Rings in which Every Element Is A Left Zero-Divisor

Yanli REN ${ }^{1}$, Yao WANG ${ }^{2, *}$
1. School of Mathematics and Information Technology, Nanjing Xiaozhuang University, Jiangsu 211171, P. R. China;
2. School of Mathematics and Statistics, Nanjing University of Information Science and Technology, Jiangsu 210044, P. R. China

Abstract

We introduce the concepts of left (right) zero-divisor rings, a class of rings without identity. We call a ring R left (right) zero-divisor if $r_{R}(a) \neq 0\left(l_{R}(a) \neq 0\right)$ for every $a \in R$, and call R strong left (right) zero-divisor if $r_{R}(R) \neq 0\left(l_{R}(R) \neq 0\right)$. Camillo and Nielson called a ring right finite annihilated (RFA) if every finite subset has non-zero right annihilator. We present in this paper some basic examples of left zero-divisor rings, and investigate the extensions of strong left zero-divisor rings and RFA rings, giving their equivalent characterizations.

Keywords zero-divisor; left zero-divisor ring; strong left zero-divisor ring; RFA ring; extensions of rings.

MR(2010) Subject Classification 16S70; 16U99

1. Some examples of left zero-divisor rings

Throughout this paper rings are general associative rings (with or without identity), \mathbb{Z} denotes the ring of integers and \mathbb{N} denotes the set of positive integers. Given a ring R, the right (left) annihilator of a subset X of R is defined by $r_{R}(X)=\{a \in R \mid X a=0\}\left(l_{R}(X)=\{a \in R \mid\right.$ $a X=0\}$), the polynomial ring over R in one indeterminate x is denoted by $R[x]$.

Definition 1.1 A ring R is called left (right) zero-divisor if $r_{R}(a) \neq 0\left(l_{R}(a) \neq 0\right)$ for every $a \in R$, and a ring R is called zero-divisor if it is both left and right zero-divisor.

Obviously, any non-zero nil ring is zero-divisor; and rings with identity are never left (right) zero-divisor. If R is reversible (a ring R is called reversible if $a b=0$ implies $b a=0$ for $a, b \in R$.), then R is left zero-divisor if and only if R is right zero-divisor. In general, a left (right) zero-divisor ring need not be a nil ring and the zero-divisor property for a ring is not left-right symmetric.

Proposition 1.2 If one of $\left\{R_{i}\right\}_{i \in W}$ is left zero-divisor, so is $R=\bigoplus_{i \in W} R_{i}\left(R=\prod_{i \in W} R_{i}\right)$.
Note that $R=\bigoplus_{i \in W} R_{i}\left(R=\prod_{i \in W} R_{i}\right)$ is left zero-divisor does not imply that every $R_{i}(i \in W)$ is left zero-divisor.

[^0]For any ring R, we define $Q M_{2}(R)=\left\{\left.\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \right\rvert\, a+b=c+d, a, b, c, d \in R\right\}$, then $Q M_{2}(R)$ is a subring of $M_{2}(R)$. Moreover, given an (R, R)-bimodule M, the trivial extension of R by M (see [4]) is the ring $T(R, M)=R \bigoplus M$ with the usual addition and the following multiplication:

$$
\left(r_{1}, m_{1}\right)\left(r_{2}, m_{2}\right)=\left(r_{1} r_{2}, r_{1} m_{2}+m_{1} r_{2}\right)
$$

This is isomorphic to the ring of all matrices $\left(\begin{array}{cc}r & m \\ 0 & r\end{array}\right)$, where $r \in R$ and $m \in M$ and the usual matrix operations are used.

Theorem 1.3 The following statements are equivalent for a ring R :
(1) R is left zero-divisor.
(2) For any $n \in \mathbb{N}$, the ring $T_{n}(R)$ of $n \times n$ upper triangular matrices over R is left zero-divisor.
(3) $Q M_{2}(R)$ is left zero-divisor.
(4) For any $n \in \mathbb{N}, S_{n}(R)=\left\{\left.\left(\begin{array}{ccccc}a_{0} & a_{1} & a_{2} & \cdots & a_{n-1} \\ 0 & a_{0} & a_{1} & \cdots & a_{n-2} \\ 0 & 0 & a_{0} & \cdots & a_{n-3} \\ \cdots & & \cdots & & \cdots \\ 0 & 0 & 0 & \cdots & a_{0}\end{array}\right) \right\rvert\, a_{i} \in R, i=0,1, \ldots, n-1\right\}$ is left zero-divisor.
(5) For any $n \in \mathbb{N}, R[x] /\left(x^{n}\right)$ is left zero-divisor, where $\left(x^{n}\right)$ is the ideal generated by x^{n}.
(6) $T(R, R)$ is left zero-divisor.

