Journal of Mathematical Research with Applications Jul., 2013, Vol. 33, No. 4, pp. 403–411 DOI:10.3770/j.issn:2095-2651.2013.04.003 Http://jmre.dlut.edu.cn

Rings in which Every Element Is A Left Zero-Divisor

Yanli REN¹, Yao WANG^{2,*}

1. School of Mathematics and Information Technology, Nanjing Xiaozhuang University, Jiangsu 211171, P. R. China;

2. School of Mathematics and Statistics, Nanjing University of Information Science and Technology, Jiangsu 210044, P. R. China

Abstract We introduce the concepts of left (right) zero-divisor rings, a class of rings without identity. We call a ring R left (right) zero-divisor if $r_R(a) \neq 0$ ($l_R(a) \neq 0$) for every $a \in R$, and call R strong left (right) zero-divisor if $r_R(R) \neq 0$ ($l_R(R) \neq 0$). Camillo and Nielson called a ring right finite annihilated (RFA) if every finite subset has non-zero right annihilator. We present in this paper some basic examples of left zero-divisor rings, and investigate the extensions of strong left zero-divisor rings and RFA rings, giving their equivalent characterizations.

Keywords zero-divisor; left zero-divisor ring; strong left zero-divisor ring; RFA ring; extensions of rings.

MR(2010) Subject Classification 16S70; 16U99

1. Some examples of left zero-divisor rings

Throughout this paper rings are general associative rings (with or without identity), \mathbb{Z} denotes the ring of integers and \mathbb{N} denotes the set of positive integers. Given a ring R, the right (left) annihilator of a subset X of R is defined by $r_R(X) = \{a \in R \mid Xa = 0\}$ ($l_R(X) = \{a \in R \mid aX = 0\}$), the polynomial ring over R in one indeterminate x is denoted by R[x].

Definition 1.1 A ring R is called left (right) zero-divisor if $r_R(a) \neq 0$ ($l_R(a) \neq 0$) for every $a \in R$, and a ring R is called zero-divisor if it is both left and right zero-divisor.

Obviously, any non-zero nil ring is zero-divisor; and rings with identity are never left (right) zero-divisor. If R is reversible (a ring R is called *reversible* if ab = 0 implies ba = 0 for $a, b \in R$.), then R is left zero-divisor if and only if R is right zero-divisor. In general, a left (right) zero-divisor ring need not be a nil ring and the zero-divisor property for a ring is not left-right symmetric.

Proposition 1.2 If one of $\{R_i\}_{i \in W}$ is left zero-divisor, so is $R = \bigoplus_{i \in W} R_i$ $(R = \prod_{i \in W} R_i)$. Note that $R = \bigoplus_{i \in W} R_i$ $(R = \prod_{i \in W} R_i)$ is left zero-divisor does not imply that every

 $R_i \ (i \in W)$ is left zero-divisor.

Received May 10, 2012; Accepted November 22, 2012

Supported by the National Natural Science Foundation of China (Grant Nos. 11071097; 11101217).

^{*} Corresponding author

E-mail address: wangyao@nuist.edu.cn (Yao WANG)

For any ring R, we define $QM_2(R) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \mid a+b=c+d, a, b, c, d \in R \right\}$, then $QM_2(R)$ is a subring of $M_2(R)$. Moreover, given an (R, R)-bimodule M, the trivial extension of R by M (see [4]) is the ring $T(R, M) = R \bigoplus M$ with the usual addition and the following multiplication:

$$(r_1, m_1)(r_2, m_2) = (r_1r_2, r_1m_2 + m_1r_2).$$

This is isomorphic to the ring of all matrices $\begin{pmatrix} r & m \\ 0 & r \end{pmatrix}$, where $r \in R$ and $m \in M$ and the usual matrix operations are used.

Theorem 1.3 The following statements are equivalent for a ring R:

(1) R is left zero-divisor.

(2) For any $n \in \mathbb{N}$, the ring $T_n(R)$ of $n \times n$ upper triangular matrices over R is left zero-divisor.

(3) $QM_2(R)$ is left zero-divisor.

