Journal of Mathematical Research with Applications Jul., 2013, Vol. 33, No. 4, pp. 412–418 DOI:10.3770/j.issn:2095-2651.2013.04.004 Http://jmre.dlut.edu.cn

On \mathfrak{F}_s -Quasinormality of 2-Maximal Subgroups

Yufeng $LIU^{1,*}$, Xiaolong YU^2 , Lijun HUO^2

1. School of Mathematical and Information Science, Shandong Institute of Business and Technology, Shandong 264005, P. R. China;

2. School of Mathematical Sciences, University of Science and Technology of China,

Anhui 230026, P. R. China

Abstract Let \mathfrak{F} be a class of finite groups. A subgroup H of a finite group G is said to be \mathfrak{F}_s -quasinormal in G if there exists a normal subgroup T of G such that HT is s-permutable in G and $(H \cap T)H_G/H_G$ is contained in the \mathfrak{F} -hypercenter $Z^{\mathfrak{F}}_{\infty}(G/H_G)$ of G/H_G . In this paper, we use \mathfrak{F}_s -quasinormal subgroups to study the structure of finite groups. Some new results are obtained.

 $\label{eq:stability} \textbf{Keywords} \quad \mathfrak{F}_{s}\text{-quasinormal subgroup; Sylow subgroup; maximal subgroup; 2-maximal subgroup; 2-maximal subgroup.}$

MR(2010) Subject Classification 20D10; 20D20; 20D25

1. Introduction

All groups considered in the paper are finite and G denotes a finite group, the notations and terminology in this paper are standard, as in [2] and [8].

Recall that a subgroup H of G is called an s-quasinormal subgroup (or s-permutable subgroup [6]) in G if H is permutable with every Sylow subgroup P of G (that is, HP = PH). Wang [10] defined c-normal subgroup: A subgroup H of a group G is said to be c-normal if there exists a normal subgroup K such that G = HK and $H \cap K \leq H_G$, where H_G is the maximal normal subgroup of G contained in H. Moreover, Feng and Guo [1] defined the concept of \mathfrak{F}_h -normal subgroup: A subgroup H of a group G is said to be \mathfrak{F}_h -normal in G if there exists a normal subgroup: A subgroup H of a group G is said to be \mathfrak{F}_h -normal in G if there exists a normal subgroup K of G such that HK is a normal Hall subgroup of G and $(H \cap K)H_G/H_G$ is contained in the \mathfrak{F} -hypercenter $Z^{\mathfrak{F}}_{\infty}(G/H_G)$ of G/H_G . By using these concepts mentioned above, many interesting results have been obtained (see, for example, [1, 3, 7, 10]). Recently, Huang [6] introduced the following concept:

Definition 1.1 Let \mathfrak{F} be a non-empty class of groups and H a subgroup of a group G. H is said to be \mathfrak{F}_s -quasinormal in G if there exists a normal subgroup T of G such that HT is s-permutable in G and $(H \cap T)H_G/H_G \leq Z^{\mathfrak{F}}_{\infty}(G/H_G)$.

Received April 8, 2012; Accepted November 25, 2012

Supported by the National Natural Science Foundation of China (Grant No. 11071147) and Doctoral Program Foundation of Institutions of Higher Education of China (Grant No. 20113402110036). * Corresponding author

E-mail address: yfliu@sdibt.edu.cn (Yufeng LIU); yuxiaolong0710@sina.com (Xiaolong YU)

Recall that, for a class \mathfrak{F} of groups, a chief factor H/K of a group G is called \mathfrak{F} -central (see [9] or [2, Definition 2.4.3]) if $[H/K](G/C_G(H/K)) \in \mathfrak{F}$. The symbol $Z^{\mathfrak{F}}_{\infty}(G)$ denotes the \mathfrak{F} -hypercenter of a group G, that is, the product of all such normal subgroups H of G whose G-chief factors are \mathfrak{F} -central. A subgroup H of G is said to be \mathfrak{F} -hypercenter in G if $H \leq Z^{\mathfrak{F}}_{\infty}(G)$. We use $\mathfrak{N}, \mathfrak{U}$, and \mathfrak{S} to denote the formations of all nilpotent groups, supersoluble groups and soluble groups, respectively.

