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Abstract In this paper we mainly study the negative Z-homogeneous derivations from the
even part of the finite-dimensional odd Hamiltonian superalgebra HO into the odd part of
generalized Witt superalgebra W over a field of prime characteristic p > 3. Using the gener-
ating set of HO, by means of calculating actions of derivations on the generating set, we first
compute the derivations of Z-degree —1, then determine the derivations of Z-degree less than
—1.
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1. Introduction

The theory of Lie superalgebras has undergone a remarkable evolution in mathematics
because of its important applications in physics. For example, Kac [1, 2] has classified the finite-
dimensional simple Lie superalgebras and the infinite-dimensional simple linearly compact Lie
superalgebras over algebraically closed fields of characteristic zero, respectively. For modular
Lie superalgebras, as far as we know, [3] and [4] may be the earliest papers. We know that the
derivation algebras were determined for the finite-dimensional modular Lie algebras of Cartan
type [5—7]. In the super case, the superderivation algebras and outer superderivation algebras
were also sufficiently studied for the finite-dimensional modular Lie superalgebras of Cartan type
W, S, H, K, and HO (see [8-12]). The derivations for the even part of the Lie superalgebras of
Cartan type W, S and HO were studied in [13, 14].

2. Preliminaries

Throughout this paper the underlying field F is of characteristic p > 3. We write N for the
positive integers, and Ny for the nonnegative integers. Fix n € N\ {1,2}. Put Yy := {1,2,...,n},
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YVi:={n+1,...,2n} and Y := Yy UY;. For a = (a1,...,a,) € N§, put |a| = > ; o;. Fix
t:= (t1,t2,...,tn) €EN" and 7 := (71, 72,...,7n),

where m; ;= p' — 1 for i € Y. Let A := A (n;t) = {a € N} | a; < m;,i € Yy} . Following [7], let
O(n;t) be the divided power algebra over F with F-basis {z(®) | a € A}. For ¢; = (01, .. ,0in),
write z; instead of z(9) for 4 = 1,...,n. Let A(n) be the exterior algebra over F in n variables
Tp41s-- -, Tan. Take the tensor product O(n,n;t) = O(n;t) @ A(n). Then O(n,n;t) is an as-
sociative superalgebra with a Zs-grading induced by the trivial Zs-grading of O(n;t) and the
natural Zs-grading of A(n). For g € O(n;t), f € A(n), write gf for g ® f. Let

By :={<i1,i2,...,ik>‘n+1§i1 <i2<"'<ik§2n}

be the set of k-tuples of strictly increasing integers between n + 1 and 2n, and put B := B(n) :=
Ur_o Bk, where By := 0. Put B := {u € B | |u|even} and B! := {u € B | |u|odd}, where
for u = (iy,ig,...,ix) € By, |u| := k, |0] :== 0, 2° := 1. For u = (i1,i2,...,ix) € By, we set

xu

= Ty, Ty - - T4, ; We also use u to stand for the set {i1,42,...,4;} if no confusion occurs.
Clearly, {x(o‘)x“ |aeAue IB%} constitutes an F-basis of O(n,n;t). Let d1,0s,...,02, be the

linear transformations of O (n,n;t) such that

(a—er) pu rey
aT x(a)xu _ £ )
( ) { x(e) -0z"/0x,, T €Y

Then 0,0a,...,0s, are superderivations of the superalgebra O (n,n;t). Obviously, the parity

u(i)::{o’ 1€ ¥

L ieY.

p(0;) = u(7), where

Let
W (n,n;t) :{Zfrar | fr E(’)(n,n;ﬁ),reY}.

reyY

Then W (n, n;t) is a finite-dimensional simple Lie superalgebra contained in the full superderiva-
tion algebra Der O (n,n;t) (see [15]). Note that O (n,n;t) is endowed with a natural Z-grading
structure O (n,n;t) = @f«:o O(n,n;t), by putting

O(n,n;t), := spanF{x(a)x“ [la| + u| =7}, &:=|x|+n.