Proof $(1) \Rightarrow(2)$. Assume that R is left zero-divisor and $A=\left(a_{i j}\right) \in T_{n}(R)$, where $a_{i j}=0$ if $i>j$. Then there exists $0 \neq t_{i i} \in R$ such that $a_{i i} t_{i i}=0$ for any $i, 1 \leq i \leq n$. Taking $D=\left(d_{i j}\right)$, where $d_{11}=t_{11} \neq 0, d_{i j}=0,1<i, j \leq n$, we get $0 \neq D \in T_{n}(R)$ such that $A D=0$. Hence $T_{n}(R)$ is left zero-divisor.
$(2) \Rightarrow(3)$. We construct a map $f: Q M_{2}(R) \rightarrow T_{2}(R),\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \mapsto\left(\begin{array}{cc}a+b & b \\ 0 & d-b\end{array}\right)$, for any $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in Q M_{2}(R)$. It is easy to verify that f is an injective and a ring homomorphism. For any $\left(\begin{array}{cc}x & z \\ 0 & y\end{array}\right) \in T_{2}(R)$, since

$$
f\left(\left(\begin{array}{cc}
x-z & z \\
x-y-z & y+z
\end{array}\right)\right)=\left(\begin{array}{ll}
x & z \\
0 & y
\end{array}\right)
$$

f is a ring isomorphism. This completes the proof by (2).
$(3) \Rightarrow(1)$. Let $r \in R$. Then $A=\left(\begin{array}{cc}r & 0 \\ 0 & r\end{array}\right) \in Q M_{2}(R)$. Since $Q M_{2}(R)$ is left zero-
divisor, there exists $0 \neq T=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in Q M_{2}(R)$ such that $A T=\left(\begin{array}{ll}r & 0 \\ 0 & r\end{array}\right)\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)=$ $\left(\begin{array}{ll}r a & r b \\ r c & r d\end{array}\right)=0$, it follows that $r a=r b=r c=r d=0$. Notice that $T \neq 0$, there must be $0 \neq s \in R$ such that $r s=0$, as desired.
(1) $\Rightarrow(4)$. Let $A=\left(a_{i j}\right) \in S_{n}(R)$, where $a_{i i}=a_{0}, 1 \leq i \leq n$. Since R is left zero-divisor, there exists $0 \neq t_{0} \in R$ such that $a_{0} t_{0}=0$. Taking $0 \neq T=\left(t_{i j}\right) \in S_{n}(R)$, where $t_{1 n}=t_{0}$ and $t_{i j}=0,1<i \leq n, 1 \leq j<n$, we get $A T=0$. Thus, $S_{n}(R)$ is left zero-divisor.
(4) $\Rightarrow(5)$. Note that $R[x] /\left(x^{n}\right) \cong S_{n}(R)$, we obtain the result by (4).
$(5) \Rightarrow(6)$. This is obvious since $T(R, R) \cong R[x] /\left(x^{2}\right)$.
$(6) \Rightarrow(1)$. Let $a \in R$. Then $A=\left(\begin{array}{cc}a & 0 \\ 0 & a\end{array}\right) \in T(R, R)$. Since $T(R, R)$ is left zerodivisor, there exists $0 \neq T=\left(\begin{array}{cc}t & m \\ 0 & t\end{array}\right) \in T(R, R)$ such that $A T=\left(\begin{array}{cc}a & 0 \\ 0 & a\end{array}\right)\left(\begin{array}{cc}t & m \\ 0 & t\end{array}\right)=$ $\left(\begin{array}{cc}a t & a m \\ 0 & a t\end{array}\right)=0$, it follows that $a t=0$ and $a m=0$. Notice that $T \neq 0$, we have $t \neq 0$ or $m \neq 0$. Consequently in any case there is $0 \neq s \in R$ such that as $=0$, as asserted.

Let $R\left[x ; x^{-1}\right]$ be the ring of Laurent polynomials in one variable x with coefficients in a ring R, i.e., $R\left[x ; x^{-1}\right]$ consists of all formal sums $\sum_{i=k}^{n} m_{i} x^{i}$ with obvious addition and multiplication, where $m_{i} \in R$ and k, n are (possible negative) integers.

