Journal of Mathematical Research with Applications May, 2013, Vol. 33, No. 3, pp. 361–364 DOI:10.3770/j.issn:2095-2651.2013.03.011 Http://jmre.dlut.edu.cn

Fredholm Weighted Composition Operators on Hardy Space

Liankuo ZHAO

School of Mathematics and Computer Science, Shanxi Normal University, Shanxi 041004, P. R. China

Abstract This paper characterizes bounded, Fredholm weighted composition operators on Hardy space. As an application, the Fredholm index of such operators is obtained. **Keywords** Hardy space; weighted composition operator; Fredholmness.

MR(2010) Subject Classification 47B32; 47B33

1. Introduction

Recently, weighted composition operators on various spaces of analytic functions have been studied intensively, see [1–6] and so on. Inspired by the study of bounded and invertible weighted composition operators on Hardy space $H^2(\mathbb{D})$ in [7], where \mathbb{D} is the unit disk. In this paper, we characterize bounded Fredholm weighted composition operators on $H^2(\mathbb{D})$.

Recall $H^2(\mathbb{D})$ is the space of analytic function f on \mathbb{D} with

$$\sup_{0 < r < 1} \int_0^{2\pi} |f(re^{i\theta})|^2 \frac{\mathrm{d}\theta}{2\pi} < \infty$$

It is well-known that $H^2(\mathbb{D})$ is a reproducing kernel function space with the reproducing kernel function

$$K_w(z) = \frac{1}{1 - \bar{w}z}, \quad z, w \in \mathbb{D}$$

Let ψ and φ be analytic functions on \mathbb{D} with $\varphi(\mathbb{D}) \subset \mathbb{D}$. The weighted composition operator $C_{\psi,\varphi}$ is defined on $H^2(\mathbb{D})$ with symbols ψ, φ as

$$C_{\psi,\varphi}f = \psi \cdot f \circ \varphi, \quad f \in H^2(\mathbb{D}).$$

It is easy to see that $C_{\psi,\varphi} = M_{\psi}C_{\varphi}$, where M_{ψ} is the multiplication operator defined as

$$M_{\psi}f = \psi f, \quad f \in H^2(\mathbb{D}),$$

and C_{φ} is the composition operator defined by

$$C_{\varphi}f = f \circ \varphi, \quad f \in H^2(\mathbb{D}).$$

Received February 20, 2012; Accepted October 12, 2012

Supported by the National Natural Science Foundation of China (Grant No. 11201274) and Young Science Foundation of Shanxi Province (Grant No. 2010021002-2).

E-mail address: liankuozhao@sina.com

By the Littlewood's subordination theorem, the composition operator C_{φ} is bounded on $H^2(\mathbb{D})$ (see [8]), but it is possible for $C_{\psi,\varphi}$ to be bounded with unbounded ψ (see [9]). In [7], the author gave the condition for $C_{\psi,\varphi}$ to be bounded and invertible. For the weighted composition operator $C_{\psi,\varphi}$ to be bounded and Fredholm, we have the following result.

Theorem 1.1 Let ψ and φ be analytic functions on \mathbb{D} with $\varphi(\mathbb{D}) \subset \mathbb{D}$. Then $C_{\psi,\varphi}$ is a bounded Fredholm operator on $H^2(\mathbb{D})$ if and only if ψ is bounded on \mathbb{D} and bounded away from zero near the unit circle $\partial \mathbb{D}$, φ is an automorphism of \mathbb{D} .

Theorem 1.2 Let ψ and φ be analytic functions on \mathbb{D} with $\varphi(\mathbb{D}) \subset \mathbb{D}$. If $C_{\psi,\varphi}$ is a bounded Fredholm operator on $H^2(\mathbb{D})$, then the index of $C_{\psi,\varphi}$ is the negative of the number of zeros of ψ in \mathbb{D} counted according to their multiplicity.

2. Proof of the main results

In the following, ψ and φ denote the analytic functions on \mathbb{D} with $\varphi(\mathbb{D}) \subset \mathbb{D}$. It is easy to verify that $\psi \in H^2(\mathbb{D})$ if $C_{\psi,\varphi}$ is defined on $H^2(\mathbb{D})$.

Proposition 2.1 Let $C_{\psi,\varphi}$ be a bounded Fredholm operator on $H^2(\mathbb{D})$. Then ψ is bounded away from the unit circle and φ is an inner function.

Proof If $C_{\psi,\varphi}$ is bounded and Fredholm, then there exist a bounded operator T and a compact operator S such that

$$T(C_{\psi,\varphi})^* = I + S,$$

where I is the identity operator.