Obviously, W(n,n;t) is a free O (n,n;t)-module with O (n,n;t)-basis {9, | » € Y}. Clearly,
W (n,n;t) possesses a standard F-basis {z(*)2"0, | a € A,u € B,r € Y'}. Note that W (n,n;1) is
naturally graded by W(n,n;t) = @f;i1W(n, n;t);, where

W(n,n;t); := spang{f0s | s € Y, f € O(n,n;t)it1}.

Put
. i+n, 1€Y)
] =

ZlfTL, ZIGYL
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Define a linear mapping Ty : O(n, n;t) — W(n,n;t) by means of
Tu(a) := Z(—l)“(i)p(“)@(a)ﬁi/ for all a € O(n,n;1).
icY
Then Ty is odd and [11, Proposition 1]
[Tu(a), Tu(d)] = Ta(Tu(a)(d)) for a,b € O(n,n;t).

Put
HO(n,n;t) :={Tu(a)|a € O(n,n;t)}.

Then HO(n,n;t) is a finite-dimensional simple Lie superalgebra [2]. Following [11], we call this
Lie superalgebra the odd Hamiltonian superalgebra.

For convenience, in the sequel we shorten W(n,n;t), HO(n,n;t), to W, HO, and the even
parts are simply denoted by W, HO, respectively.

Put G := spanp{z"9, | p(z“0,) =1, r € Y,u € B}. Clearly, G is a Z-graded subspace of W7.

The proof of the following lemma is standard.

Lemma 1 Let ¢ € Der(HO,Wy), ¢(HO_1) =0 and E € HO. Then [E, HO_;] C ker ¢ if and
only if p(F) € G.
Put
N = {Tu(zrzizy) | k1, ¢ € Y1},
M = {TH(LL'(qlEZ)LL'k) |Z €Y,,0< qi < m k€ Yl}

Lemma 2 ([14, Proposition 2.1]) HO is generated by M U N.

3. Negative Z-homogeneous derivations
We first show that if a derivation ¢ € Der_;(HO, Wy) vanishes on HOy, then ¢ = 0.

Lemma 3 Let ¢ € Der_i(HO,Wy) satisfy ¢(HOp) = 0. Then ¢(Tu(zrzizy)) = 0 for all
k, l, qE Y.

Proof In view of Lemma 1 one may assume that ¢(Tu(zrzi2e)) =D CsrXsOr, Where

seYy, reYy
csr € F. Direct computation shows that [Tu(zw k), Tu(zkzizy)] = Tu(rrrizy). Applying ¢

Z Cerkar + Z Csk/xsak’ = Z Csrxsar~

reYy sEY, seYy, reYy

yields

A comparison of coefficients shows that

Chi' Tk + Z Csl' Ts = Z Csk'Ts; Chrll = Z csrs for r € Yo \ K.
seYr seY] seY;
It follows that cgpr =0, cs, =0 for r € Yo \ k', s € Y7 \ k. Thus
O(Tu(zpaizg)) = Z CrZkO0r + Z Cok' T 5O

reYp\k’ seEY1\k
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Note that [Ty (zrxiz4), Ta(zr )] = 0. Applying ¢, we have

- Z Cok/ TsOp — Z Crrx10r = 0,

s€Y1\k reYo\k’

and therefore,
e =0 for s € Y\ {k,1}; cxr =0 for re Yo \{K,I'}; cys +cppr =0.
Hence,

A(Tu(zprirq)) = Crr 2Ol + Cipr 010 = Cry xR0y — Clp T 10k

Applying ¢ to [Tu(zrxizy), Tu(zrze)] = 0, one gets —cgr 0y + crixyOk = 0. It follows that
cgrr = 0. Therefore, ¢(Tu(zrzizy)) = 0.