Proposition 1.4 Let R be a ring. Then $R[x]$ is left zero-divisor if and only if so is $R\left[x ; x^{-1}\right]$.
Proof Suppose that $R[x]$ is left zero-divisor. Let $f(x) \in R\left[x ; x^{-1}\right]$. Then there exists an $n \in N$ such that $f_{1}(x)=f(x) x^{n} \in R[x]$. Hence there exists $0 \neq g(x) \in R[x]$ such that $f_{1}(x) g(x)=f(x) g(x) x^{n}=0$, it follows that $f(x) g(x)=0$ and $R\left[x ; x^{-1}\right]$ is left zero-divisor.

Conversely, assume that $R\left[x ; x^{-1}\right]$ is left zero-divisor, and let $f(x) \in R[x]$. Then there exists $0 \neq g(x) \in R\left[x ; x^{-1}\right]$ such that $f(x) g(x)=0$ since $R[x] \subseteq R\left[x ; x^{-1}\right]$. As $g(x)=x^{-m} g_{1}(x)$ for some $m \in \mathbb{N}$ and $0 \neq g_{1}(x) \in R[x], f(x) g(x)=x^{-m} f(x) g_{1}(x)=0$, we obtain that $f(x) g_{1}(x)=0$.

Proposition 1.5 Let R and S be rings and $V={ }_{R} V_{S}$ be an (R, S)-bimodule. If R is left zero-divisor, so is $A=\left(\begin{array}{cc}R & V \\ 0 & S\end{array}\right)$.

Proof Take any $\left(\begin{array}{ll}r & v \\ 0 & s\end{array}\right) \in A$. For $r \in R$, there exists $0 \neq t \in R$ such that $r t=0$ since R is left zero-divisor. Thus, we get $0 \neq\left(\begin{array}{cc}t & 0 \\ 0 & 0\end{array}\right) \in A$ such that $\left(\begin{array}{cc}r & v \\ 0 & s\end{array}\right)\left(\begin{array}{cc}t & 0 \\ 0 & 0\end{array}\right)=0$, which implies that A is left zero-divisor.

Proposition 1.6 If a ring R is left zero-divisor, so is the ring

$$
V(R)=\left\{\left.\left(\begin{array}{cccccc}
a & d & 0 & 0 & 0 & 0 \\
0 & b & 0 & 0 & 0 & 0 \\
0 & 0 & c & e & 0 & 0 \\
0 & 0 & 0 & a & 0 & 0 \\
0 & 0 & 0 & 0 & b & f \\
0 & 0 & 0 & 0 & 0 & c
\end{array}\right) \right\rvert\, a, b, c, d, e, f \in R\right\}
$$

Proof Fix $A \in V(R)$. Since R is left zero-divisor, there exists $0 \neq a^{\prime} \in R$ such that $a a^{\prime}=0$. Taking $0 \neq T=\left(t_{i j}\right) \in V(R)$, where $t_{12}=a^{\prime}$ and 0 elsewhere, we obtain that $A T=0$.

Let R be a commutative ring, M an R-module and σ an endomorphism of R. Recall that the Nagata extension of R by M and σ (see [4]), denoted by $N(R, M, \sigma$), is the ring $R \bigoplus M$ with the usual addition and the multiplication $\left(r_{1}, m_{1}\right)\left(r_{2}, m_{2}\right)=\left(r_{1} r_{2}, \sigma\left(r_{1}\right) m_{2}+r_{2} m_{1}\right)$, where $r_{i} \in R$ and $m_{i} \in M, i=1,2$.

Proposition 1.7 Let R be a commutative left zero-divisor ring. Then the Nagata extension $N(R, R, \sigma)$ of R by R and σ is left zero-divisor.

Proof For any $(r, m) \in N(R, R, \sigma)$, we have $0 \neq t \in R$ such that $\sigma(r) t=0$ since R is left zero-divisor and $\sigma(R) \subseteq R$. Putting $0 \neq(0, t) \in N(R, R, \sigma)$, we get that $(r, m)(0, t)=$ $(r 0, \sigma(r) t+0 m)=(0,0)$. Therefore $N(R, R, \sigma)$ is left zero-divisor.

It is interesting to know if the polynomial ring of a ring share the same property with the ring. If $R[x]$ is left zero-divisor, then R is again left zero-divisor. We raise the following question: if R is left zero-divisor, is the polynomial ring $R[x]$ necessarily left zero-divisor?