(4) For any
$$n \in \mathbb{N}$$
, $S_n(R) = \begin{cases} \begin{pmatrix} a_0 & a_1 & a_2 & \cdots & a_{n-1} \\ 0 & a_0 & a_1 & \cdots & a_{n-2} \\ 0 & 0 & a_0 & \cdots & a_{n-3} \\ \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & 0 & \cdots & a_0 \end{pmatrix} \mid a_i \in R, i = 0, 1, \dots, n-1 \end{cases}$

is left zero-divisor.

- (5) For any $n \in \mathbb{N}$, $R[x]/(x^n)$ is left zero-divisor, where (x^n) is the ideal generated by x^n .
- (6) T(R, R) is left zero-divisor.

Proof (1) \Rightarrow (2). Assume that R is left zero-divisor and $A = (a_{ij}) \in T_n(R)$, where $a_{ij} = 0$ if i > j. Then there exists $0 \neq t_{ii} \in R$ such that $a_{ii}t_{ii} = 0$ for any $i, 1 \leq i \leq n$. Taking $D = (d_{ij})$, where $d_{11} = t_{11} \neq 0, d_{ij} = 0, 1 < i, j \leq n$, we get $0 \neq D \in T_n(R)$ such that AD = 0. Hence $T_n(R)$ is left zero-divisor.

(2)
$$\Rightarrow$$
 (3). We construct a map $f: QM_2(R) \to T_2(R), \begin{pmatrix} a & b \\ c & d \end{pmatrix} \mapsto \begin{pmatrix} a+b & b \\ 0 & d-b \end{pmatrix}$, for

any $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in QM_2(R)$. It is easy to verify that f is an injective and a ring homomorphism. For any $\begin{pmatrix} x & z \\ 0 & y \end{pmatrix} \in T_2(R)$, since

$$f\left(\left(\begin{array}{cc} x-z & z \\ x-y-z & y+z \end{array}\right)\right) = \left(\begin{array}{cc} x & z \\ 0 & y \end{array}\right),$$

f is a ring isomorphism. This completes the proof by (2).

(3)
$$\Rightarrow$$
 (1). Let $r \in R$. Then $A = \begin{pmatrix} r & 0 \\ 0 & r \end{pmatrix} \in QM_2(R)$. Since $QM_2(R)$ is left zero-

Rings in which every element is a left zero-divisor

divisor, there exists $0 \neq T = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in QM_2(R)$ such that $AT = \begin{pmatrix} r & 0 \\ 0 & r \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} =$ $\begin{pmatrix} ra & rb \\ rc & rd \end{pmatrix} = 0$, it follows that ra = rb = rc = rd = 0. Notice that $T \neq 0$, there must be $0 \neq s \in R$ such that rs = 0, as desired.

(1) \Rightarrow (4). Let $A = (a_{ij}) \in S_n(R)$, where $a_{ii} = a_0, 1 \leq i \leq n$. Since R is left zero-divisor, there exists $0 \neq t_0 \in R$ such that $a_0 t_0 = 0$. Taking $0 \neq T = (t_{ij}) \in S_n(R)$, where $t_{1n} = t_0$ and $t_{ij} = 0, 1 < i \le n, 1 \le j < n$, we get AT = 0. Thus, $S_n(R)$ is left zero-divisor.

(4) \Rightarrow (5). Note that $R[x]/(x^n) \cong S_n(R)$, we obtain the result by (4).

(5) \Rightarrow (6). This is obvious since $T(R, R) \cong R[x]/(x^2)$.

(6)
$$\Rightarrow$$
 (1). Let $a \in R$. Then $A = \begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix} \in T(R, R)$. Since $T(R, R)$ is left zero-

divisor, there exists $0 \neq T = \begin{pmatrix} t & m \\ 0 & t \end{pmatrix} \in T(R, R)$ such that $AT = \begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix} \begin{pmatrix} t & m \\ 0 & t \end{pmatrix} = \begin{pmatrix} at & am \\ 0 & at \end{pmatrix} = 0$, it follows that at = 0 and am = 0. Notice that $T \neq 0$, we have $t \neq 0$ or

 $m \neq 0$. Consequently in any case there is $0 \neq s \in R$ such that as = 0, as asserted. \Box

Let $R[x; x^{-1}]$ be the ring of Laurent polynomials in one variable x with coefficients in a ring R, i.e., $R[x; x^{-1}]$ consists of all formal sums $\sum_{i=k}^{n} m_i x^i$ with obvious addition and multiplication, where $m_i \in R$ and k, n are (possible negative) integers.