Lemma 4 Let ¢ € Der_i(HO,Wy) satisfy ¢(HOy) = 0. Then ¢(Ty(z(%*)2),)) = 0 for all
0<a<m,ieYy ke

Proof The proof is similar to that of [14, Lemma 4.2].

By Lemmas 2, 3 and 4 we have the following proposition.
Proposition 1 Let ¢ € Der_1(HO, Wr) satisfy ¢(HOp) = 0. Then ¢ = 0.
Theorem 1 Der_; (HO, Wy) = ad(W7)_1.

Proof Let ¢ € Der_;(HO, W7). By Lemma 1, assume that ¢(Ty(z;zx)) = ZreYl CikrOr, where
cikr €T, i € Yy, k € V1. Applying ¢ to [Tu(z;zk), Tu(arrr )] = —Tu(aak), ¢ € Yo \ K/, one gets

CikkOr — Cri Oy = — Zreyl ¢ikrOr. Consequently,
cikr, =0 for ke \i/; Cikr = 0, for reY; \ {k,i/}; Ciki’ = Ckk'k-
Therefore, ¢(Tu(zizr)) = Ciky Oy = crpi0y - Put

V=9 - Z Crrrad0d, where cpprp € F.

reY
Then ¢(Tw(z;2)) = 0. For arbitrary j' € Y1\ k, [Tu(zrzw ), Tu(zjz;)] = 0. Applying ¢ yields
that Ckk/j/aj/ — ij/kak = 0 and consequently, Ckk'j’ = 0. Thus, ¢(TH($k$k’)) = Ckk/kak and
(T (xgzr)) = 0. Hence, ¥(HOy) = 0. By Proposition 1, ¢ = 0; that is, ¢ = Ereyl Crrradd,. €

ad(WT),l .

Lemma 5 Let ¢ € Der_,(HO, W5) where t > 1. If ¢(Ty (2 x,)) = 0 for all i € Yy, k € Y7,
then ¢ = 0.

Proof Similarly to the proof of [14,Lemma 4.5, one may show that ¢(Tu(zrzize)) = 0 for
k, 1, ¢ € Y1. In the following we use induction on a to show that ¢(Ty(z(*9)x;)) = 0 for i € Yy,
k € Yy. Similarly to the proof of [14, Lemma 4.5], one may show that in case a <t and a —t > 2,
H(Tu(z(ee)zy)) = 0.
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Case a —t < 2. Clearly, a — t = 1, that is, |u| = 1. Thus
O(Tu(x*Vay)) = Z CqrqOr.
qeY1, r€Y)

First consider the situation k # i’. Note that [Ty (@) xy), Tr(xzy)] = aTu(z(**)x). Apply-

ing ¢, one gets
- Z CqiTq0; Z Cirr Ty Op = a Z CqrZqOr.

qeY; r€Yoy q€Y1, reYy
A comparison of coefficients shows that
(a+1) Z CqiTq + Cirizy =0; a Z Cqrq + Cipxy =0 for r € Yo \ i
qEY) qEYY
Consequently,
(a+2)ci; =0; (a+1)cg =0 for g€ Yy \ s
(a+1)ecyr, =0 for r €Yy \4i; acy =0 for re Yo\ i, g€ Yy \ 7.

If a =0 (mod p), Similarly to the proof of [14, Lemma 4.5, the case a =0 (mod p)], one may
show that ¢(Tu(z(*)z)) = 0.
If a £ 0 (mod p), the discussion is divided into the following three parts.
(i) Suppose a = —1 (mod p). Then
CM:O; ch:OforTGYO\i,qGYl\i’.