We do not know whether R is left zero-divisor when both R / I and I are left zero-divisor for an ideal I of R. In view of this question, the following proposition may be of some interest. According to Lambek [5], a ring R is called symmetric if $a b c=0 \Leftrightarrow a c b=0$ for all $a, b, c \in R$, i.e., if $b c \in r_{R}(a) \Leftrightarrow c b \in r_{R}(a)$. We call a ring R left symmetric if $r s t=0$ implies $s r t=0$ for all $r, s, t \in R$. For example, let $R=2 \mathbb{Z}$. Then $T(R, R) \cong\left\{\left.\left(\begin{array}{cc}r & s \\ 0 & r\end{array}\right) \right\rvert\, r, s \in R\right\}$ is left symmetric. Note that this definition is equivalent to that of symmetric rings for rings with identity, but in general they are different. For instance, $R=\left(\begin{array}{ll}0 & \mathbb{Z} \\ 0 & \mathbb{Z}\end{array}\right)$ is symmetric but not left symmetric.
Proposition 1.8 Let R be left symmetric and I a non-trivial ideal of R which is a right annihilator in R. If R / I is left zero-divisor, then R is left zero-divisor.

Proof Since I is non-trivial, we assume that $I=r_{R}(S)$ where $0 \neq S \subseteq R$. For any $a \in R$, there exists $\overline{0} \neq \bar{t} \in R / I$ such that $\bar{a} \bar{t}=\overline{0}$, i.e., at $\in I=r_{R}(S)$ since R / I is left zero-divisor. It follows that $S a t=0$. Consequently $a S t=0$ since R is left symmetric. Note that $t \notin I$, we have $S t \neq 0$. This implies that there exists $s_{0} \in S$ such that $s_{0} t \neq 0$ and $a\left(s_{0} t\right)=0$. Thus $r_{R}(a) \neq 0$, as required.

It is natural to conjecture that the homomorphic image R / I of R and $e R, e R e$ may also be left (right) zero-divisor for a left (right) zero-divisor ring $R, I \triangleleft R$ and $e=e^{2} \in R$. We have, however, a negative answer to these situations by the following example.
Example 1.9 The ring $R=\left\{\left.\left(\begin{array}{ll}a & 0 \\ b & 0\end{array}\right) \right\rvert\, a, b \in \mathbb{Z}\right\}$ is left zero-divisor. We have $I=\left(\begin{array}{ll}0 & 0 \\ \mathbb{Z} & 0\end{array}\right) \triangleleft$ $R, e=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)=e^{2} \in R$ and $R e R=R$, but $R / I \cong\left(\begin{array}{cc}\mathbb{Z} & 0 \\ 0 & 0\end{array}\right)=e R=e R e$ is not left zerodivisor.

From the above example it also follows that the left zero-divisor property of rings is not a radical property in the sense of Amitsur and Kurosh.

2. Strong left zero-divisor rings and RFA rings

Observe that for some rings, they not only satisfy $r_{R}(a) \neq 0$ for any $a \in R$ but also have $r_{R}(R) \neq 0$. In this section, we will focus on these rings.

Definition 2.1 A ring R is called strong left (right) zero-divisor if $r_{R}(R) \neq 0\left(l_{R}(R) \neq 0\right)$.
Any strong left (right) zero-divisor ring is left (right) zero-divisor, but the converse does not hold.

Example 2.2 Let $R=\sum_{i=2}^{\infty} \mathbb{Z}_{2} x_{i}$ be a countably infinite dimensional vector space over the field $\mathbb{Z}_{2}=\{0,1\}$, with basis $T=\left\{x_{2}, x_{3}, \ldots, x_{n}, \ldots\right\}$. Multiplication of the base vectors is defined as

$$
x_{i} x_{j}= \begin{cases}0, & \text { if }(i, j) \neq 1 \\ x_{i j}, & \text { if }(i, j)=1\end{cases}
$$

where (i, j) is the maximal prime divisor of i and j. Thought of as a ring, R is the set of all finite sums $\sum a_{i} x_{i}$, where a_{i} are elements in the field Z_{2}. Addition is defined articulately as $a_{i} x_{i}+a_{j} x_{j}$ just written together, if $i \neq j$; and if $i=j$, then $a_{i} x_{i}+a_{i}^{\prime} x_{i}=\left(a_{i}+a_{i}^{\prime}\right) x_{i}$. Multiplication is distributive and defined as above. The ring R is then commutative. Moreover, for any $a=a_{i_{1}} x_{i_{1}}+a_{i_{2}} x_{i_{2}}+\cdots+a_{i_{n}} x_{i_{n}} \in R$, we have $a^{2}=0$, and hence R is zero-divisor.

For any $a=x_{i_{1}}+x_{i_{2}}+\cdots+x_{i_{n}} \in R$ and any positive integer $n \geq 2$, since $(n, n+1)=1$, we get that

$$
x_{i+1} a=x_{i_{1}\left(i_{1}+1\right)}+\cdots, \quad x_{\left[i_{1}\left(i_{1}+1\right)+1\right]} a=x_{j_{1}}+\cdots,
$$

where $j_{1}=i_{1}\left(i_{1}+1\right)\left[i_{1}\left(i_{1}+1\right)+1\right], \ldots$. Thus, if $a \in r_{R}(T)$, then necessarily $a=0$, whence $r_{R}(R) \subseteq r_{R}(T)=0$. So R is not strong left zero-divisor.