Proposition 1.4 Let R be a ring. Then R[x] is left zero-divisor if and only if so is $R[x; x^{-1}]$.

Proof Suppose that R[x] is left zero-divisor. Let $f(x) \in R[x; x^{-1}]$. Then there exists an $n \in N$ such that $f_1(x) = f(x)x^n \in R[x]$. Hence there exists $0 \neq g(x) \in R[x]$ such that $f_1(x)g(x) = f(x)g(x)x^n = 0$, it follows that f(x)g(x) = 0 and $R[x; x^{-1}]$ is left zero-divisor.

Conversely, assume that $R[x; x^{-1}]$ is left zero-divisor, and let $f(x) \in R[x]$. Then there exists $0 \neq g(x) \in R[x; x^{-1}]$ such that f(x)g(x) = 0 since $R[x] \subseteq R[x; x^{-1}]$. As $g(x) = x^{-m}g_1(x)$ for some $m \in \mathbb{N}$ and $0 \neq g_1(x) \in R[x]$, $f(x)g(x) = x^{-m}f(x)g_1(x) = 0$, we obtain that $f(x)g_1(x) = 0$. \Box

Proposition 1.5 Let R and S be rings and $V =_R V_S$ be an (R, S)-bimodule. If R is left zero-divisor, so is $A = \begin{pmatrix} R & V \\ 0 & S \end{pmatrix}$.

Proof Take any $\begin{pmatrix} r & v \\ 0 & s \end{pmatrix} \in A$. For $r \in R$, there exists $0 \neq t \in R$ such that rt = 0 since R is left zero-divisor. Thus, we get $0 \neq \begin{pmatrix} t & 0 \\ 0 & 0 \end{pmatrix} \in A$ such that $\begin{pmatrix} r & v \\ 0 & s \end{pmatrix} \begin{pmatrix} t & 0 \\ 0 & 0 \end{pmatrix} = 0$, which implies that A is left zero-divisor. \Box

Proposition 1.6 If a ring R is left zero-divisor, so is the ring

$$V(R) = \left\{ \left(\begin{array}{cccccc} a & d & 0 & 0 & 0 & 0 \\ 0 & b & 0 & 0 & 0 & 0 \\ 0 & 0 & c & e & 0 & 0 \\ 0 & 0 & 0 & a & 0 & 0 \\ 0 & 0 & 0 & 0 & b & f \\ 0 & 0 & 0 & 0 & 0 & c \end{array} \right) \mid a, b, c, d, e, f \in R \right\}.$$

Proof Fix $A \in V(R)$. Since R is left zero-divisor, there exists $0 \neq a' \in R$ such that aa' = 0. Taking $0 \neq T = (t_{ij}) \in V(R)$, where $t_{12} = a'$ and 0 elsewhere, we obtain that AT = 0. \Box

Let R be a commutative ring, M an R-module and σ an endomorphism of R. Recall that the Nagata extension of R by M and σ (see [4]), denoted by $N(R, M, \sigma)$, is the ring $R \bigoplus M$ with the usual addition and the multiplication $(r_1, m_1)(r_2, m_2) = (r_1r_2, \sigma(r_1)m_2 + r_2m_1)$, where $r_i \in R$ and $m_i \in M, i = 1, 2$.

Proposition 1.7 Let R be a commutative left zero-divisor ring. Then the Nagata extension $N(R, R, \sigma)$ of R by R and σ is left zero-divisor.

Proof For any $(r,m) \in N(R,R,\sigma)$, we have $0 \neq t \in R$ such that $\sigma(r)t = 0$ since R is left zero-divisor and $\sigma(R) \subseteq R$. Putting $0 \neq (0,t) \in N(R,R,\sigma)$, we get that $(r,m)(0,t) = (r0,\sigma(r)t + 0m) = (0,0)$. Therefore $N(R,R,\sigma)$ is left zero-divisor. \Box

It is interesting to know if the polynomial ring of a ring share the same property with the ring. If R[x] is left zero-divisor, then R is again left zero-divisor. We raise the following question: if R is left zero-divisor, is the polynomial ring R[x] necessarily left zero-divisor?

