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1. Introduction

In this paper, we study the existence of multiple positive solutions of boundary value prob-
lems for systems of nonlinear third-order differential equations:





−u′′′(t) = a1(t)f1(t, v(t)), t ∈ (0, 1),

−v′′′(t) = a2(t)f2(t, u(t)), t ∈ (0, 1),

u(0) = u′(0) = 0, u′(1) = α1u
′(η1),

v(0) = v′(0) = 0, v′(1) = α2v
′(η2),

(1.1)

where fi ∈ C([0, 1]× [0,+∞), [0,+∞)), 0 < ηi < 1, 1 < αi < 1
ηi

, ai(t) ∈ C([0, 1], [0,+∞)) (i =
1, 2).

In recent years, the existence of positive solutions for the third-order nonlinear boundary
value problems received a special attention (see [1–4] and references therein). By using a Kras-
nosel’skii fixed point theorem, Guo et al. [5] studied the existence of at least one positive solutions
for the following boundary value problem:

{
u′′′(t) + a(t)f(u(t)) = 0, t ∈ (0, 1),

u(0) = u′(0) = 0, u′(1) = αu′(η).
(1.2)
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In [6], Hu et al. considered the existence of at least one and two positive solutions for systems
of nonlinear second-order differential equations:





−u′′(t) = a1(t)f1(t, v(t)), t ∈ (0, 1),

−v′′(t) = a2(t)f2(t, u(t)), t ∈ (0, 1),

αu(0) + βu′(0) = 0, γu(1) + δu′(1) = 0,

αv(0) + βv′(0) = 0, γv(1) + δv′(1) = 0.

(1.3)

Motivated by the works of [5] and [6], in this paper we aim at investigating the existence of
at least two positive solutions associated with BVP (1.1) by applying the fixed point theorems of
cone expansion and compression of norm type, and investigating the existence of at least three
positive solutions for BVP(1.1) by using Leggett-Williams fixed point theorem. The results
obtained in this paper are different from those in [5] and [6].

2. Preliminaries and lemmas

Lemma 2.1 ([5]) Suppose that αiηi 6= 1 (i = 1, 2). Then for any y ∈ C[0, 1], the problem





w′′′i (t) + y(t) = 0, t ∈ (0, 1),

wi(0) = w′i(0) = 0, w′i(1) = αiw
′(ηi),

(2.1)

has a unique solution

wi(t) =
∫ 1

0

Ki(t, s)y(s)ds, i = 1, 2, (2.2)

where

Ki(t, s) =
1

2(1− αiηi)





(2ts− s2)(1− αiηi) + t2s(αi − 1), s ≤ min{ηi, t},
t2(1− αiηi) + t2s(αi − 1), t ≤ s ≤ ηi,

(2ts− s2)(1− αiηi) + t2(αiηi − s), ηi ≤ s ≤ t,

t2(1− s), max{ηi, t} ≤ s.

(2.3)

Lemma 2.2 ([5]) Let 0 < ηi < 1 and 1 < αi < 1
ηi

(i = 1, 2). Green’s function Ki(t, s) (i = 1, 2)
defined by (2.3) satisfies 0 ≤ Ki(t, s) ≤ Ki(s), ∀(t, s) ∈ [0, 1]× [0, 1], i = 1, 2, and

min
t∈[

ηi
αi

,1]
Ki(t, s) ≥ γiKi(s), ∀ s ∈ [0, 1], i = 1, 2, (2.4)

where Ki(s) = 1+αi

1−αiηi
s(1− s), s ∈ [0, 1], 0 < γi = η2

i

2α2
i (1+αi)

min{αi − 1, 1} < 1.

Corollary 2.1 Let 0 < ηi < 1 and 1 < αi < 1
ηi

(i = 1, 2). Green’s function Ki(t, s)(i = 1, 2)
defined by (2.3) satisfies min

t∈[θ,1]
Ki(t, s) ≥ γKi(s), where θ = max{ η1

α1
, η2

α2
}, γ = min{γ1, γ2}.