By

$$(C_{\psi,\varphi})^{*}K_{w} = \overline{\psi(w)}(C_{\varphi})^{*}K_{w} = \overline{\psi(w)}K_{\varphi(w)} \text{ (see [1]), we have}$$
$$\|T\| \ |\psi(w)| \ \frac{\|K_{\varphi(w)}\|}{\|K_{w}\|} = \|T\| \ |\psi(w)| \ \|C_{\varphi}^{*}k_{w}\| \ge \|T(C_{\psi,\varphi})^{*}k_{w}\|$$
$$\ge \|k_{w}\| - \|Sk_{w}\| = 1 - \|Sk_{w}\|, \tag{1}$$

where $k_w = \frac{K_w}{\|K_w\|}$ is the normalization of reproducing kernel function K_w .

Since S is compact and k_w weakly converges to 0 as $|w| \to 1$, $||Sk_w|| \to 0$ as $|w| \to 1$. It follows that there exists constant r, 0 < r < 1, such that $||Sk_w|| < \frac{1}{2}$ for all w with r < |w| < 1. Inequality (1) shows that

$$|\psi(w)| \geq \frac{1}{2\|T\|} \|C_{\varphi}^* k_w\|, \quad r < |w| < 1.$$

Note that C_{φ} is bounded, so $\|C_{\varphi}^*k_w\| \leq \|C_{\varphi}^*\|$ and hence

$$|\psi(w)| \ge m \left(= \frac{1}{2\|T\| \|C_{\varphi}^*\|} \right), \ r < |w| < 1.$$

i.e., ψ is bounded away from the unit circle.

Fredholm weighted composition operators on Hardy space

On the other hand, by inequality (1), we also have

$$\frac{\|T\||\psi(w)|}{\|K_w\|} \ge \frac{1}{2\|K_{\varphi(w)}\|}, \quad r < |w| < 1.$$
(2)

The following reasoning is the same as the proof of Lemma 2.0.3 in [7].

Since k_w weakly converges to 0 as $|w| \to 1$, $\langle \psi, k_w \rangle \to 0$ as $|w| \to 1$, that is

$$\frac{\psi(w)}{\|K_w\|} \to 0, \ |w| \to 1.$$

It follows from (2) that $||K_{\varphi(w)}|| = (\frac{1}{1-|\varphi(w)|^2})^{\frac{1}{2}} \to \infty$ and hence $|\varphi(w)| \to 1$ as $|w| \to 1$. i.e., φ is an inner function. \Box

Lemma 2.2 If ψ is bounded away from the unit circle, then $\psi = BF$ with B a finite Blaschke product and $\frac{1}{F}$ bounded on \mathbb{D} .

Proof Since ψ is bounded away from the unit circle, there exist constants m_1 ($m_1 > 0$) and r (0 < r < 1) such that

$$|\psi(w)| \ge m_1, \ r \le |w| < 1,$$
(3)

which implies that ψ has no zeros in the annulus $\{w | r \leq |w| < 1\}$.

Let B be the Blaschke products of the zeros of ψ . Then B is finite and $F = \frac{\psi}{B}$ has no zeros in \mathbb{D} . By (3), we have

$$|F(w)| \ge \frac{m_1}{|B(w)|} \ge m_1, \quad r \le |w| < 1, \tag{4}$$

since B(w) has no zeros in $\{w | r \le |w| \le 1\}$ and $|B(w)| \le 1$.

Since F is continuous and has no zeros in $\{w | |w| \leq r\}$, there exists positive constant m_2 such that

$$|F(w)| \ge m_2, \quad |w| \le r. \tag{5}$$

The boundedness of $\frac{1}{F}$ on \mathbb{D} follows from (4) and (5). \Box

Lemma 2.3 Let $C_{\psi,\varphi}$ be a bounded operator on $H^2(\mathbb{D})$, $\psi = BF$ with B an inner function. Then $C_{F,\varphi}$ is bounded.

Proof Let M_B be the multiplication operator for the symbol B on $H^2(\mathbb{D})$. Then $C_{\psi,\varphi} = M_B C_{F,\varphi}$. Since B is an inner function, M_B is an isometry. For $f \in H^2(\mathbb{D})$,

$$\|C_{F,\varphi}f\| = \|C_{\psi,\varphi}f\|.$$

The boundedness of $C_{F,\varphi}$ follows from the boundedness of $C_{\psi,\varphi}$. \Box

Lemma 2.4 Let F be an analytic function on \mathbb{D} with zero free. If $C_{F,\varphi}$ is a bounded Fredholm operator on $H^2(\mathbb{D})$, then φ is univalent.