We do not know whether R is left zero-divisor when both R/I and I are left zero-divisor for an ideal I of R. In view of this question, the following proposition may be of some interest. According to Lambek [5], a ring R is called *symmetric* if $abc = 0 \Leftrightarrow acb = 0$ for all $a, b, c \in R$, i.e., if $bc \in r_R(a) \Leftrightarrow cb \in r_R(a)$. We call a ring R left symmetric if rst = 0 implies srt = 0 for all $r, s, t \in R$. For example, let $R = 2\mathbb{Z}$. Then $T(R, R) \cong \left\{ \begin{pmatrix} r & s \\ 0 & r \end{pmatrix} \mid r, s \in R \right\}$ is left symmetric. Note that this definition is equivalent to that of symmetric rings for rings with identity, but in general they are different. For instance, $R = \begin{pmatrix} 0 & \mathbb{Z} \\ 0 & \mathbb{Z} \end{pmatrix}$ is symmetric but not left symmetric.

Proposition 1.8 Let R be left symmetric and I a non-trivial ideal of R which is a right annihilator in R. If R/I is left zero-divisor, then R is left zero-divisor.

Proof Since I is non-trivial, we assume that $I = r_R(S)$ where $0 \neq S \subseteq R$. For any $a \in R$, there exists $\overline{0} \neq \overline{t} \in R/I$ such that $\overline{at} = \overline{0}$, i.e., $at \in I = r_R(S)$ since R/I is left zero-divisor. It follows that Sat = 0. Consequently aSt = 0 since R is left symmetric. Note that $t \notin I$, we have $St \neq 0$. This implies that there exists $s_0 \in S$ such that $s_0t \neq 0$ and $a(s_0t) = 0$. Thus $r_R(a) \neq 0$, as required. \Box

It is natural to conjecture that the homomorphic image R/I of R and eR, eRe may also be left (right) zero-divisor for a left (right) zero-divisor ring $R, I \triangleleft R$ and $e = e^2 \in R$. We have, however, a negative answer to these situations by the following example.

Example 1.9 The ring
$$R = \left\{ \begin{pmatrix} a & 0 \\ b & 0 \end{pmatrix} \mid a, b \in \mathbb{Z} \right\}$$
 is left zero-divisor. We have $I = \begin{pmatrix} 0 & 0 \\ \mathbb{Z} & 0 \end{pmatrix} \triangleleft$
 $R, e = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} = e^2 \in R$ and $ReR = R$, but $R/I \cong \begin{pmatrix} \mathbb{Z} & 0 \\ 0 & 0 \end{pmatrix} = eR = eRe$ is not left zero-divisor.

From the above example it also follows that the left zero-divisor property of rings is not a radical property in the sense of Amitsur and Kurosh.

2. Strong left zero-divisor rings and RFA rings

Observe that for some rings, they not only satisfy $r_R(a) \neq 0$ for any $a \in R$ but also have $r_R(R) \neq 0$. In this section, we will focus on these rings.

Definition 2.1 A ring R is called strong left (right) zero-divisor if $r_R(R) \neq 0$ ($l_R(R) \neq 0$).

Any strong left (right) zero-divisor ring is left (right) zero-divisor, but the converse does not hold.

Example 2.2 Let $R = \sum_{i=2}^{\infty} \mathbb{Z}_2 x_i$ be a countably infinite dimensional vector space over the field $\mathbb{Z}_2 = \{0, 1\}$, with basis $T = \{x_2, x_3, \ldots, x_n, \ldots\}$. Multiplication of the base vectors is defined as

$$x_i x_j = \begin{cases} 0, & \text{if } (i,j) \neq 1, \\ x_{ij}, & \text{if } (i,j) = 1, \end{cases}$$

where (i, j) is the maximal prime divisor of i and j. Thought of as a ring, R is the set of all finite sums $\sum a_i x_i$, where a_i are elements in the field Z_2 . Addition is defined articulately as $a_i x_i + a_j x_j$ just written together, if $i \neq j$; and if i = j, then $a_i x_i + a'_i x_i = (a_i + a'_i) x_i$. Multiplication is distributive and defined as above. The ring R is then commutative. Moreover, for any $a = a_{i_1} x_{i_1} + a_{i_2} x_{i_2} + \cdots + a_{i_n} x_{i_n} \in R$, we have $a^2 = 0$, and hence R is zero-divisor.