Thus
¢(TH( a&‘) Z qu‘rqa + Z Cyr r‘rz’a

qeY1\¥’ reYo\i
Applying ¢ to [Ta(2(**)zy), Ta(zpar)] = —Tu(z(*)zy), we have
—Citky Ty Ot — CriTr 0y = Z CqiTq0; Z Cirr X Op.
geYL\?' reYp\i
A comparison of coefficients yields
ChiTh = Z Cqitq;  Cipxy =0 for r e Yo\ {7, k'}.
qeY; \’i'
Consequently,
cqi =0 for ge Y1\ {i',k}; cir =0 for r € Yo\ {3, k'}.

It follows that
O(Tu (2" ay)) = copay O + crizkdi.

Suppose
O(Tu(zxpz)) = Z a0, where a, € F.

reY;

For I € Y1 \ {#', k}, one computes [Ty (z(**) ), Ty (zszpx;)] = 0. Applying ¢, one gets

itk T10) — Critprp Oy — iy — ap Ty (x(9)) = 0.
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It follows that cg; = cygr = 0. Thus, ¢(Ty (2% xy)) = 0.
(ii) Suppose a = —2 (mod p). Then ¢(Ty(2(**)xy)) = ciryz0;. Applying é to

[TH(SL'(aei).%‘k), TH(LL']CQTZ)] = O,

we have —cy 2Oy — cirizp0; = 0. Then cyr; = 0. Hence ¢(Ty (2% xy,)) = 0.
(iii) Suppose a # —1, —2 (mod p). Then it is clear that ¢(Tg(x(*)xy)) = 0.
It remains to consider the situation k = i’. Direct computation yields [Ty (2(%*)zy), Ty (zizs)] =
(a — 1)Tq(z*)xy). Applying ¢, one gets
— Z CqiTq0; Z CirpxyOp = (@ — 1) Z CqrZqOr.
4€Y: reYo qE€Y1, reYo
Then

a E CqiTq + Cirizy =0; (a—1) E CqrTq + cirpxy =0 for 7 € Yy \ .
qEY1 qeEY)

Consequently,
(a+ 1)y =0; acy; =0 for g € Yy \ 7
acir =0 for re Yo \i; (a—1)cgr =0 for g € Y1\ 7', r €Yy \ i

We proceed in several steps. First suppose a = 0 (mod p). Then ¢;;; =0, ¢ =0, € Y1\, 7 €
Yo \ i. It follows that
QS(TH(Z(aEi)xi’)) = Z qul'qai + Z Citr Ty Op.
qeY1\?’ reYo\i
For j € Yo\, clearly, [Tx(z(*)z;), Tr(zjz;)] = 0. Applying ¢ yields —c;j2::0; — cjrizj19; = 0
and then ¢;; = ¢jr; = 0. Since j' is arbitrary, we obtain that (T (z(**)x;)) = 0. Secondly,
suppose a =1 (mod p). Then
HTu(eap) = DT cprgdy

qEYl\i’, TEYo\i
For any j € Yy \ i, it is easily seen that [T (2(**9)z;), Tu(z;z;/)] = 0. Applying ¢, one gets
Z Cqi2q0; Z cjrrxjOp = 0.
qeY1\¥’ reYo\i
Then
cgj =0 for ge Y1\ ¢j =0 for re Yy \ {i, j}.
It follows that ¢ (T (z(*9)2;)) = 0. Thirdly, suppose a = —1 (mod p). Then
gf)(TH(I(agi)ZEi/)) = Ci/il‘i/ai.

Note that for I € Y7 \ #, [Tu(®)z;y), Ta(x;z)] = —Ta(x®)x;). Applying ¢ yields cy; = 0.
Thus ¢(Ty(2(*)2;)) = 0. It remains to consider the case a # —1, 1,0 (mod p), in which one
sees immediately that ¢(Tg(z(®*)zy)) = 0.

Define @ : HO — Wz by means of Tu(f) — Tu(X_,cy, 0:0v(f)), where f € O(n,n;t)7.
Since ker(Ty) = F, @ is well defined. The proof of the following lemma is standard.
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Lemma 6 & € Der(HO, Wr) and zd(®) = —2.
Theorem 2 Suppose t > 1 is not any p-power. Then Der_,(HO,W5) =F ®.