For a ring R with a ring endomorphism $\alpha: R \rightarrow R$, a skew polynomial ring $R[x ; \alpha]$ of R is the ring obtained by giving the polynomial ring over R with the new multiplication $x r=\alpha(r) x$ for all $r \in R$.

Theorem 2.3 Let R be a ring and $\alpha: R \rightarrow R$ an epimorphism. Then R is strong left zerodivisor if and only if so is $R[x ; \alpha]$.

Proof If $R b=0$, then $R \alpha(b)=\alpha(R) \alpha(b) \subseteq \alpha(R b)=0$, hence $\alpha\left(r_{R}(R)\right) \subseteq r_{R}(R)$. Now assume that R is strong left zero-divisor, then $T=r_{R}(R) \neq 0$. For every $f(x)=\sum_{i=o}^{n} a_{i} x^{i} \in R[x ; \alpha]$, taking any $0 \neq t(x)=\sum_{j=0}^{m} b_{j} x^{j} \in T[x ; \alpha] \subseteq R[x ; \alpha]$, we obtain

$$
f(x) t(x)=\sum_{k=0}^{m+n} \sum_{i+j=k} a_{i} \alpha^{i}\left(b_{j}\right) x^{k}=0 .
$$

Hence $r_{R[x ; \alpha]}(R[x ; \alpha]) \neq 0$.
Conversely, assume that $R[x ; \alpha]$ is strong left zero-divisor. For any $0 \neq f(x)=\sum_{i=0}^{n} a_{i} x^{i} \in$ $r_{R[x ; \alpha]}(R[x ; \alpha])$, there exists at least one $a_{i_{k}} \neq 0,0 \leq i_{k} \leq n, a_{i_{k}} \in R$. Note that $R \subseteq R[x ; \alpha]$ and $R f(x)=0$. It follows that $R a_{i k}=0$ and $r_{R}(R) \neq 0$.

Theorem 2.3 answers partially the question raised in the above section.
Recall that for an infinite set of commuting indeterminates $\left\{x_{\lambda}\right\}$ over R, Gilmer-Grams [3] defined rings

$$
\begin{gathered}
R\left[\left\{x_{\lambda}\right\}\right]=\bigcup\left\{R[F] \mid F \text { is a finite subset of }\left\{x_{\lambda}\right\}\right\} \text { and } \\
R\left[\left[\left\{x_{\lambda}\right\}\right]\right]=\bigcup\left\{R[[F]] \mid F \text { is a finite subset of }\left\{x_{\lambda}\right\}\right\} .
\end{gathered}
$$

Theorem 2.4 Let R be a ring. Then the following statements are equivalent:
(1) R is strong left zero-divisor.
(2) $T_{n}(R)$ is strong left zero-divisor for any $n \in \mathbb{N}$.
(3) $Q M_{2}(R)$ is strong left zero-divisor.
(4) $S_{n}(R)$ is strong left zero-divisor for any $n \in \mathbb{N}$.
(5) $R[x] /\left(x^{n}\right)$ is strong left zero-divisor for any $n \in \mathbb{N}$.
(6) $T(R, R)$ is strong left zero-divisor.
(7) $R\left[x ; x^{-1}\right]$ is strong left zero-divisor.
(8) $R\left[\left\{x_{\lambda}\right\}\right]$ is strong left zero-divisor.
(9) $R\left[\left[\left\{x_{\lambda}\right\}\right]\right]$ is strong left zero-divisor.

Proof Note that if R is strong left zero-divisor, then $S=r_{R}(R) \neq 0$ and there exists $0 \neq$ $t\left(\left\{x_{\lambda}\right\}\right) \in S\left[\left\{x_{\lambda}\right\}\right] \subseteq S\left[\left[\left\{x_{\lambda}\right\}\right]\right]$ such that $R\left[\left\{x_{\lambda}\right\}\right] t\left(\left\{x_{\lambda}\right\}\right)=0\left(R\left[\left[\left\{x_{\lambda}\right\}\right]\right] t\left(\left\{x_{\lambda}\right\}\right)=0\right)$, hence $R\left[\left\{x_{\lambda}\right\}\right]\left(R\left[\left[\left\{x_{\lambda}\right\}\right]\right]\right)$ is strong left zero-divisor. It follows that $(1) \Leftrightarrow(8)$ and $(1) \Leftrightarrow(9)$.