Obviously, all subgroups, whether they are c-normal, s-quasinormal or \mathfrak{F}_h -normal, are all \mathfrak{F}_s -quasinormal in G, for any nonempty saturated formation \mathfrak{F} . For example, if a subgroup H is c-normal in G, then there exists a normal subgroup K such that G = HK and $(H \cap K)H_G/H_G = 1 \leq Z^{\mathfrak{F}}_{\infty}(G/H_G)$. However, the converse is not true (see Example 1.2 in [6]).

By using this new concept, Huang [6] has given some conditions under which a finite group belongs to some formations. In this article, we study further the influence of \mathfrak{F}_{s} -quasinormal subgroups on the structure of finite groups. Some new results are obtained and a series of known results are generalized.

2. Preliminaries

The following known results are useful in our proof.

Lemma 2.1 ([5, Lemma 2.2]) Let G be a group and $H \leq K \leq G$.

(1) If H is s-permutable in G, then H is s-permutable in K;

(2) Suppose that H is normal in G. Then K/H is s-permutable in G/H if and only if K is s-permutable in G;

- (3) If H is s-permutable in G, then H is subnormal in G;
- (4) If H and F are s-permutable in G, the $H \cap F$ is s-permutable in G;
- (5) If H is s-permutable in G and $M \leq G$, then $H \cap M$ is s-permutable in M.

Lemma 2.2 ([4, Lemma 2.2]) If H is a p-subgroup of G for some prime p and H is s-permutable in G, then the following properties hold:

(1)
$$H \leq O_p(G);$$

(2) $O^p(G) \leq N_G(H).$

Lemma 2.3 ([12]) Let G be a group and $A \leq G$. If A is subnormal in G and A is soluble, then A is contained in some normal soluble subgroup of G.

Lemma 2.4 ([11, Theorem 4.1]) Let p be a prime number divisor of |G| such that (|G|, p-1) = 1. Assume that the order of G is not divisible by p^3 and G is A_4 -free. Then G is p-nilpotent.

Lemma 2.5 ([4, Lemma 2.5]) Let G be a group and p a prime number such that $p^{n+1} \nmid |G|$ for some integer $n \geq 1$. If $(|G|, (p-1)(p^2-1)\cdots(p^n-1)) = 1$, then G is p-nilpotent.

Lemma 2.6 ([6, Lemma 2.3]) Let G be a group and $H \le K \le G$.

(1) H is \mathfrak{F}_{s} -quasinormal in G if and only if there exists a normal subgroup T of G such

that HT is s-permutable in G, $H_G \leq T$ and $H/H_G \cap T/H_G \leq Z^{\mathfrak{F}}_{\infty}(G/H_G)$;

(2) Suppose that H is normal in G. Then K/H is \mathfrak{F}_s -quasinormal in G/H if and only if K is \mathfrak{F}_s -quasinormal in G;

(3) Suppose that H is normal in G. Then, for every \mathfrak{F}_s -quasinormal subgroup E of G satisfying (|H|,|E|)=1, HE/H is \mathfrak{F}_s -quasinormal in G/H;

(4) If H is \mathfrak{F}_s -quasinormal in G and \mathfrak{F} is S-closed, then H is \mathfrak{F}_s -quasinormal in K;

(5) If H is \mathfrak{F}_s -quasinormal in G, K is normal in G and \mathfrak{F} is S_n -closed, then H is \mathfrak{F}_s quasinormal in K;

(6) If $G \in \mathfrak{F}$, then every subgroup of G is \mathfrak{F}_s -quasinormal in G.

3. Main results and applications

Recall that a subgroup H is said to be a 2-maximal subgroup of G if H is a maximal subgroup of some maximal subgroup of G.

Theorem 3.1 Let G be a group and P a Sylow p-subgroup of G, where p is the prime divisor of |G| with $(|G|, p^2 - 1) = 1$. If every 2-maximal subgroup of P (if exists) is \mathfrak{N}_s -quasinormal in G, then G is soluble.

Proof Assume that the theorem is false and let G be a counterexample of minimal order. If p > 2, then G is soluble by $(|G|, p^2 - 1) = 1$ and the well-known Feit-Thompson Theorem of odd groups. Hence we only need to consider the case that p = 2.

(1) $O_2(G) = 1.$

If $O_2(G) = P$ or $O_2(G)$ is a maximal subgroup or a 2-maximal subgroup of P, then $G/O_2(G)$ is 2-nilpotent by Lemma 2.5. It follows that G is soluble, a contradiction. Hence, there exists some 2-maximal subgroup P_2 such that $O_2(G) < P_2$. By Lemma 2.6 (2), we see that $G/O_2(G)$ satisfies the hypothesis. The minimal choice of G implies that $G/O_2(G)$ is soluble and thereby G is soluble, also a contradiction. Hence (1) holds.