For any $a = x_{i_1} + x_{i_2} + \cdots + x_{i_n} \in R$ and any positive integer $n \ge 2$, since (n, n+1) = 1, we get that

$$x_{i+1}a = x_{i_1}(i_{1+1}) + \cdots, \quad x_{[i_1(i_1+1)+1]}a = x_{j_1} + \cdots,$$

where $j_1 = i_1(i_1 + 1)[i_1 (i_1 + 1) + 1], \ldots$ Thus, if $a \in r_R(T)$, then necessarily a = 0, whence $r_R(R) \subseteq r_R(T) = 0$. So R is not strong left zero-divisor.

For a ring R with a ring endomorphism $\alpha : R \to R$, a skew polynomial ring $R[x; \alpha]$ of R is the ring obtained by giving the polynomial ring over R with the new multiplication $xr = \alpha(r)x$ for all $r \in R$.

Theorem 2.3 Let R be a ring and $\alpha : R \to R$ an epimorphism. Then R is strong left zerodivisor if and only if so is $R[x; \alpha]$. **Proof** If Rb = 0, then $R\alpha(b) = \alpha(R)\alpha(b) \subseteq \alpha(Rb) = 0$, hence $\alpha(r_R(R)) \subseteq r_R(R)$. Now assume that R is strong left zero-divisor, then $T = r_R(R) \neq 0$. For every $f(x) = \sum_{i=0}^n a_i x^i \in R[x;\alpha]$, taking any $0 \neq t(x) = \sum_{j=0}^m b_j x^j \in T[x;\alpha] \subseteq R[x;\alpha]$, we obtain

$$f(x)t(x) = \sum_{k=0}^{m+n} \sum_{i+j=k} a_i \alpha^i(b_j) x^k = 0.$$

Hence $r_{R[x;\alpha]}(R[x;\alpha]) \neq 0$.

Conversely, assume that $R[x; \alpha]$ is strong left zero-divisor. For any $0 \neq f(x) = \sum_{i=0}^{n} a_i x^i \in r_{R[x;\alpha]}(R[x;\alpha])$, there exists at least one $a_{i_k} \neq 0, 0 \leq i_k \leq n, a_{i_k} \in R$. Note that $R \subseteq R[x;\alpha]$ and Rf(x) = 0. It follows that $Ra_{i_k} = 0$ and $r_R(R) \neq 0$. \Box

Theorem 2.3 answers partially the question raised in the above section.

Recall that for an infinite set of commuting indeterminates $\{x_{\lambda}\}$ over R, Gilmer-Grams [3] defined rings

$$R[\{x_{\lambda}\}] = \bigcup \{R[F] \mid F \text{ is a finite subset of } \{x_{\lambda}\}\} \text{ and}$$
$$R[[\{x_{\lambda}\}]] = \bigcup \{R[[F]] \mid F \text{ is a finite subset of } \{x_{\lambda}\}\}.$$

Theorem 2.4 Let R be a ring. Then the following statements are equivalent:

- (1) R is strong left zero-divisor.
- (2) $T_n(R)$ is strong left zero-divisor for any $n \in \mathbb{N}$.
- (3) $QM_2(R)$ is strong left zero-divisor.
- (4) $S_n(R)$ is strong left zero-divisor for any $n \in \mathbb{N}$.
- (5) $R[x]/(x^n)$ is strong left zero-divisor for any $n \in \mathbb{N}$.
- (6) T(R, R) is strong left zero-divisor.
- (7) $R[x; x^{-1}]$ is strong left zero-divisor.
- (8) $R[\{x_{\lambda}\}]$ is strong left zero-divisor.
- (9) $R[[\{x_{\lambda}\}]]$ is strong left zero-divisor.