Making a little modification in the proof of Theorem 1.3, we can prove that $(1) \Leftrightarrow(2) \Leftrightarrow$ $(3) \Leftrightarrow(4) \Leftrightarrow(5) \Leftrightarrow(6)$.

By Theorem 2.3, we know that R is strong left zero-divisor if and only if so is $R[x]$. By analogy with the proof of Proposition 1.4, it is easy to prove that $(1) \Leftrightarrow(7)$.

Theorem 2.5 A ring R is strong left zero-divisor if and only if so is $M_{n}(R)$, the ring of $n \times n$ matrices over R, for any positive integer n.

Proof Assume that R is strong left zero-divisor and $A=\left(a_{i j}\right) \in M_{n}(R)$. Then $r_{R}(R) \neq 0$. For any $0 \neq r \in r_{R}(R)$, we have $a_{i j} r=0, \forall 1 \leq i, j \leq n$. Putting $T=\left(t_{i j}\right) \in M_{n}(R)$, where $t_{i i}=r$ and $t_{i j}=0$ if $i \neq j, 1 \leq i, j \leq n$, we get that $T \neq 0$ and $A T=0$. Hence $r_{M_{n}(R)}\left(M_{n}(R)\right) \neq 0$ because A is arbitrary.

Conversely, assume that $M_{n}(R)$ is strong left zero-divisor and $r \in R$. Take any $0 \neq A=$ $\left(a_{i j}\right) \in r_{M_{n}(R)}\left(M_{n}(R)\right) \neq 0$, and suppose that some $a_{k l} \neq 0,1 \leq k, l \leq n$. If we put $T=\left(t_{i j}\right)$ as above, then from $T A=0$ one can get that $r a_{k l}=0$. This implies that $a_{k l} \in r_{R}(R) \neq 0$.

Given a monoid G and a ring R, we use $R[G]$ to denote the monoid ring of G over R.
Theorem 2.6 A ring R is strong left zero-divisor if and only if so is $R[G]$ for any monoid G.
Proof Assume that $r_{R}(R) \neq 0$ and $\sum r_{i} g_{i} \in R[G]$. For any $0 \neq a \in r_{R}(R)$, we have $\left(\sum r_{i} g_{i}\right)(a e)=\sum\left(r_{i} a\right) g_{i}=0$, where e is the identity of G. Thus $0 \neq a e \in r_{R[G]}(R[G])$.

Conversely, assume that $R[G]$ is strong left zero-divisor and $a \in R$. If $0 \neq \sum r_{i} g_{i} \in$ $r_{R[G]}(R[G])$, then from $0=(a e)\left(\sum r_{i} g_{i}\right)=\sum\left(a_{i} r_{i}\right) g_{i}$ we get that $a r_{i}=0$ for any i. This shows that $r_{i} \in r_{R}(R)$ for any i, and $r_{R}(R) \neq 0$.

Let G denote a group with identity e, and $R=\bigoplus_{g \in G} R_{g}$ be a G-graded ring. Beattie [1] defined the generalized smash product $R \# G^{*}$ of R and G to be the free left R-module $\bigoplus_{g \in G} R P_{g}$ with multiplication defined for elements $a P_{g}$ and $b P_{h}$ by $\left(a P_{g}\right)\left(b P_{h}\right)=a b_{g h^{-1}} P_{h}$, and extended to general elements of $R \# G^{*}$ by linearity.

Theorem 2.7 Let $R=\bigoplus_{g \in G} R_{g}$ be a G-graded ring. Then R is strong left zero-divisor if and only if so is $R \# G^{*}$.

Proof Assume that $r_{R}(R) \neq 0$ and $\sum a_{i} P_{g_{i}} \in R \# G^{*}$. Take any $0 \neq r \in r_{R}(R)$. Since $r_{R}(R)$ is a graded ideal of $R,\left(\sum a_{i} P_{g_{i}}\right) r P_{e}=\sum a_{i} r_{g_{i}} P_{e}=0$. This implies that $0 \neq r P_{e} \in r_{R \# G^{*}}\left(R \# G^{*}\right)$.

