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Abstract Generalized Nash equilibrium problem (GNEP) is an important model that has

many applications in practice. However, a GNEP usually has multiple or even infinitely many

Nash equilibrium points and it is not easy to choose a favorable solution from those equilibria.

This paper considers a class of GNEP with some kind of separability. We first extend the

so-called normalized equilibrium concept to the stationarity sense and then, we propose an

approach to solve the normalized stationary points by reformulating the GNEP as a single

optimization problem. We further demonstrate the proposed approach on a GNEP model in

similar product markets.
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1. Introduction

Generalized Nash equilibrium problem (GNEP) is a Nash equilibrium problem, in which
each player’s strategy set may depend on the rivals’ strategies. The early study of such games
dates back at least to Debreu [2] and Arrow [1], where the GNEP was called social equilibrium
problem or abstract economy. In the sequel, Harker [10] studied GNEP via (quasi-)variational in-
equality reformulation and Pang et al. [16] proposed some reformulations for multi-leader-follower
games and proposed a penalty method for solving GNEP. More recently, Fukushima [8] proposed
another penalty method for finding the restricted generalized Nash equilibrium points and Kub-
ota et al. [13] studied GNEP by using the regularized gap function for quasi-variational inequality
problem. See also [3, 5–7] for more details about numerical methods for GNEP.

In this paper, we consider the following non-cooperative game with N players and shared
constraints: For each ν = 1, . . . , N , player ν solves the following optimization problem with
the other players’ strategies x−ν = (x1, . . . , xν−1, xν+1, . . . , xN ) ∈ Rn−nν being regarded as
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exogenous:

min
xν

fν(xν , x−ν)

s.t gν(xν) ≤ 0,

G(xν , x−ν) ≤ 0,

(1)

here fν : Rn → R, gν : Rnν → Rpν , G : Rn → Rm are continuously differentiable functions with
n =

∑N
ν=1 nν . Note that there is not any difference in our analysis if some equality constraints

are added.

Since the GNEP may have many equilibrium points, in order to make optimal choices, we
may expect to find as many equilibrium points as possible. However, it is usually impossible to
find all equilibrium points in practice. In some cases, we may find some equilibrium points with
special properties. The normalized equilibrium given in [17], at which the Lagrange multipliers
associated with the shared constraints are proportionable among all players, is such an equilib-
rium point in game theory. In economic terms, it means that the relative values of shadow prices
associated with the common resources are identical for all players at any normalized equilibrium
point.

The aim of this paper is to find the normalized equilibrium points of the GNEP (1). Since
the GNEP (1) may be nonconvex, we extend the normalized equilibrium concept given in [17] to
the stationarity sense. Then, we reformulate the GNEP (1) as a single optimization problem by
imposing some additional separability conditions.

Throughout the paper, for a given differentiable function h : Rs → Rt and a given point
z ∈ Rs, we denote by ∇h(z) ∈ Rs×t the transposed Jacobian matrix of h at z. Moreover, for two
vectors a, b ∈ Rs, a ⊥ b means that the vector a is perpendicular to the vector b.

2. Normalized stationarity for GNEP

We first introduce a separability property that will be used later on.

Definition 2.1 We say that the GNEP (1) is separable with positive weights β ∈ RN if each

objective function consists of a separable term and a parametrized common term across all

players, that is,

fν(xν , x−ν) = f̄ν(xν) + βν f̃(xν , x−ν)

for each ν = 1, . . . , N .

In the rest of this section, we assume that the GNEP (1) is separable with positive weights
β ∈ RN . Then (1) becomes

(NLP (x−ν))

min
xν

f̄ν(xν) + βν f̃(xν , x−ν)

s.t gν(xν) ≤ 0,

G(xν , x−ν) ≤ 0.

Suppose that x̂ is a Nash equilibrium point of the above GNEP and, for each ν, the Guignard
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constraint qualification [9] holds at x̂ν for (NLP (x̂−ν)). Then, for ν = 1, . . . , N , we have

∇f̄ν(x̂ν) + βν∇xν f̃(x̂ν , x̂−ν) +∇gν(x̂ν)λν
g +∇xν G(x̂ν , x̂−ν)λν

G = 0,

0 ≤ λν
g ⊥ gν(x̂ν) ≤ 0,

0 ≤ λν
G ⊥ G(x̂ν , x̂−ν) ≤ 0.