It is easy to prove by Lemma 2.1 that (u(t), v(t)) ∈ C3([0, 1], (0,+∞))×C3([0, 1], (0,+∞))
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is a positive solution of BVP(1.1) if and only if (u(t), v(t)) is a positive solution of system (2.5)




u(t) =
∫ 1

0

K1(t, s)a1(s)f1(s, v(s))ds,

v(t) =
∫ 1

0

K2(t, s)a2(s)f2(s, u(s))ds,

(2.5)

where Ki(t, s) (i = 1, 2) is the Green’s function defined by Lemma 2.1.

In real Banach space C[0, 1], the norm is defined by ‖u‖ = maxt∈[0,1] |u(t)|. Set

P = {u ∈ C[0, 1]|, u(t) ≥ 0 for t ∈ [0, 1], min
t∈[θ,1]

u(t) ≥ γ ‖ u ‖}. (2.6)

Obviously, P is a positive cone in C[0, 1], where θ, γ are defined by Corollary 2.1.

For convenience, we make the following assumptions:

(A1) ai(t) ∈ C([0, 1], [0,+∞)) and ai(t) do not vanish identially for t ∈ [ ηi

αi
, 1] (i = 1, 2);

(A2) fi ∈ C([0, 1]× [0,+∞), [0,+∞)) (i = 1, 2);

(A3) αiηi < 1 (i = 1, 2).

Define the operators T1, T2 : P → E by

T1u(t) =
∫ 1

0

K1(t, s)a1(s)f1(s, v(s))ds, ∀t ∈ [0, 1], (2.7)

T2v(t) =
∫ 1

0

K2(t, s)a2(s)f2(s, u(s))ds, ∀ t ∈ [0, 1]. (2.8)

Lemma 2.3 T1, T2 : P → P are completely continuous.

Proof For u ∈ P , consider (2.7), by Lemma 2.2, we have

0 ≤ ‖T1u‖ = max
0≤t≤1

|T1u(t)| ≤
∫ 1

0

K1(s)a1(s)f1(s, v(s))ds. (2.9)

It follows from Corollary 2.1 and (2.9) that

min
t∈[θ,1]

T1u(t) ≥ γ

∫ 1

0

K1(s)a1(s)f1(s, v(s))ds ≥ γ‖T1u‖. (2.10)

Therefore T1 : P → P . It is easy to prove that T1 : P → P is continuous since K1(t, s), f1(t, v(s)),
a1(s) are continuous. Standard applications of the Arzela-Ascoli theorem imply that T1 is a
completely continuous operator. Similarly, it can be proven that T2 : P → P is completely
continuous.

In order to obtain our main results, we need the following fixed point theorems, which are
useful methods to prove the existence of positive solutions for differential equations, for example
[6–8] and [9, 10].

Lemma 2.4 ([11]) Suppose E is a real Banach space and P is cone in E, and let Ω1,Ω2 be

two bounded open sets in E such that θ ∈ Ω1, Ω1 ⊂ Ω2. Let operator T : P ∩ (Ω2\Ω1) → P be

completely continuous. Suppose that one of the following two conditions holds

(i) ‖Tx‖ ≤ ‖x‖, ∀x ∈ P ∩ ∂Ω1; ‖Tx‖ ≥ ‖x‖, ∀x ∈ P ∩ ∂Ω2;
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(ii) ‖Tx‖ ≥ ‖x‖, ∀u ∈ P ∩ ∂Ω1; ‖Tx‖ ≤ ‖x‖, ∀x ∈ P ∩ ∂Ω2,

then T has at least one fixed point in P ∩ (Ω2\Ω1).

Lemma 2.5 ([12]) Let A : P c → P c be completely continuous operator and β be a nonnegative

continuous concave functional on P such that β(x) ≤ ‖x‖ for x ∈ P c. Suppose there exist

0 < a < b < d ≤ c such that

(i) {x ∈ P (β, b, d) : β(x) > b} 6= ∅ and β(Ax) > b for x ∈ P (β, b, d);
(ii) ‖ Ax ‖< a for ‖ x ‖≤ a;

(iii) β(Ax) > b for x ∈ P (β, b, c) with ‖ Ax ‖> d.

Then A has at least three fixed points x1, x2, x3 in P c such that ‖x1‖ < a, b < β(x2) and ‖x3‖ > a

with β(x3) < b.