Proof If $\varphi(a) = \varphi(b)$ for $a, b \in \mathbb{D}$, by a similar reasoning as Lemma 3.26 in [8], there exist infinite sets $\{a_n\}$ and $\{b_n\}$ in \mathbb{D} which is disjoint such that $\varphi(a_n) = \varphi(b_n)$. Hence

$$(C_{F,\varphi})^* \left(\frac{K_{a_n}}{\overline{F(a_n)}} - \frac{K_{b_n}}{\overline{F(b_n)}}\right) = 0.$$

363

which contradicts that kernel of $(C_{F,\varphi})^*$ is finite dimensional. \Box

Corollary 2.5 If $C_{\psi,\varphi}$ is a bounded Fredholm operator on $H^2(\mathbb{D})$, then φ is an automorphism of \mathbb{D} and ψ is bounded.

Proof By Proposition 2.1 and Lemma 2.2, $\psi = BF$ with *B* a finite Blaschke product and *F* zero free in \mathbb{D} . By Lemma 2.3, $C_{F,\varphi}$ is a bounded operator. Since $C_{\psi,\varphi} = M_B C_{F,\varphi}$ and M_B is a Fredholm operator, $C_{F,\varphi}$ is a Fredholm operator too. By Proposition 2.1 and Lemma 2.4, φ is a univalent inner function, and it follows from Corollary 3.28 in [8] that φ is an automorphism of \mathbb{D} .

Since $C_{\psi,\varphi}C_{\varphi^{-1}} = M_{\psi}$, M_{ψ} is a bounded multiplication operator on $H^2(\mathbb{D})$, which implies that ψ is bounded. \Box

Combining the results above, we give the proof of Theorems 1.1 and 1.2.

Proof of Theorem 1.1 If $C_{\psi,\varphi}$ is a bounded Fredholm operator on $H^2(\mathbb{D})$, by Proposition 2.1 and Corollary 2.5, ψ is bounded on \mathbb{D} and bounded away from $\partial \mathbb{D}$, φ is an automorphism of \mathbb{D} .

On the other hand, if ψ is bounded on \mathbb{D} and bounded away from $\partial \mathbb{D}$, then M_{ψ} is a Fredholm operator on $H^2(\mathbb{D})$ (see [10, Theorem 7.36]). Since φ is an automorphism of \mathbb{D} , C_{φ} is invertible. Hence $C_{\psi,\varphi} = M_{\psi}C_{\varphi}$ is a bounded Fredholm operator on $H^2(\mathbb{D})$. \Box

Proof of Theorem 1.2 If $C_{\psi,\varphi}$ is a bounded Fredholm operator on $H^2(\mathbb{D})$, by Theorem 1.1, we know that $C_{\psi,\varphi} = M_{\psi}C_{\varphi}$ with M_{ψ} a bounded Fredholm operator on $H^2(\mathbb{D})$ and C_{φ} a bounded invertible operator on $H^2(\mathbb{D})$. Hence

Index $C_{\psi,\varphi} = \text{Index } M_{\psi} + \text{Index } C_{\varphi} = \text{Index } M_{\psi}.$

It is well known that the index of M_{ψ} is the negative of number of zeros of ψ in \mathbb{D} counted according to their multiplicity. \Box

References

- P. S. BOURDON, S. K. NARAYAN. Normal weighted composition operators on the Hardy space H²(U). J. Math. Anal. Appl., 2010, 367(1): 278–286.
- M. D. CONTRERAS, A. G. HERŃANDEZ-DÍAZ. Weighted composition operators on Hardy spaces. J. Math. Anal. Appl., 2001, 263(1): 224–233.
- M. D. CONTRERAS, A. G. HERŃANDEZ-DÍAZ. Weighted composition operators between different Hardy spaces. Integral Equations Operator Theory, 2003, 46(2): 165–188.
- [4] Ž. ČUČKOVIĆ, Ruhan ZHAO. Weighted composition operators on the Bergman space. J. London Math. Soc. (2), 2004, 70(2): 499–511.
- [5] Ž. ČUČKOVIĆ, Ruhan ZHAO. Weighted composition operators between different weighted Bergman spaces and different Hardy spaces. Illinois J. Math., 2007, 51(2): 479–498.
- [6] S. OHNO, K. STROETHOFF. Weighted composition operators from reproducing Hilbert spaces to Bloch spaces. Houston J. Math., 2011, 37(2): 537–558.
- [7] G. GUNATILLAKE. Invertible weighted composition operators. J. Funct. Anal., 2011, 261(3): 831-860.
- [8] C. C. COWEN, B. D. MACCLUER. Composition Operators on Spaces of Analytic Functions. CRC Press, Boca Raton, FL, 1995.
- [9] G. GUNATILLAKE. Compact weighted composition operators on the Hardy space. Proc. Amer. Math. Soc., 2008, 136(8): 2895–2899.
- [10] R. G. DOUGLAS. Banach Algebra Techniques in Operator Theory. Springer-Verlag, New York, 1998.