(2)

Definition 2.2 (a) A vector x̂ is said to be a normalized equilibrium point with positive weights

β ∈ RN of the above GNEP if it is a Nash equilibrium point and the Lagrange multipliers

associated with the shared constraints are proportionable among all players, i.e., there exist

multipliers {λg, λG} such that (2) holds and

λν
G = βνλ0, ν = 1, . . . , N.

(b) A vector x̂ is said to be a normalized stationary point with positive weights β ∈ RN of

the above GNEP if there exist multipliers {λg, λG} such that (2) holds and

λν
G = βνλ0, ν = 1, . . . , N.

We have the following result.

Theorem 2.3 The vector x̂ is a normalized stationary point with positive weights β ∈ RN of

the above GNEP if and only if it is a stationary point of the optimization problem

min
x

N∑
ν=1

1
βν

f̄ν(xν) + f̃(xν , x−ν)

s.t gν(xν) ≤ 0 (ν = 1, . . . , N),

G(xν , x−ν) ≤ 0.

(3)

Proof “only if” part: If x̂ is a normalized stationary point with positive weights β ∈ RN of the
GNEP, then there exist multipliers {λg, λG} such that, for each ν = 1, . . . , N ,

∇f̄ν(x̂ν) + βν∇xν f̃(x̂ν , x̂−ν) +∇gν(x̂ν)λν
g +∇xν G(x̂ν , x̂−ν)λν

G = 0,

0 ≤ λν
g ⊥ gν(x̂ν) ≤ 0,

0 ≤ λν
G ⊥ G(x̂ν , x̂−ν) ≤ 0.

(4)

Since βν > 0 and λν
G = βνλ0 for each ν = 1, . . . , N , we can reformulate (4) as

1
βν
∇f̄ν(x̂ν) +∇xν f̃(x̂ν , x̂−ν) +∇gν(x̂ν)

λν
g

βν
+∇xν G(x̂ν , x̂−ν)λ0 = 0,

0 ≤ λν
g

βν
⊥ gν(x̂ν) ≤ 0,

0 ≤ λ0 ⊥ G(x̂ν , x̂−ν) ≤ 0,

ν = 1, . . . , N.

(5)

Setting µv = λν
g

βν
for all ν = 1, . . . , N , we see that (5) is equivalent to the KKT conditions of

problem (3) at x̂ with multipliers {µ, λ0}.
In a similar way, we can show the “if” part.



Solving a class of generalized Nash equilibrium problems 375

Theorem 2.3 indicates that solving the GNEP {(NLP (x−ν))}N
ν=1 is equivalent to solving

the single optimization problem (3) in the stationarity sense.

Example 2.4 This problem is taken from [14]. Suppose that there are two players and they
solve the following problems, respectively:

min
x1

x2
1 + ax1x2

s.t x1 + x2 = c,

min
x2

x2
2 + bx1x2

s.t x1 + x2 = c,

where a > 0, b > 0, and c are given parameters such that ab − a − b 6= 0. The above GNEP is
obviously separable with positive weights β = (a, b). By solving

2x1 + ax2 − aλ0 = 0,

2x2 + bx1 − bλ0 = 0,

x1 + x2 = c,

we know that the normalized stationary point with positive weights β of the above GNEP is
x∗ = ( ac(b−2)

2(ab−a−b) ,
bc(a−2)

2(ab−a−b) ) with λ0 = abc−4c
2(ab−a−b) . It is easy to verify that x∗ is a stationary point

of the following single optimization problem:

min
(x1,x2)

1
a
x2

1 +
1
b
x2

2 + x1x2

s.t x1 + x2 = c.

Example 2.5 This problem is taken from [10]. Suppose that there are two players and they
solve the following problems, respectively:

min
x1

x2
1 − 34x1 + 8

3x1x2

s.t 0 ≤ x1 ≤ 10,

x1 + x2 ≤ 15,

min
x2

x2
2 − 24.25x2 + 5

4x1x2

s.t 0 ≤ x2 ≤ 10,

x1 + x2 ≤ 15.

This is a GNEP with one shared constraint and the solution set is given by

S∗ = {(5, 9)} ∪ {(t, 15− t)|9 ≤ t ≤ 10}.
It is not difficult to see that (5,9) is a normalized equilibrium point with wights (8

3 , 5
4 ), which is

a stationary point of the single optimization problem

min
(x1,x2)

3
8
x2

1 −
51
4

x1 +
4
5
x2

2 −
97
5

x2 + x1x2

s.t 0 ≤ x1 ≤ 10,

0 ≤ x2 ≤ 10,

x1 + x2 ≤ 15.