3. The existence of two positive solutions

For convenience, we introduce the following notations. Let

R1 = max
{∫ 1

0

K1(s)a1(s)ds,

∫ 1

0

K2(s)a2(s)ds
}

,

R2 =
∫ 1

θ

K1(s)a1(s)ds

∫ 1

θ

K2(τ)a2(τ)dτ,

R3 = γ min
{∫ 1

θ

K1(s)a1(s)ds,

∫ 1

θ

K2(s)a2(s)ds
}

.

Theorem 3.1 Suppose that the conditions (A1)–(A3) and the following assumptions hold

(B1) lim
v→0+

inf
t∈[0,1]

f1(t,v)
v = ∞, lim

u→0+
inf

t∈[0,1]

f2(t,u)
u = ∞;

(B2) lim
v→∞

inf
t∈[0,1]

f1(t,v)
v = ∞, lim

u→∞
inf

t∈[0,1]

f2(t,u)
u = ∞,

(B3) There exists a constant ρ∗ > 0 such that

f1(t, v) ≤ R−1
1 ρ∗, f2(t, u) ≤ R−1

1 ρ∗, for (t, v), (t, u) ∈ [0, 1]× [0, ρ∗],

then BVP(1.1) has at least two positive solutions (u1(t), v1(t)), (u2(t), v2(t)) ∈ C3[0, 1]×C3[0, 1]
satisfying 0 <‖ u1 ‖< ρ∗ <‖ u2 ‖ and 0 <‖ v1 ‖< ρ∗ <‖ v2 ‖ .

Proof At first, it follows from the assumption (B1) that we may choose 0 < ρ1 < ρ∗ such
that f1(t, v) ≥ λ1v, f2(t, u) ≥ λ1u, for each (t, v), (t, u) ∈ [0, 1] × [0, ρ1], where λ2

1γ
3R2 ≥ 1. Set

Ω1 = {u ∈ C[0, 1] :‖ u ‖< ρ1} and for u, v ∈ P ∩ ∂Ω1, by Corollary 2.1 and (2.10), we have

T1u(t) ≥ λ1

∫ 1

θ

K1(t, s)a1(s)v(s)ds ≥ (λ1γ)2
∫ 1

θ

K1(s)a1(s)ds

∫ 1

θ

K2(τ)a2(τ)u(τ)dτ

≥ (λ1γ)2γR2‖u‖.
Therefore

‖T1u‖ ≥ ‖u‖, u ∈ P ∩ ∂Ω1. (3.1)

Further, it follows from the condition (B2) that there exists ρ∗ > ρ∗ > 0 such that f1(t, v) ≥
λ2v, f2(t, u) ≥ λ2u, for each (t, v), (t, u) ∈ [0, 1] × [ρ∗,+∞), where λ2

2γ
3R2 ≥ 1. Let ρ2 =
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max{2ρ1, γ
−1ρ∗}. Set Ω2 = {u ∈ C[0, 1] :‖ u ‖< ρ2}. For u, v ∈ P ∩ ∂Ω2, by (2.10) we have

mint∈[θ,1] u(t) ≥ γ‖u‖ = γρ2 ≥ ρ∗, and

T1u(t) ≥ λ2γ

∫ 1

θ

K1(s)a1(s)v(s)ds ≥ (λ2γ)2
∫ 1

θ

K1(s)a1(s)ds

∫ 1

θ

K2(τ)a2(τ)u(τ)dτ

≥ (λ2γ)2γR2‖u‖.

Therefore

‖T1u‖ ≥ ‖u‖, u ∈ P ∩ ∂Ω2. (3.2)

Finally, set Ω3 = {u ∈ C[0, 1] : ‖u‖ < ρ∗} and for u, v ∈ P ∩ ∂Ω3, by Lemma 2.2 and the
condition (B3), we have

T1u(t) ≤
∫ 1

0

K1(s)a1(s)f1(t, v(s))ds ≤ R−1
1 ρ∗

∫ 1

0

K1(s)a1(s)ds ≤ ρ∗ = ‖u‖

which implies

‖ T1u ‖≤ ‖u‖, u ∈ P ∩ ∂Ω3. (3.3)

