈ VK by the fact that exp(G) = 3. It is easy to see w1 = u,w2 = v, and {v, w} ∈ E′ for
any w ∈ ⋃t

i=3 VKi
. Then

3t− 2
2

≥ |E′| ≥ 1 +
t∑

i=3

ni ≥ 1 + 3(t− 2).

Thus t ≤ 2. It is a contradiction. Hence t = 2 and Lemma 14 implies Theorem 9.
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Case 3 δ(1) = 2.

Then t ≥ 2 and |E′| ≥ t. Without loss of generality, we can assume {{u1, v1}, {u2, v2}} ⊆ E′,
where u1, u2 ∈ VK1 , v1 ∈ VKi

, v2 ∈ VKj
, 2 ≤ i, j ≤ t.

If i = j, then t = 2. Otherwise, similarly to Case 2, we have

3t− 2
2

≥ |E′| ≥ 2 +
t∑

l=2

nl − ni ≥ 2 + 3(t− 2).

Then t ≤ 2, it is a contradiction. Hence t = 2 and Lemma 15 implies Theorem 9.

If i 6= j, then t ≥ 3. Similarly to Case 2, we have

3t− 2
2

≥ |E′| ≥ 2 +
t∑

l=2

nl − ni − nj ≥ 2 + 3(t− 3).

Then t ≤ 4. Hence t = 3 or 4.

Subcase 3.1 t = 3.

Then |E′| = 3 by the fact that t ≤ |E′| ≤ 3t−2
2 , and δ(1) = δ(2) = δ(3) = 2 because δ(1) = 2

is the minimal. We can assume E′ = {{u1, v1}, {v2, w1}, {w2, u2}}, where u1, u2 ∈ VK1 , v1, v2 ∈
VK2 , w1, w2 ∈ VK3 by the fact that G is connected. Hence Lemma 16 implies Theorem 9.

Subcase 3.2 t = 4.

We claim that |E′| 6= 4. Otherwise, we have δ(1) = δ(2) = δ(3) = δ(4) = 2 because
δ(1) = 2 is the minimal. Then we can assume E′ = {{u1, v1}, {v2, w1}, {w2, x1}, {x2, u2}},
where ui ∈ VK1 , vi ∈ VK2 , wi ∈ VK3 , xi ∈ VK4 (i = 1, 2) by the fact that G is connected. Now for
any pair of vertices x, y, where x ∈ VK1 \ {u1, u2}, y ∈ VK3 \ {w1, w2}, there is no walk of length
3 from vertex x to vertex y, contradicting the fact exp(G) = 3.

We also claim that |E′| 6= 5. Otherwise,
∑4

i=1 δ(i) = 2|E′| = 10 and δ(i) ≥ δ(1) =
2 (i = 2, 3, 4), then {δ(1), δ(2), δ(3), δ(4)} = {2, 2, 2, 4} or {2, 2, 3, 3}. It is easy to check that the
structure of graph G is isomorphic to one of the following graphs:
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In Figures 3.1–3.3, there exist vertices u, v /∈ VE′ such that there is no walk of length 3 from
vertex u to vertex v, contradicting the fact exp(G) = 3.

In Figure 3.4, let E′ = {{u1, v1}, {v2, w1}, {v3, w2}, {w3, x1}, {x2, u2}}, where for i = 1, 2, j =
1, 2, 3, ui ∈ VK1 , vj ∈ VK2 , wj ∈ VK3 , xi ∈ VK4 . For any vertex u ∈ VK1 \ {u1, u2}, any vertex
w ∈ VK3 , there is a walk of length 3, namely, u → y′ → y′′ → w for some vertices y′, y′′ ∈ VK by
the fact that exp(G) = 3, then VK3 = {w1, w2, w3} for w is any vertex in VK3 .

If y′ = u1, then y′′ = v1, and we have v1 = v2 = v3. Thus u → u1 → v1 → w1 (or w2) is the
walk of length 3 from u ∈ VK1 \ {u1, u2} to w1(or w2). If y′ = u2, then y′′ = x2, and we have
x1 = x2. Thus u → u2 → x1 → w3 is the walk of length 3 from u ∈ VK1 \ {u1, u2} to w3. But
there exist vertices v ∈ VK2 \ {v1}, x ∈ VK4 \ {x1} by the fact |VKi

| ≥ 3 for 1 ≤ i ≤ 4, such that
there is no walk of length 3 from vertex v to vertex x, contradicting the fact exp(G) = 3.

Hence |E′| 6= 4 and |E′| 6= 5, but |E′| = 4 or 5 by the fact that 4 = t ≤ |E′| ≤ 3t−2
2 = 5. It

is a contradiction. Thus t 6= 4.
Combining the above arguments, we complete the proof. ¤

4. Proof of Conjecture 6 and characterization of base 3

In this section, we show the Conjecture 6 is true and completely characterize the underlying
digraphs which have base 3 and the minimum number of arcs.

The following result can be used to prove the conjecture is true.

Lemma 17 ([9]) Let S = (V, A) be a primitive non-powerful symmetric loop-free signed digraph

with exp(S) = k on n vertices. If there exist two vertices i and j such that there is only one

walk of length k from i to j in S, then b(S) > k.

Now we show the Conjecture 6 is true.

Theorem 18 Let n ≥ 6 be even, S = (V (S), A(S)) be a primitive non-powerful symmetric

loop-free signed digraph on n vertices with |A(S)| = H(n, 3) = 3n − 2, exp(S) = 3, b(S) = 3.

Then D is the underlying digraph of S if and only if D is isomorphic to the digraph EDn,3,3.

Proof Sufficiency. It follows from (3) of Theorem 5.
Necessity. Since |V (S)| = n, |A(S)| = 3n− 2 and exp(S) = 3, D is isomorphic to one of the

graphs listed in Theorem 9.
If D is isomorphic to one of the graphs Λ2, . . . ,Λ13 listed in Theorem 9, then b(S) > 3 by

Lemma 17, contradicting the fact that b(S) = 3. Then D is isomorphic to Λ1(k1, k2, k3), where
k1 6= 0 or k2 · k3 6= 0, k1 + k2 + k3 = n−4

2 .
If k2 · k3 6= 0, then for any pair of vertices w, x, where w ∈ ⋃2k2

i=1 wi, x ∈ ⋃2k3
i=1 xi, there

is only one walk of length 3 from vertex w to vertex x, and we have b(S) > 3 by Lemma 17,
contradicting the fact that b(S) = 3, so k2 · k3 = 0 and k1 6= 0. Thus D is isomorphic to the
digraph EDn,3,3. ¤

By Theorems 5 and 18, we can completely characterize the underlying digraphs which have
base 3 and the minimum number of arcs as follows.
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Theorem 19 Let n ≥ 6, S = (V (S), A(S)) be a primitive non-powerful symmetric loop-free

signed digraph on n vertices with |A(S)| = H(n, 3) and b(S) = 3. Then one of the following

conditions holds:

(1) If n is odd, D is the underlying digraph of S if and only if D is isomorphic to the

digraph ODn,3.

(2) If n is even, D is the underlying digraph of S with exp(D) = 2 if and only if D is

isomorphic to the digraph EDn,3.

(3) If n is even, D is the underlying digraph of S with exp(D) = 3 if and only if D is

isomorphic to the digraph EDn,3,3.
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