- (2) $2^3 | |G|$ (This follows directly from Lemma 2.5).
- (3) Final contradiction.

Let P_2 be a 2-maximal subgroup of P. Then $P_2 \neq 1$ and $(P_2)_G = 1$. By the hypothesis, there exists a normal subroup K of G such that P_2K is s-permutable in G and $P_2 \cap K \leq Z_{\infty}^{\mathfrak{N}}(G)$. Hence $P_2 \cap K \leq Z_{\infty}^{\mathfrak{N}}(G)_p \leq O_2(G) = 1$. By Lemma 2.5, K is soluble. Since $P_2K/K \cong P_2/P_2 \cap K \cong P_2$, we have P_2K/K is soluble. Hence P_2K is soluble. Since P_2K is s-permutable in G, P_2K is subnormal in G by Lemma 2.1(3). It follows from Lemma 2.3 that P_2K is contained in some soluble normal subgroup L of G. Obviously, $p^3 \nmid |G/L|$. Hence G/L is soluble by Lemma 2.5. This implies that G is soluble, a contradiction.

Lemma 3.2 Let p be the smallest prime dividing |G| and P some Sylow p-subgroup of G. Then G is soluble if and only if every maximal subgroup of P is \mathfrak{S}_s -quasinormal in G.

Proof The necessity part is obvious by Lemma 2.6(6). We only need to prove the sufficiency

part. Suppose that the assertion is false and let G be a counterexample of minimal order. Then p = 2 by the well known Feit-Thompson theorem of odd group. We proceed with the proof by the following steps.

(1) $O_2(G) = 1.$

Assume that $N = O_2(G) \neq 1$. Then P/N is a Sylow 2-subgroup of G/N. Let M/N be a maximal subgroup of P/N. Then M is a maximal subgroup of P. By the hypothesis and Lemma 2.6(2), M/N is \mathfrak{S}_s -quasinormal in G/N. The minimal choice of G implies that G/N is soluble. It follows that G is soluble, a contradiction. Hence (1) holds.

(2) $O_{2'}(G) = 1.$

Assume that $D = O_{2'}(G) \neq 1$. Then PD/D is a Sylow 2-subgroup of G/D. Suppose that M/D is a maximal subgroup of PD/D. Then there exists a maximal subgroup P_1 of P such that $M = P_1D$. By the hypothesis and Lemma 2.6(3), $M/D = P_1D/D$ is \mathfrak{S}_s -quasinormal in G/D. Hence G/D is soluble by the choice of G. It follows that G is soluble, a contradiction.

(3) Final contradiction.

Let P_1 be a maximal subgroup of P. By the hypothesis, there exists a normal subroup K of G such that P_1K is s-permutable in G and $(P_1 \cap K)(P_1)_G/(P_1)_G \leq Z_{\infty}^{\mathfrak{S}}(G/(P_1)_G)$. Note that $Z_{\infty}^{\mathfrak{S}}(G)$ is a soluble normal subgroup of G. By (1) and (2), we have $(P_1)_G = 1$ and $Z_{\infty}^{\mathfrak{S}}(G) = 1$. This induces that $P_1 \cap K = 1$. If K = 1, then P_1 is s-permutable in G and so $P_1 = 1$ by (1) (2) and Lemma 2.2(1). This means that |P| = 2. Then by [8, (10.1.9)], G is 2-nilpotent and so G is soluble, a contradiction. Now assume that $K \neq 1$. If $2 \mid |K|$, then $|K_2| = 2$, where K_2 is some Sylow 2-subgroup of K. By [8, (10.1.9)] again, we see that K is 2-nilpotent, and so K has a normal 2-complement $K_{2'}$. Since $K_{2'}$ char $K \leq G$, $K_{2'} \leq G$. Hence by (2), $K_{2'} = 1$ and so |K| = 2, which contradicts (1). If $2 \nmid |K|$, then K is a 2'-group. Hence by (2), $K \leq O_{2'}(G) = 1$, also a contradiction. The theorem is proved. \Box

Corollary 3.3 Let M be a maximal subgroup of G with |G:M| = r, where r is a prime. Let p be the smallest prime dividing |M|. If there exists a Sylow p-subgroup P of M such that every maximal subgroup of P is \mathfrak{S}_{s} -quasinormal in G, then G is soluble.