Proof Let ¢ € Der_;(HO,W5). First suppose t Z 0 (mod p). Since ¢(Ty(x)zy)) € (Wr)_1,
assume that
QS(TH(x(tEi)xk)) = Z a,0, where a, € F.
reYy
Note tat

[TH(ZL‘Z'.’IJi/),TH(LL'(tEi)%k)] = (5k,i’ — t)TH(I'(tEL)xk)

Applying ¢, one gets
—ay Oy = [l'i/ i — 20, Z arar:| = (Ok,ir — 1) Z ar 0.
rey: rey)

If k # 4', similarly to the proof of [14, Proposition 4.6], one may show that ¢(Ty(z(*)xz})) = 0.
If k=14, then (¢t —2)ay =0 and (¢ —1)a, =0, r € Y1\ ¢. If t =1 (mod p), then a; =0 and it
follows that ¢(Tx (2 zy)) = > revi\i @rOr. For j € Yo\i, we have [Ty (z*)2y), Ta(zjz)] =
0. Applying ¢, one gets aj; = 0. Thus ¢(Tu(z*)x;)) = 0. If t # 1 (mod p), then a, = 0,
r € Yy \ ¢/. Here we proceed in two cases. First suppose ¢ Z 2 (mod p). Then a; = 0
and therefore, ¢(Ty(z**)x;)) = 0. Let us consider the other case t = 2 (mod p). Clearly,

&(Tu(z*) 1)) = aydy. Direct computation shows that
t

[Tu (D% 2y0), Tr (@ ay)] = [<2> B t} Tr(2' ). (1)

Since ¢(Ty(x(¢~1=)z;)) = 0, assume that
$(Tu(z*Vzy)) = Y b0, where b, €F.
reY;
Then applying ¢ to (1) yields
t
TH(m((tfl)Ei)xi,% Z brari| = {(2) _t}(ﬁ(TH(x(tsi)mi,)).

reY

Consequently, —byz((t=2))9;, = {(;) — t] ayOy. If t # 2, since t — (;) % 0 (mod p), we have
ai = 0. Then ¢(Ty(z**)z;)) = 0. By Lemma 5, ¢ = 0. If t = 2, then ¢(Ty (x> xy)) = a0y .
Similarly, we have ¢(Tq(x(?%)x)) = b0y for i’ # k, where by, € F. One may assume that
¢(TH(x(Ei+€k’)xi/)) = Z ¢ 0, where ¢, €F.
rey;
Note that
[TH($(5i+Ek’)xi/), Tu(rrar)] = Ty (xEten)z,).
Applying ¢, one can get ¢(Ty(ztex)a;)) = cxOy. Similarly, ¢(Tg(zEter)ay)) = didy,
where d; € F. Applying ¢ to [TH(x(Qgi)zi/), Tu(zyzy)] = TH(x(giJrEk’):ci/), we have a; = cg.
Applying ¢ to [Tu(zPex)xy), Th(zrg)] = Ta(zEiter)zy,), we have by = dy. Note that

[TH($(€i+Ek')$i/), TH(IEZ'J?k)} = QTH($(2Ei):IZi/) — TH(Z‘(eiJrgk')l‘k).
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Applying ¢ yields ay = by, for all i/ # k. Putting \ := ay = by, one gets ¢(Ty (22D xy)) = Ay
Put ¢ := ¢ — A®. Then ¢(Tx (x> z;)) = 0. By Lemmas 5, 6, ¢ = 0.
It remains to consider the case t = 0 (mod p), in which just as in the proof of [14, Proposition

4.6, the case t =0 (mod p), p.29], one may prove ¢ = 0.
Theorem 3 Let t = p" for some r € N. Then Der_,(HO, W7) = 0.

Proof The proof is similar to the one of [14, Proposition 4.7].
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