Thus by (3.1)–(3.3), Lemmas 2.3 and 2.4, T1 has a fixed point u1 in P ∩ (Ω3 \ Ω1) and a fixed
point u2 in P ∩ (Ω2 \Ω3). Similarly, it can be proven that T2 has a fixed point v1 in P ∩ (Ω3 \Ω1)
and a fixed point v2 in P ∩ (Ω2 \ Ω3). This means that BVP(1.1) has at least two positive
solutions (u1(t), v1(t)), (u2(t), v2(t)) ∈ C3[0, 1] × C3[0, 1] satisfying 0 < u1(t) < ρ∗ ≤ u2(t), 0 <

v1(t) < ρ∗ ≤ v2(t).

Theorem 3.2 Suppose that the conditions (A1)–(A3) and the following assumptions hold

(B4) lim
v→0+

sup
t∈[0,1]

f1(t,v)
v = 0, lim

u→0+
sup

t∈[0,1]

f2(t,u)
u = 0;

(B5) lim
v→∞

sup
t∈[0,1]

f1(t,v)
v = 0, lim

u→∞
sup

t∈[0,1]

f2(t,u)
u = 0,

(B6) There exists a constant ρ′ > 0 such that

f1(t, u) ≥ R−1
3 ρ′, f2(t, u) ≥ R−1

3 ρ′, for (t, v), (t, u) ∈ [0, 1]× [γρ′, ρ′].

Then BVP(1.1) has at least two positive solutions (u1(t), v1(t)), (u2(t), v2(t)) ∈ C3[0, 1]×C3[0, 1]
satisfying 0 < ‖u1‖ < ρ′ < ‖u2‖ and 0 < ‖v1‖ < ρ′ < ‖v2‖.

Proof At first, it follows from the assumption (B4) that there exists 0 < ρ3 < ρ′ such that
f1(t, v) ≤ λ3v, f2(t, u) ≤ λ3u, for each (t, v), (t, u) ∈ [0, 1] × [0, ρ3], where λ3R1 ≤ 1. Set
Ω4 = {u ∈ C[0, 1] : ‖u‖ < ρ3}. For u, v ∈ P ∩ ∂Ω4, by Lemma 2.2, we have

T1u(t) ≤
∫ 1

0

K1(s)a1(s)λ3v(s)ds ≤ λ2
3

∫ 1

0

K1(s)a1(s)ds

∫ 1

0

K2(τ)a2(τ)u(τ)dτ

≤ (λ3R1)2‖u‖.

Therefore

‖T1u‖ ≤ ‖u‖, u ∈ P ∩ ∂Ω3. (3.4)

Further, by the condition (B5) we consider four cases:



326 Yaohong LI and Xiaoyan ZHANG

Case (i) If f1 and f2 are bounded, then there exists N > 0 such that f1(t, v(t)) ≤ N ,
f2(t, u(t)) ≤ N , for (t, u), (t, v) ∈ [0, 1]×[0,+∞). In this case, we may choose ρ4 = max{2ρ3, NR1},
so that for any u ∈ P with ‖u‖ = ρ4, we have

T1u(t) ≤ N

∫ 1

0

K1(s)a1(s)ds ≤ ρ4, t ∈ [0, 1].

Therefore, ‖T1u‖ ≤ ‖u‖. Similarly, we may obtain ‖T2v‖ ≤ ‖v‖ for any v ∈ P with ‖v‖ = ρ4.

Case (ii) If f1 is bounded and f2 is unbounded, then there exists N > 0 such that f1(t, v(t)) ≤ N

for (t, v) ∈ [0, 1]× [0,+∞), and by the assumption (B4) there exists H > 0 such that f2(t, u(t)) ≤
δu(t) for all (t, u) ∈ [0, 1]× [H, +∞), where δ

∫ 1

0
K2(s)a2(s)ds ≤ 1.

Therefore, we may choose ρ4 = max{2ρ3,H, N
∫ 1

0
K1(s)a1(s)ds}, such that f2(t, u) ≤ f2(t, ρ4)

for (t, u) ∈ [0, 1]× [0, ρ4]. So, for any u ∈ P with ‖u‖ = ρ4, we have

T1u(t) ≤ N

∫ 1

0

K1(s)a1(s)ds ≤ ρ4, t ∈ [0, 1].