Proof Note that if R is strong left zero-divisor, then $S = r_R(R) \neq 0$ and there exists $0 \neq t(\{x_\lambda\}) \in S[\{x_\lambda\}] \subseteq S[[\{x_\lambda\}]]$ such that $R[\{x_\lambda\}]t(\{x_\lambda\}) = 0$ $(R[[\{x_\lambda\}]]t(\{x_\lambda\}) = 0)$, hence $R[\{x_\lambda\}]$ $(R[[\{x_\lambda\}]])$ is strong left zero-divisor. It follows that $(1) \Leftrightarrow (8)$ and $(1) \Leftrightarrow (9)$.

Making a little modification in the proof of Theorem 1.3, we can prove that $(1) \Leftrightarrow (2) \Leftrightarrow (3) \Leftrightarrow (4) \Leftrightarrow (5) \Leftrightarrow (6)$.

By Theorem 2.3, we know that R is strong left zero-divisor if and only if so is R[x]. By analogy with the proof of Proposition 1.4, it is easy to prove that $(1) \Leftrightarrow (7)$. \Box

Theorem 2.5 A ring R is strong left zero-divisor if and only if so is $M_n(R)$, the ring of $n \times n$ matrices over R, for any positive integer n.

Proof Assume that R is strong left zero-divisor and $A = (a_{ij}) \in M_n(R)$. Then $r_R(R) \neq 0$. For any $0 \neq r \in r_R(R)$, we have $a_{ij}r = 0, \forall 1 \leq i, j \leq n$. Putting $T = (t_{ij}) \in M_n(R)$, where $t_{ii} = r$ and $t_{ij} = 0$ if $i \neq j, 1 \leq i, j \leq n$, we get that $T \neq 0$ and AT = 0. Hence $r_{M_n(R)}(M_n(R)) \neq 0$ because A is arbitrary.

Rings in which every element is a left zero-divisor

Conversely, assume that $M_n(R)$ is strong left zero-divisor and $r \in R$. Take any $0 \neq A = (a_{ij}) \in r_{M_n(R)}(M_n(R)) \neq 0$, and suppose that some $a_{kl} \neq 0, 1 \leq k, l \leq n$. If we put $T = (t_{ij})$ as above, then from TA = 0 one can get that $ra_{kl} = 0$. This implies that $a_{kl} \in r_R(R) \neq 0$. \Box

Given a monoid G and a ring R, we use R[G] to denote the monoid ring of G over R.

Theorem 2.6 A ring R is strong left zero-divisor if and only if so is R[G] for any monoid G.

Proof Assume that $r_R(R) \neq 0$ and $\sum r_i g_i \in R[G]$. For any $0 \neq a \in r_R(R)$, we have $(\sum r_i g_i)(ae) = \sum (r_i a)g_i = 0$, where e is the identity of G. Thus $0 \neq ae \in r_{R[G]}(R[G])$.

Conversely, assume that R[G] is strong left zero-divisor and $a \in R$. If $0 \neq \sum r_i g_i \in r_{R[G]}(R[G])$, then from $0 = (ae)(\sum r_i g_i) = \sum (a_i r_i)g_i$ we get that $ar_i = 0$ for any *i*. This shows that $r_i \in r_R(R)$ for any *i*, and $r_R(R) \neq 0$. \Box

Let G denote a group with identity e, and $R = \bigoplus_{g \in G} R_g$ be a G-graded ring. Beattie [1] defined the generalized smash product $R#G^*$ of R and G to be the free left R-module $\bigoplus_{g \in G} RP_g$ with multiplication defined for elements aP_g and bP_h by $(aP_g)(bP_h) = ab_{gh^{-1}}P_h$, and extended to general elements of $R#G^*$ by linearity.

Theorem 2.7 Let $R = \bigoplus_{g \in G} R_g$ be a *G*-graded ring. Then *R* is strong left zero-divisor if and only if so is $R # G^*$.