3. Applications in similar products markets

Consider an oligopoly consisting of N manufacturers that produce similar products nonco-
operatively before the market demand is realized. The market demand is characterized by inverse
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demand functions pν(x), ν = 1, . . . , N , where pν(x) denotes the market price of the product made
by the manufacturer ν and x = (xν)N

ν=1 with xν being the supply quantity of the manufacturer
ν,

Before market demand is realized, the manufacturer ν chooses his quantity xν and his profit
can be formulated as

Rν(xν , x−ν) = xνpν(xν , x−ν)− cν(xν),

where x−ν denotes the total bids by the other manufacturers, xνpν(xν , x−ν) means the total
revenue for the manufacturer ν, and cν(xν) denotes the cost function of the manufacturer ν.
The ν-th manufacturer’s decision problem is to choose the supply quantity xν that maximizes
his profit, that is,

max
xν∈Xν

Rν(xν , x−ν) = xνpν(xν , x−ν)− cν(xν),

suppose Xν := {xν ∈ [0,+∞) | gν(xν) ≤ 0, G(xν , x−ν) ≤ 0} is a nonempty and bounded convex
set for each ν = 1, . . . , N .

Suppose that, for each ν = 1, 2, . . . , N ,
(A1) pν(·) is twice continuously differentiable and decreasing;
(A2) pν

′(q) + qpν
′′(q) ≤ 0 holds for any q ≥ 0;

(A3) the cost function cν is twice continuously differentiable and its first and second deriva-
tives are always nonnegative.

Under the assumptions (A1)–(A3), one can easily show that Rν(xν , x−ν) is concave, which
guarantees the existence of generalized Nash equilibrium of the model. Additionally, we suppose
that the multipliers of the manufacturers corresponding to the shared constraints are propor-
tionable, that is,

λν
G = βνλ0, ν = 1, . . . , N,

where βν > 0 for each ν.
We next report our numerical experience for the above model. In our test, we set the data

as follows:
The inverse demand functions are given by

p1(x1, x2) := a1 − β1(x1 + x2), p2(x1, x2) := α2 − β2(x1 + x2).

The cost functions are given by

c1(x1) := γ1x1, c2(x2) := γ2x2.

The constraint functions are given by

g1(x1) := x1 − u1, g2(x2) := x2 − u2, G(x1, x2) := x1 + x2 − u.

Then the GNEP is written as

min
x1

β1x2
1 − (α1 − γ1)x1 + β1x1x2

s.t x1 − u1 ≤ 0,

x1 + x2 − u ≤ 0,

min
x2

β2x2
2 − (α2 − γ2)x2 + β2x1x2

s.t x2 − u2 ≤ 0,

x1 + x2 − u ≤ 0.
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By Theorem 2.3, solving this GNEP is equivalent to solving the single optimization problem

min x2
1 + x2

2 −
α1 − γ1

β1
x1 − α2 − γ2

β2
x2 + x1x2

s.t x1 − u1 ≤ 0,

x2 − u2 ≤ 0,

x1 + x2 − u ≤ 0.

(6)

We first solved this GNEP using the method proposed by Li [11] and then solved the optimization
problem (6) by the solver fmin in Matlab R2010a. We get the same results shown in the table,
which reveal the proposed approach is applicable.

α1 48 64 68 76 84 98

α2 52 67 78 82 88 128

γ1 23 28 26 32 36 48

γ2 25 32 23 36 42 54

β1 5 4 2 5 4 2

β2 6 5 3 6 5 3

u1 2.0 4.0 3.5 3.5 5.0 5.0

u2 1.5 2.0 2.0 2.5 3.0 4.0

u 3.5 5.5 5.5 5.5 7.5 8.0

(x1, x2) (1.833,1.333) (3.667,1.667) (3.333,1.667) (3.311,2.177) (4.933,2.133) (4.166,3.833)

Table 1 Numerical results

4. Conclusions

We have discussed a GNEP with some kind of separability. We first extended the well-known
normalized equilibrium concept to the stationarity sense and then, we proposed an approach to
solve the normalized stationary points by reformulating the GNEP as a single optimization
problem. We further demonstrated the proposed approach on a GNEP model in similar product
markets.
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