Proof By the well known Feit-Thompson's theorem, we may assume that 2 | |G|. If r = 2, then M is normal in G. By Lemma 2.6(4), every maximal subgroup of P is \mathfrak{S}_s -quasinormal in M. Hence by Lemma 3.2, M is soluble. It follows that G is soluble. If $r \neq 2$, then p = 2 and P is a Sylow 2-subgroup of G. By using Lemma 3.2, we obtain that G is soluble.

Corollary 3.4 ([1, Theorem 4.2]) Let p be the smallest prime dividing |G| and P some Sylow p-subgroup of G. Then G is soluble if and only if every maximal subgroup of P is \mathfrak{S}_h -normal in G.

Theorem 3.5 Let P be some Sylow p-subgroup of G, where p is the smallest prime dividing |G|. Assume that G is A₄-free and every 2-maximal subgroup of P (if exists) is \mathfrak{S}_s -quasinormal in G. Then G is soluble.

Proof Suppose that the assertion is false and let G be a counterexample of minimal order. Then p = 2 by the well-known Feit-Thompson theorem. We proceed with the proof via the following steps.

(1) $O_2(G) = 1.$

Assume that $N = O_2(G) \neq 1$. Then P/N is a Sylow 2-subgroup of G/N. Let M/N be a 2-maximal subgroup of P/N. Then M is a 2-maximal subgroup of P. By the hypothesis and Lemma 2.6(2), M/N is \mathfrak{S}_s -quasinormal in G/N. The minimal choice of G implies that G/N is soluble. It follows that G is soluble, a contradiction. Hence (1) holds.

(2) $O_{2'}(G) = 1.$

Assume that $D = O_{2'}(G) \neq 1$. Then PD/D is a Sylow 2-subgroup of G/D. Suppose that M/D is a 2-maximal subgroup of PD/D. Then there exists a 2-maximal subgroup P_2 of P such that $M = P_2D$. By the hypothesis and Lemma 2.6(3), $M/D = P_2D/D$ is \mathfrak{S}_s -quasinormal in G/D. Hence G/D is soluble by the choice of G. It follows that G is soluble, a contradiction.

(3) Final contradiction.

Let P_2 be a 2-maximal subgroup of P. By the hypothesis, there exists a normal subroup Kof G such that P_2K is s-permutable in G and $(P_2 \cap K)(P_2)_G/(P_2)_G \leq Z_{\infty}^{\mathfrak{S}}(G/(P_2)_G)$. If K = 1, then as the same proof in Lemma 3.2, we may assume that $K \neq 1$. Note that $Z_{\infty}^{\mathfrak{S}}(G)$ is a soluble normal subgroup of G. By (1) and (2), we have $(P_2)_G = 1$ and $Z_{\infty}^{\mathfrak{S}}(G) = 1$. This induces that $P_2 \cap K = 1$. If $2 \nmid |K|$, then K is a 2'-group, Hence by (2), $K \leq O_{2'}(G) = 1$, a contradiction. If $2 \mid |K|$ and $2^2 \nmid |K|$, then by [8, (10.1.9)], K has a normal Hall 2'-subgroup $K_{2'}$. Since $K_{2'}$ char $K \leq G$, $K_{2'} \leq G$. Then by (2), $K_{2'} = 1$. It follows that |K| = 2, which is impossible by (1). Finally assume that $2^2 \mid |K|$, then $|K_2| = 2^2$ since $P_2 \cap K = 1$, where K_2 is some Sylow 2-subgroup of K. By Lemma 2.4, K is 2-nilpotent. Hence K has a normal 2-complement $K_{2'}$. Since $K_{2'}$ char $K \leq G$, $K_{2'} \leq G$. Hence $K_{2'} = 1$ by (2) and so $|K| = 2^2$, which contradicts (1). The theorem is proved. \Box

Corollary 3.6 ([1, Theorem 4.3]) Let P be some Sylow p-subgroup of G, where p is the smallest prime dividing |G|. Assume that G is A₄-free and every 2-maximal subgroup of P (if exists) is \mathfrak{S}_h -normal in G. Then G is soluble.

Theorem 3.7 Let p be the smallest prime number dividing the order of a group G and P a Sylow p-subgroup of G. If every 2-maximal subgroup of P (if exists) is \mathfrak{U}_s -quasinormal in G and G is A_4 -free, then G is p-nilpotent.

Proof Suppose that the assertion is false and let G be a counterexample of minimal order. Then:

(1) $O_{p'}(G) = 1$, and if $|P| = p^{\alpha}$, then $\alpha \ge 3$.