Proof Assume that $r_R(R) \neq 0$ and $\sum a_i P_{g_i} \in R \# G^*$. Take any $0 \neq r \in r_R(R)$. Since $r_R(R)$ is a graded ideal of R, $(\sum a_i P_{g_i}) r P_e = \sum a_i r_{g_i} P_e = 0$. This implies that $0 \neq r P_e \in r_{R \# G^*}(R \# G^*)$. Conversely, assume that $R \# G^*$ is strong left zero-divisor. Taking

$$0 \neq \sum a^{(i)} P_{g_i} \in r_{R \# G^*}(R \# G^*),$$

we get that $0 = r_g P_h(\sum_i a^{(i)} P_{g_i}) = \sum_i r_g a^{(i)}_{hg_i^{-1}} P_{g_i}$ for any $g, h \in G$ and $r_g \in R_g$. Thus for every $g_i \in G, r_g a^{(i)}_{hg_i^{-1}} = 0$. If $a^{(i_0)} \neq 0$, then there exists an $h_0 \in G$ such that $a^{(i_0)}_{h_0g_{i_0}^{-1}} \neq 0$, and hence $a^{(i_0)}_{h_0g_{i_0}^{-1}} \in r_R(r_g) \neq 0$. Since $g \in G$ and $r_g \in R_g$ are arbitrary, we have $a^{(i_0)}_{h_0g_{i_0}^{-1}} \in r_R(R)$. \Box

Camillo-Nielson [2] introduced the concept of right finite annihilated rings (in short, RFA rings) to describe exactly when a direct product or direct sum of rings is right McCoy. A ring R is called RFA if every finite subset of R has a nonzero right annihilator.

Clearly, strong left zero-divisor rings are RFA rings, but the converse does not hold.

Example 2.8 Let $R = \mathbb{Z}[x_1, x_2, x_3, \ldots]/(x_1^2, x_2^3, x_3^4, \ldots)$, and $A = \langle \overline{x_1}, \overline{x_2}, \overline{x_3}, \ldots \rangle$ be the ideal of R generated by $\overline{x_1}, \overline{x_2}, \overline{x_3}, \ldots$ Then A is nil, left zero-divisor and RFA. But A is neither nilpotent nor strong left zero-divisor.

For RFA rings, we have the following

Proposition 2.9 Let R be a ring and $S = \{(a_n)_{n=1}^{\infty} \in \prod R \mid a_n \text{ is a eventually constant}\}$, a subring of the countable direct product $\prod_{n=1}^{\infty} R$. Then ring R is RFA if and only if so is S.

Proof It is a trivial verification.

Theorem 2.10 Let R be a ring. Then the following statements are equivalent:

- (1) R is RFA.
- (2) $T_n(R)$ is RFA for any $n \in \mathbb{N}$.
- (3) $QM_2(R)$ is RFA.
- (4) $S_n(R)$ is RFA for any $n \in \mathbb{N}$.
- (5) $R[x]/(x^n)$ is RFA for any $n \in \mathbb{N}$.
- (6) T(R, R) is RFA.
- (7) $R[x; x^{-1}]$ is RFA.
- (8) $R[\{x_{\lambda}\}]$ is RFA.

Proof (1) \Rightarrow (2). Assume that $F = \{A_k = (a_{ij}^k) \in T_n(R), k = 1, 2, ..., m\}$ is a finite subset of $T_n(R)$. Then $E = \{a_{ij}^k | 1 \le i, j \le n, k = 1, 2, ..., m\}$ is a finite subset of R, there exists $0 \ne t \in R$ such that $a_{ij}^k t = 0$ for every a_{ij}^k $(1 \le i, j \le n, 1 \le k \le m)$ since R is RFA. Putting $D = (d_{ij}) \in T_n(R)$ with $d_{11} = t$ and zeros elsewhere, we have that $A_k D = 0$ for $1 \le k \le m$.

(2) \Rightarrow (3). Holds since $QM_2(R) \cong T_2(R)$.

(3) \Rightarrow (1). For any finite subset F of R, $E = \{A_r = \begin{pmatrix} r & 0 \\ 0 & r \end{pmatrix} | r \in F\}$ is a finite subset of

 $QM_2(R)$. Then there exists $0 \neq T = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in QM_2(R)$ such that $A_rT = 0$ for every $r \in F$, it follows that ra = rb = rc = rd = 0. Notice that $T \neq 0$, there is $0 \neq s \in R$ such that Fs = 0, as desired.