Therefore, ‖T1u‖ ≤ ‖u‖ = ρ4. For any v ∈ P with ‖v‖ = ρ4, we have

T2v(t) ≤
∫ 1

0

K2(s)a2(s)f2(t, ρ4)ds ≤ δρ4

∫ 1

0

K2(s)a2(s)ds ≤ ρ4, t ∈ [0, 1].

So ‖T2v‖ ≤ ‖v‖.

Case (iii) If f2 is bounded and f1 is unbounded, then there exists N > 0 such that f2(t, u(t)) ≤
N for all (t, u) ∈ [0, 1] × [0,+∞), and by the assumption (B4) there exists H > 0 such that
f1(t, v(t)) ≤ δv(t) for (t, u) ∈ [0, 1]× [H, +∞), where δ

∫ 1

0
K1(s)a1(s)ds ≤ 1. Therefore, we may

choose ρ4 = max{2ρ3,H,N
∫ 1

0
K2(s)a2(s)ds}. For any u, v ∈ P with ‖u‖ = ‖v‖ = ρ4, similarly

to Case (ii), we can obtain ‖T1u‖ ≤ ‖u‖, ‖T2v‖ ≤ ‖v‖.

Case (iv) If f2 is unbounded and f1 is unbounded, by the assumption (B4) there exists H > 0
such that f1(t, v(t)) ≤ δv(t), f2(t, u(t)) ≤ δu(t) for (t, v), (t, u) ∈ [0, 1]× [H, +∞),where δR1 ≤ 1.
Therefore, we may choose ρ4 = max{2ρ3,H, NR1}. For any u, v ∈ P with ‖u‖ = ‖v‖ = ρ4, we
can obtain ‖T1u‖ ≤ ‖u‖, ‖T2v‖ ≤ ‖v‖.
Therefore, in either case we may set Ω5 = {u ∈ C[0, 1] : ‖u‖ < ρ4}, for u, v ∈ P ∩ ∂Ω5 and we
have

‖T1u‖ ≤ ‖u‖, u ∈ P ∩ ∂Ω5. (3.5)

Finally, set Ω6 = {u ∈ C[0, 1] :‖ u ‖< ρ′}, for u ∈ P ∩ ∂Ω6. Lemma 2.2 implies mint∈[θ,1] u(t) ≥
γ‖u‖ = γρ′, and by the condition (B6), Corollary 2.1, (2.7), we have

T1u(t) ≥
∫ 1

θ

K1(t, s)a1(s)f1(t, v(s))ds ≥ γR−1
3 ρ′

∫ 1

θ

K1(s)a1(s)ds ≥ ρ′ = ‖u‖.

Hence
‖T1u‖ ≥ ‖u‖, u ∈ P ∩ ∂Ω6. (3.6)

By (3.4)–(3.6), Lemmas 2.3 and 2.4, T1 has a fixed point u1 in P ∩ (Ω6 \ Ω4) and a fixed u2

in P ∩ (Ω5 \ Ω6). Similarly, it can be proven that T2 has a fixed point v1 in P ∩ (Ω6 \ Ω4)
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and a fixed v2 in P ∩ (Ω5 \ Ω6). This means that BVP(1.1) has at least two positive solutions
(u1(t), v1(t)), (u2(t), v2(t)) ∈ C3[0, 1] × C3[0, 1] satisfying 0 < u1(t) < ρ′ ≤ u2(t), 0 < v1(t) <

ρ′ ≤ v2(t).

4. The existence of three positive solutions

Let E be a real Banach space with cone P . A map β : P → [0,+∞) is said to be a
nonnegative continuous concave functional on P if β is continuous and

β(tx + (1− t)y) ≥ tβ(x) + (1− t)β(y),

for all x, y ∈ P and t ∈ [0, 1]. Let a, b be two numbers such that 0 < a < b and β be a nonnegative
continuous concave functional on P . We define the following convex sets:

Pa = {x ∈ P : ‖x‖ < a}, ∂Pa = {x ∈ P : ‖x‖ = a}, P a = {x ∈ P : ‖x‖ ≤ a},

P (β, a, b) = {x ∈ P : a ≤ β(x), ‖x‖ ≤ b}.