If $O_{p'}(G) \neq 1$, then by Lemma 2.6(3), we see that every 2-maximal subgroup of $PO_{p'}(G)/O_{p'}(G)$ is \mathfrak{U}_{s} -quasinormal in $G/O_{p'}(G)$. By the minimal choice of G, $G/O_{p'}(G)$ is *p*-nilpotent and so Gis *p*-nilpotent, a contradiction. Hence, $O_{p'}(G) = 1$. By Lemma 2.4, we have $\alpha \geq 3$.

(2) G is soluble and $O_p(G) \neq 1$.

Obviously, a \mathfrak{U}_{s} -quasinormal subgroup of G is \mathfrak{S}_{s} -quasinormal in G. Hence by Theorem 3.5, we see that G is soluble. It follows from (1) that $O_{p}(G) \neq 1$.

(3) $O_p(G)$ is a minimal normal subgroup of G and $G/O_p(G)$ is p-nilpotent.

Let N be a minimal normal subgroup of G contained in $O_p(G)$. By Lemma 2.6(2), G/N satisfies the hypothesis. The minimal choice of G implies that G/N is p-nilpotent. If G has another minimal normal subgroup N_1 contained in $O_p(G)$, then G/N_1 is also p-nilpotent. It follows that $G \simeq G/(N \cap N_1)$ is p-nilpotent, a contradiction. Thus N is the unique minimal normal subgroup of G contained in $O_p(G)$.

Let T/N be a normal *p*-complement of G/N. By the well known Schur-Zassenhaus theorem, N has a complement H in T and any two complements are conjugate in T. Then G = PT = PNH = PH and $G = TN_G(H) = NN_G(H)$ by Frattini argument. Assume that $\Phi(O_p(G)) \neq 1$. Then $N \leq \Phi(O_p(G))$, and so $G = N_G(H)$ since $\Phi(O_p(G)) \leq \Phi(G)$. This means that H is a normal Hall *p'*-subgroup of G. It follows that G is *p*-nilpotent. The contradiction shows that $\Phi(O_p(G)) = 1$. Hence $O_p(G)$ is an elementary abelian group ([2, Theorem 1.8.17]). If $N < O_p(G)$, then $1 \neq O_p(G) \cap N_G(H)$ is normal in $NN_G(H) = G$. Obviously, $N \notin N_G(H)$, so $N \notin O_p(G) \cap N_G(H)$, which contradicts the fact that N is the unique minimal normal subgroup of G contained in $O_p(G)$. Hence $O_p(G) = N$ is a minimal normal subgroup of G.

(4) Final contradiction.

Let $T/O_p(G)$ be the normal p'-complement of $G/O_p(G)$. Then by Schur-Zassenhaus theorem, $N = O_p(G)$ has a complement H in T, which is a Hall p'-subgroup of G and any two complements of $O_p(G)$ are conjugate in T. This implies that $G = TN_G(H)$ by Frattini argument. Let P^* be a Sylow p-subgroup of $N_G(H)$ which is contained in P. Thus $P^* = P \cap N_G(H)$. By the choice of G, we have $N_G(H) < G$. Hence $P^* < P$. If $|P:P^*| = p$, then $|G:N_G(H)| = p$. Since p is the smallest prime divisor of |G|, $N_G(H)$ is a normal subgroup of G. It follows that H is a normal subgroup of G, a contradiction. Thus $|P:P^*| \ge p^2$. Let P_2 be a 2-maximal subgroup of P and P_1 a maximal subgroup of P with $P^* \leq P_2 < P_1$. If $O_p(G) \leq P_1$, then $O_p(G)P^* \leq P_1$. But since $G = TN_G(H) = O_p(G)N_G(H), P = O_p(G)P^* \leq P_1$, a contradiction. Hence $O_p(G) \notin P_1$ and so $(P_2)_G = (P_1)_G = 1$ by (3). Then by the hypothesis, there exists a normal subgroup K of G such that P_2K is s-permutable in G and $P_2 \cap K \leq Z^{\mathfrak{U}}_{\infty}(G)$. If $Z^{\mathfrak{l}}_{\infty}(G) \neq 1$, then there exists $L \leq Z^{\mathfrak{l}}_{\infty}(G)$ such that L is a minimal normal subgroup of G with |L| = r, for some prime $r \in \pi(G)$. Since $O_{p'}(G) = 1$ by (1), r = p, which is impossible. Hence $Z_{\infty}^{\mathfrak{U}}(G) = 1$. It follows that $P_2 \cap K = 1$. Assume that $P_2 K < G$. If $p \nmid |K|$, then K is a p'-group. By (1), $K \leq O_{p'}(G) = 1$. Hence, P_2 is s-permutable in G. By Lemma 2.2(2), we have $O^p(G) \leq N_G(P_2)$. By (1), $p^3 \mid |G|$. Hence, $P_2 \neq 1$. Then $O_p(G) \leq P_2^G \leq P_2^{O^p(G)P} \leq P_1^P \leq P_1$, which contradicts the fact that $O_p(G) \leq P_1$. If $p \mid |K|$ and $p^2 \nmid |K|$, then by [8, (10.1.9)], K has a normal Hall p'-subgroup of $K_{p'}$. Since $K_{p'}$ char $K \leq G$, $K_{p'} \leq G$. Then by (1), $K_{p'} = 1$. It follows that |K| = p and so $K = O_p(G)$. Hence by Lemma 2.2(1), $P_2K \leq O_p(G) = K$. This induces that $P_2 \leq K$. Obviously, $P_2 < K$. Hence $|P_2| = 1$, which is impossible by (1). Now assume $p^2 \mid |K|$. Then since $K \leq G$, $K_p \leq P$, where K_p is some Sylow *p*-subgroup of K. Hence $P_2K_p = P$. This induces that $P \subseteq P_2K$. Hence P_2K satisfies the hypothesis by Lemma 2.6(4).