 $(1) \Rightarrow (4)$. Let $F = \{A_k = (a_{ij}^k) \in S_n(R), k = 1, 2, ..., m\}$ be a finite subset of $S_n(R)$. Then $E = \{a_{ij}^k | 1 \le i, j \le n, k = 1, 2, ..., m\}$ is a finite subset of R, there exists $0 \ne t \in R$ such that $a_{ij}^k t = 0$ for every a_{ij}^k $(1 \le i, j \le n, 1 \le k \le m)$ since R is RFA. Taking $0 \ne T = (t_{ij}) \in S_n(R)$ with $t_{1n} = t$ and zeros elsewhere, we obtain that $A_k T = 0$ for $1 \le k \le m$.

- (4) \Rightarrow (5). Holds by $R[x]/(x^n) \cong S_n(R)$.
- (5) \Rightarrow (6). Follows from $T(R, R) \cong R[x]/(x^2)$.

(6) \Rightarrow (1). Let F be a finite subset of R and $E = \{A_r = \begin{pmatrix} r & 0 \\ 0 & r \end{pmatrix} | r \in F\}$. Then there

exists $0 \neq T = \begin{pmatrix} t & m \\ 0 & t \end{pmatrix} \in T(R, R)$ such that $A_r T = 0$ for any $r \in F$, it follows that rt = 0 and rm = 0. Notice that $T \neq 0$, we have that $t \neq 0$ or $m \neq 0$. Consequently in any case there is $0 \neq s \in R$ such that Fs = 0, as desired.

(1) \Rightarrow (8). Let $E = \{f_i\{x_\lambda\} | i = 1, 2, ..., m\}$ be a finite subset of $R[\{x_\lambda\}]$. Then $E \subseteq R[F]$ for some finite subset F of $\{x_\lambda\}$, and the set H of coefficients of all $f_i\{x_\lambda\} \subseteq E$ is a finite subset of R. Hence there exists $0 \neq t \in R$ such that Ht = 0, it follows that $f_i\{x_\lambda\}t = 0$ for $1 \leq k \leq m$.

(8) \Rightarrow (1). Let *E* be a finite subset of *R*. Then $E \subseteq R[\{x_{\lambda}\}]$, and there exists $0 \neq f\{x_{\lambda}\} \in R[\{x_{\lambda}\}]$ such that $Ef\{x_{\lambda}\} = 0$. Thus Ea = 0 for any nonzero coefficient *a* of $f\{x_{\lambda}\}$.

(1) \Leftrightarrow (7). The proof is analogous to that of (1) \Leftrightarrow (8). \Box

Example 2.11 Consider the ring $R = \begin{pmatrix} 0 & \mathbb{Z} & \mathbb{Z} \\ 0 & 0 & \mathbb{Z} \\ 0 & 0 & \mathbb{Z} \end{pmatrix}$. For any $A = \begin{pmatrix} 0 & a & b \\ 0 & 0 & c \\ 0 & 0 & d \end{pmatrix} \in R$ and

 $T = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \in R$, we have AT = 0, which implies that R is strong left zero-divisor.

We conclude this paper with the following chart:

$$\begin{array}{ccc} \mathrm{nilpotent} & \longrightarrow \mathrm{locally} & \mathrm{nilpotent} & \longrightarrow \mathrm{nil} \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & &$$

No other implications hold (except by transitivity). Note that Example 2.11 shows that a strong left zero-divisor, left zero-divisor and RFA ring are not necessarily nilpotent, nil and locally nilpotent, respectively; and Example 20.2 in Szasz [6] also shows that a left zero-divisor ring is not necessarily an RFA ring.

References

- M. BEATTIE. A generalization of the smash product of a graded ring. J. Pure Appl. Algebra, 1988, 52(3): 219–226.
- [2] V. CAMILLO, P. NIELSEN. McCoy rings and zero-divisors. J. Pure Appl. Algebra, 2008, 212: 599–615.
- [3] R. GILMER, A. GRAMES, T. PARKER. Zero divisors in power series. J. Reine Angew. Math., 1975, 278/279: 145-164.
- [4] N. K. KIM, Y. LEE. Extensions of reversible rings. J. Pure Appl. Algebra, 2003, 185: 207–223.
- [5] J. LEMBEK. On the representation of modules by sheaves of factor modules. Canad. Math. Bull., 1971, 14(3): 359–368.
- [6] F. A. SZASZ. Radicals of Rings. John Wiley & Sons, Ltd., Chichester, 1981.