Theorem 4.1 Suppose that (A1)–(A3) hold. There exist nonnegative numbers a, b, c such that

0 < a < b ≤ min{γ, m1
M1

, m2
M2
}c and f1(t, v), f2(t, u) satisfy the following growth conditions:

(C1) f1(t, v) ≤ c
M1

, f2(t, u) ≤ c
M2

, (t, v), (t, u) ∈ [0, 1]× [0, c],

(C2) f1(t, v) < a
M1

, f2(t, u) < a
M2

, (t, v), (t, u) ∈ [0, 1]× [0, a],

(C3) f1(t, v) > b
m1

, f2(t, u) > b
m2

, (t, v), (t, u) ∈ [θ, 1]× [b, b
γ ],

where mi = mint∈[θ,1]

∫ 1

θ
Ki(t, s)ai(s)ds, Mi = maxt∈[0,1]

∫ 1

0
Ki(t, s)ai(s)ds, i = 1, 2.

Then BVP(1.1) has at least three positive solutions (u11, u21), (u12, u22), (u13, u23) ∈ C3[0, 1]×
C3[0, 1] such that ‖ui1‖ < a, b < β(ui2), and ‖ui3‖ > a with β(ui3) < b, i = 1, 2.

Proof Let P be defined by (2.6) and T1, T2 be defined by (2.7) (2.8). For u ∈ P , let β(u) =
mint∈[θ,1] u(t). Then it is easy to check that β is a nonnegative continuous concave functional on
P with β(u) ≤‖ u ‖ and by Lemma 2.3, T1, T2 : P → P are completely continuous operators.

First, we prove that if (C1) holds, then T1 : P c → P c. In fact, if u, v ∈ P c, then ‖u‖ ≤ c

and by condition (C1), we have

‖T1u‖ = max
t∈[0,1]

∣∣∣
∫ 1

0

K1(t, s)a1(s)f1(t, v(s))ds
∣∣∣ ≤ max

t∈[0,1]

c

M1

∫ 1

0

K1(t, s)a1(s)ds = c. (4.1)

Hence (4.1) shows that T1 : P c → P c.

In a completely analogous argument, the condition (C2) implies that the condition (ii) of
Lemma 2.5 is satisfied.

Now we show that the condition (i) of Lemma 2.5 is satisfied. Clearly, {u ∈ P (β, b, b
γ ) :

β(u) > b} 6= ∅. If u ∈ P (β, b, b
γ ), then b ≤ u(s) ≤ b

γ , s ∈ [θ, 1]. Therefore, by (C3) we obtain

β(T1u) = min
t∈[θ,1]

∫ 1

0

K1(t, s)a1(s)f1(t, v(s))ds >
b

m1
min

t∈[θ,1]

∫ 1

θ

K1(t, s)a1(s)ds = b. (4.2)

Therefore, the condition (i) of Lemma 2.5 is satisfied.
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Finally, we show that the condition (iii) of Lemma 2.5 is satisfied. If u ∈ P (β, b, c) and
‖T1u‖ > b

γ , then we have from Corollary 2.1 and (2.10) that

β(T1u) = min
t∈[θ,1]

T1u(t) ≥ γ‖T1u‖ > γ · b

γ
= b. (4.3)

Therefore, the condition (iii) of Lemma 2.5 is satisfied.
To sum up (4.1)–(4.3), all the conditions of Lemma 2.5 are satisfied. Hence, T1 has at least

three fixed points u11, u12, u13 such that ‖u11‖ < a, b < β(u12), and ‖u13‖ > a with β(u13) < b.
Similarly, it can be proven that T2 has at least three fixed points u21, u22, u23 such that ‖u21‖ < a,
b < β(u22), and ‖u23‖ > a with β(u23) < b. This means that BVP(1.1) has at least three positive
solutions (u11(t), u21(t)), (u12(t), u22(t)), (u13(t), u23(t)) ∈ C3[0, 1]×C3[0, 1] such that ‖ui1‖ < a,
b < β(ui2), and ‖ui3‖ > a with β(ui3) < b, i = 1, 2. ¤

In order to illustrate our results, we consider the following examples.