The minimal choice of G implies that P_2K is p-nilpotent. Let H_1 be a p-complement of P_2K . Then by (1), $H_1 = 1$ and so $P_2K = P$. By Lemma 2.2(1), $O_p(G) \leq P_2K = P \leq O_p(G)$. It follows from (3) that $K = P = O_p(G)$. Consequently $P_2 = 1$ and so $|P| = p^2$, which contradicts (1). Therefore $P_2K = G$. In this case, the order of Sylow p-subgroup of K is p^2 . By Lemma 2.4, K is p-nilpotent and so K has a normal p-complement H_1 . By (1), $H_1 = 1$ and so $|K| = p^2$. It follows that $G = P_2K$ is a p-group. The final contradiction completes the proof. \Box

Corollary 3.8 ([1, Theorem 5.1]) Let p be the smallest prime number dividing the order of G and P a Sylow p-subgroup of G. If every 2-maximal subgroup of P is \mathfrak{U}_h -normal in G and G is A_4 -free, then G is p-nilpotent.

References

- Xiuxian FENG, Wenbin GUO. On Sh-normal Subgroups of Finite Groups. Front. Math. China, 2010, 5(4): 653–664.
- [2] Wenbin GUO. The Theory of Classes of Groups. Kluwer Academic Publishers Group, Dordrecht; Science Press, Beijing, 2000.
- [3] Xiuyun GUO, K. P. SHUM. On c-normal maximal and minimal subgroups of Sylow p-subgroups of finite groups. Arch. Math. (Basel), 2003, 80(6): 561–569.
- Wenbin GUO, K. P. SHUM, Fengyan XIE. Finite groups with some weakly s-supplemented subgroups. Glasg. Math. J., 2011, 53(2): 211–222.
- [5] Wenbin GUO, A. N. SKIBA. Finite groups with given s-embedded and n-embedded subgroups. J. Algebra, 2009, 321(10): 2843–2860.
- [6] Jianhong HUANG. On \mathfrak{F}_{s} -quasinormal subgroups of finite groups. Comm. Algebra, 2010, 38(11): 4063–4076.
- [7] Deyu LI, Xiuyun GUO. The influence of c-normality of subgroups on the structure of finite groups. J. Pure Appl. Algebra, 2000, 150(1): 53–60.
- [8] D. J. S. ROBINSON. A Course in the Theory of Groups. Springer-Verlag, New York-Berlin, 1982.
- [9] L. A. SHEMETKON, A. N. SKIBA. Formations of Algebraic Systems. Moscow, Nauka, 1989.
- [10] Yanming WANG. c-normality of groups and its properties. J. Algebra, 1996, 180(3): 954–965.
- [11] Yanming WANG. Finite groups with some subgroups of Sylow subgroups c-supplemented. J. Algebra, 2000, 224(2): 467–478.
- [12] H. WIELANDT. Subnormal Subgroups and Permutation Groups. Lectures given at the Ohio State University, Columbus, Ohio, 1971.