Conversely, assume that $R \# G^{*}$ is strong left zero-divisor. Taking

$$
0 \neq \sum_{i} a^{(i)} P_{g_{i}} \in r_{R \# G^{*}}\left(R \# G^{*}\right)
$$

we get that $0=r_{g} P_{h}\left(\sum_{i} a^{(i)} P_{g_{i}}\right)=\sum_{i} r_{g} a_{h g_{i}^{-1}}^{(i)} P_{g_{i}}$ for any $g, h \in G$ and $r_{g} \in R_{g}$. Thus for every $g_{i} \in G, r_{g} a_{h g_{i}^{-1}}^{(i)}=0$. If $a^{\left(i_{0}\right)} \neq 0$, then there exists an $h_{0} \in G$ such that $a_{h_{0} g_{i_{0}}^{-1}}^{\left(i_{0}\right)} \neq 0$, and hence $a_{h_{0} g_{i_{0}}^{-1}}^{\left(i_{0}\right)} \in r_{R}\left(r_{g}\right) \neq 0$. Since $g \in G$ and $r_{g} \in R_{g}$ are arbitrary, we have $a_{h_{0} g_{i_{0}}^{-1}}^{\left(i_{0}\right)} \in r_{R}(R)$.

Camillo-Nielson [2] introduced the concept of right finite annihilated rings (in short, RFA rings) to describe exactly when a direct product or direct sum of rings is right McCoy. A ring R is called $R F A$ if every finite subset of R has a nonzero right annihilator.

Clearly, strong left zero-divisor rings are RFA rings, but the converse does not hold.
Example 2.8 Let $R=\mathbb{Z}\left[x_{1}, x_{2}, x_{3}, \ldots\right] /\left(x_{1}^{2}, x_{2}^{3}, x_{3}^{4}, \ldots\right)$, and $A=\left\langle\overline{x_{1}}, \overline{x_{2}}, \overline{x_{3}}, \ldots\right\rangle$ be the ideal of R generated by $\overline{x_{1}}, \overline{x_{2}}, \overline{x_{3}}, \ldots$. Then A is nil, left zero-divisor and RFA. But A is neither nilpotent nor strong left zero-divisor.

For RFA rings, we have the following
Proposition 2.9 Let R be a ring and $S=\left\{\left(a_{n}\right)_{n=1}^{\infty} \in \prod R \mid a_{n}\right.$ is a eventually constant $\}$, a subring of the countable direct product $\prod_{n=1}^{\infty} R$. Then ring R is RFA if and only if so is S.

Proof It is a trivial verification.

Theorem 2.10 Let R be a ring. Then the following statements are equivalent:
(1) R is RFA.
(2) $T_{n}(R)$ is RFA for any $n \in \mathbb{N}$.
(3) $Q M_{2}(R)$ is $R F A$.
(4) $S_{n}(R)$ is RFA for any $n \in \mathbb{N}$.
(5) $R[x] /\left(x^{n}\right)$ is $R F A$ for any $n \in \mathbb{N}$.
(6) $T(R, R)$ is $R F A$.
(7) $R\left[x ; x^{-1}\right]$ is RFA.
(8) $R\left[\left\{x_{\lambda}\right\}\right]$ is $R F A$.