Example 4.1 In BVP(1.1), let α1 = 2, α2 = 3
2 , η1 = 1

3 , η2 = 1
2 , α1η1 = 2

3 < 1, α2η2 = 3
4 < 1,

a1(t) = (1− t)t, a2(t) = 1
6 , f1(t, v) = t + v2 + v

1
3 , f2(t, u) = t + u3 + u

1
2 . Clearly, the conditions

(A1)–(A3) are satisfied. Then

lim
v→0+

inf
t∈[0,1]

f1(t, v)
v

= ∞, lim
u→0+

inf
t∈[0,1]

f2(t, u)
u

= ∞;

lim
v→∞

inf
t∈[0,1]

f1(t, v)
v

= ∞, lim
u→∞

inf
t∈[0,1]

f2(t, u)
u

= ∞.

Thus, the conditions (B1)–(B2) hold. Again

R1 = max
{∫ 1

0

K1(s)a1(s)ds,

∫ 1

0

K2(s)a2(s)ds
}
≤ 3

10
.

Since f1(t, v), f2(t, u) are monotone increasing functions for (t, v), (t, u) ∈ [0, 1]× [0,+∞), taking
ρ∗ = 1, and for (t, v), (t, u) ∈ [0, 1]× [0, ρ∗], we have

f1(t, v) ≤ f1(1, 1) = 2 ≤ R−1
1 ρ∗, f2(t, u) ≤ f2(1, 1) = 2 ≤ R−1

1 ρ∗,

which implies that the condition (B3) holds. Hence, by Theorem 3.1, BVP(1.1) has at least
two positive solutions (u1(t), v1(t)), (u2(t), v2(t)) ∈ C3[0, 1]× C3[0, 1] satisfying 0 < u1(t) < 1 <

u2(t), 0 < v1(t) < 1 < v2(t).

Example 4.2 In BVP(1.1), let α1 = 2, α2 = 3
2 , η1 = 1

3 , η2 = 1
2 , α1η1 = 2

3 < 1, α2η2 = 3
4 < 1,

a1(t) = 24, a2(t) = 36, θ = max{ 1
3 , 1

2} = 1
2 , K1(t) = 9t(1 − t), K2(t) = 10t(1 − t), γ1 = 1

216 ,
γ2 = 1

45 , γ = min{ 1
216 , 1

45} = 1
216 and

f1(t, v) =

{
t

1000 + 12v9, v ≤ 1,
t

1000 + 12, v > 1.
f2(t, u) =

{
t

1000 + 9u11, u ≤ 1,
t

1000 + 9, u > 1.

It is easy to check that (A1)–(A3) hold. By direct calculation, we can obtain that 1
12 ≤ m1 ≤

M1 = 36, 5
36 ≤ m2 ≤ M2 = 60. Set a = 1

2 , b = 1, c = 600, so the nonlinear terms f1, f2 satisfy

f1(t, v) <
1
72

=
a

M1
, f2(t, u) <

1
120

=
a

M2
, (t, v), (t, u) ∈ [0, 1]× [0,

1
2
],



Multiple positive solutions of BVP for systems of nonlinear third-order differential equations 329

f1(t, v) > 12 >
b

m1
, f2(t, u) > 9 >

b

m2
, (t, v), (t, u) ∈ [

1
2
, 1]× [1, 216],

f1(t, v) < 13 <
c

M1
, f2(t, u) < 10 =

c

M2
, (t, v), (t, u) ∈ [0, 1]× [0, 600].

Then the conditions (C1)–(C3) in Theorem 4.1 are all satisfied, and BVP(1.1) has at least three
positive solutions (u11(t), u21(t)), (u12(t), u22(t)), (u13(t), u23(t)) ∈ C3[0, 1]× C3[0, 1] such that

max
0≤t≤1

ui1 <
1
2
, 1 < min

1
2≤t≤1

ui2, and max
0≤t≤1

ui3 >
1
2

with min
1
2≤t≤1

ui3 < 1, i = 1, 2.
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