Proof $(1) \Rightarrow(2)$. Assume that $F=\left\{A_{k}=\left(a_{i j}^{k}\right) \in T_{n}(R), k=1,2, \ldots, m\right\}$ is a finite subset of $T_{n}(R)$. Then $E=\left\{a_{i j}^{k} \mid 1 \leq i, j \leq n, k=1,2, \ldots, m\right\}$ is a finite subset of R, there exists $0 \neq t \in R$ such that $a_{i j}^{k} t=0$ for every $a_{i j}^{k}(1 \leq i, j \leq n, 1 \leq k \leq m)$ since R is RFA. Putting $D=\left(d_{i j}\right) \in T_{n}(R)$ with $d_{11}=t$ and zeros elsewhere, we have that $A_{k} D=0$ for $1 \leq k \leq m$.
$(2) \Rightarrow(3)$. Holds since $Q M_{2}(R) \cong T_{2}(R)$.
$(3) \Rightarrow(1)$. For any finite subset F of $R, E=\left\{\left.A_{r}=\left(\begin{array}{cc}r & 0 \\ 0 & r\end{array}\right) \right\rvert\, r \in F\right\}$ is a finite subset of $Q M_{2}(R)$. Then there exists $0 \neq T=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in Q M_{2}(R)$ such that $A_{r} T=0$ for every $r \in F$, it follows that $r a=r b=r c=r d=0$. Notice that $T \neq 0$, there is $0 \neq s \in R$ such that $F s=0$, as desired.
$(1) \Rightarrow(4)$. Let $F=\left\{A_{k}=\left(a_{i j}^{k}\right) \in S_{n}(R), k=1,2, \ldots, m\right\}$ be a finite subset of $S_{n}(R)$. Then $E=\left\{a_{i j}^{k} \mid 1 \leq i, j \leq n, k=1,2, \ldots, m\right\}$ is a finite subset of R, there exists $0 \neq t \in R$ such that $a_{i j}^{k} t=0$ for every $a_{i j}^{k}(1 \leq i, j \leq n, 1 \leq k \leq m)$ since R is RFA. Taking $0 \neq T=\left(t_{i j}\right) \in S_{n}(R)$ with $t_{1 n}=t$ and zeros elsewhere, we obtain that $A_{k} T=0$ for $1 \leq k \leq m$.
$(4) \Rightarrow(5)$. Holds by $R[x] /\left(x^{n}\right) \cong S_{n}(R)$.
$(5) \Rightarrow(6)$. Follows from $T(R, R) \cong R[x] /\left(x^{2}\right)$.
$(6) \Rightarrow(1)$. Let F be a finite subset of R and $E=\left\{\left.A_{r}=\left(\begin{array}{cc}r & 0 \\ 0 & r\end{array}\right) \right\rvert\, r \in F\right\}$. Then there exists $0 \neq T=\left(\begin{array}{cc}t & m \\ 0 & t\end{array}\right) \in T(R, R)$ such that $A_{r} T=0$ for any $r \in F$, it follows that $r t=0$ and $r m=0$. Notice that $T \neq 0$, we have that $t \neq 0$ or $m \neq 0$. Consequently in any case there is $0 \neq s \in R$ such that $F s=0$, as desired.
$(1) \Rightarrow(8)$. Let $E=\left\{f_{i}\left\{x_{\lambda}\right\} \mid i=1,2, \ldots, m\right\}$ be a finite subset of $R\left[\left\{x_{\lambda}\right\}\right]$. Then $E \subseteq R[F]$ for some finite subset F of $\left\{x_{\lambda}\right\}$, and the set H of coefficients of all $f_{i}\left\{x_{\lambda}\right\} \subseteq E$ is a finite subset of R. Hence there exists $0 \neq t \in R$ such that $H t=0$, it follows that $f_{i}\left\{x_{\lambda}\right\} t=0$ for $1 \leq k \leq m$.
$(8) \Rightarrow(1)$. Let E be a finite subset of R. Then $E \subseteq R\left[\left\{x_{\lambda}\right\}\right]$, and there exists $0 \neq f\left\{x_{\lambda}\right\} \in$ $R\left[\left\{x_{\lambda}\right\}\right]$ such that $E f\left\{x_{\lambda}\right\}=0$. Thus $E a=0$ for any nonzero coefficient a of $f\left\{x_{\lambda}\right\}$.
$(1) \Leftrightarrow(7)$. The proof is analogous to that of $(1) \Leftrightarrow(8)$.

Example 2.11 Consider the ring $R=\left(\begin{array}{lll}0 & \mathbb{Z} & \mathbb{Z} \\ 0 & 0 & \mathbb{Z} \\ 0 & 0 & \mathbb{Z}\end{array}\right)$. For any $A=\left(\begin{array}{lll}0 & a & b \\ 0 & 0 & c \\ 0 & 0 & d\end{array}\right) \in R$ and $T=\left(\begin{array}{ccc}0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right) \in R$, we have $A T=0$, which implies that R is strong left zero-divisor.

We conclude this paper with the following chart:

No other implications hold (except by transitivity). Note that Example 2.11 shows that a strong left zero-divisor, left zero-divisor and RFA ring are not necessarily nilpotent, nil and locally nilpotent, respectively; and Example 20.2 in Szasz [6] also shows that a left zero-divisor ring is not necessarily an RFA ring.

References

[1] M. BEATTIE. A generalization of the smash product of a graded ring. J. Pure Appl. Algebra, 1988, 52(3): 219-226.
[2] V. CAMILLO, P. NIELSEN. McCoy rings and zero-divisors. J. Pure Appl. Algebra, 2008, 212: 599-615.
[3] R. GILMER, A. GRAMES, T. PARKER. Zero divisors in power series. J. Reine Angew. Math., 1975, 278/279: 145-164.
[4] N. K. KIM, Y. LEE. Extensions of reversible rings. J. Pure Appl. Algebra, 2003, 185: 207-223.
[5] J. LEMBEK. On the representation of modules by sheaves of factor modules. Canad. Math. Bull., 1971, 14(3): 359-368.
[6] F. A. SZASZ. Radicals of Rings. John Wiley \& Sons, Ltd., Chichester, 1981.

[^0]: Received May 10, 2012; Accepted November 22, 2012
 Supported by the National Natural Science Foundation of China (Grant Nos. 11071097; 11101217).

 * Corresponding author

 E-mail address: wangyao@nuist.edu.cn (Yao WANG)

