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On Nonlocal Elliptic Systems of p(x)-Kirchhoff-Type under
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Abstract This paper is concerned with the existence of solutions to a class of p(x)-Kirchhoff-

type systems under Neumann boundary condition. By Ekeland Variational Principle and the

theory of the variable exponent Sobolev spaces, we establish conditions ensuring the existence

of solutions for the problem. Since the Poincaré’s inequality does not hold in the space

W 1,p(x)(Ω), we shall prove the Poincaré-Wirtinger’s inequality in a subspace of W 1,p(x)(Ω).
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1. Introduction

In this paper we study the following nonlocal elliptic systems of gradient type with non-
standard growth conditions





−M1(
∫
Ω

1
p(x) |∇u|p(x) dx)div(|∇u|p(x)−2∇u) = ∂F

∂u F (u, v) + ρ1(x) in Ω,

−M2(
∫
Ω

1
q(x) |∇v|q(x) dx)div(|∇v|q(x)−2∇v) = ∂F

∂v F (u, v) + ρ2(x) in Ω,

∂u
∂ν = ∂v

∂ν = 0 on ∂Ω,

(1.1)

where Ω is a bounded domain in RN with a smooth boundary ∂Ω, ν is the unit exterior vector
on ∂Ω, p(x), q(x) ∈ C(Ω) with 1 < p− := minΩ p(x) ≤ p+ := maxΩ p(x) < +∞ and 1 <

q− := minΩ q(x) ≤ q+ := maxΩ q(x) < +∞, M1(t), M2(t) are continuous functions. We confine
ourselves to the case where M1 = M2 for simplicity. Notice that the results of this paper
remain valid for M1 6= M2 by adding some slight changes in the hypothesis (H2). The function
F : R× R→ R is assumed to be of class C1 in u, v ∈ R.

The operator −div(|∇u|p(x)−2∇u) is said to be the p(x)-Laplacian, and becomes p-Laplacian
when p(x) ≡ p (a constant). The p(x)-Laplacian possesses more complicated nonlinearities than
the p-Laplacian; for example, it is inhomogeneous. The study of various mathematical problems
with variable exponent growth condition has been received considerable attention in recent years.
These problems are interesting in applications and raise many difficult mathematical problems.
One of the most studied models leading to the problem of this type is the model of motion
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of electrorheological fluids, which are characterized by their ability to drastically change the
mechanical properties under the influence of an exterior electromagnetic field [1, 2]. Problems
with variable exponent growth conditions also appear in the mathematical modeling of stationary
thermo-rheological viscous flows of non-Newtonian fluids and in the mathematical description
of the processes filtration of an ideal barotropic gas through a porous medium [3, 4]. Another
field of application of equations with variable exponent growth conditions is image processing
[5]. The variable nonlinearity is used to outline the borders of the true image and to eliminate
possible noise. We refer the readers to [6–10] for an overview and references on this subject,
and to [11–17] for the study of the p(x)-Laplacian equations and the corresponding variational
problems.

The problem (1.1) is related to the stationary version of a model introduced by Kirchhoff
[18]. More precisely, Kirchhoff proposed a model given by the equation

ρ
∂2u

∂t2
−

(ρ0

h
+

E

2L

∫ L

0

|∂u

∂x
|2dx

)∂2u

∂x2
= 0, (1.2)

where ρ, ρ0, h, E, L are constants, which extends the classical D’Alembert’s wave equation, by
considering the effects of the changes in the length of the strings during the vibrations. A
distinguishing feature of equation (1.2) is that the equation contains a nonlocal coefficient ρ0

h +
E
2L

∫ L

0
|∂u
∂x |2dx which depends on the average 1

2L

∫ L

0
|∂u
∂x |2dx, and hence the equation is no longer

a pointwise identity. Some early classical studies of Kirchhoff equations can be found in Bernstein
[19] and Pohožaev [20]. The equation

{
−(a + b

∫
Ω
|∇u|2dx)∆u = f(x, u) in Ω,

u = 0 on ∂Ω
(1.3)

is related to the stationary analogue of the equation (1.2). Eq. (1.3) received much attention only
after Lions [21] proposed an abstract framework to the problem. Some important and interesting
results can be found, for example, in [22–24]. More recently Alves et al. [25] and Ma and Rivera
[26] obtained positive solutions of such problems by variational methods. The study of Kirchhoff
type equations has already been extended to the case involving the p-Laplacian [27–29] and
p(x)-Laplacian [30, 31].

In [32], the authors considered a nonlocal elliptic system of the p-Kirchhoff type. By Eke-
land Variational Principle [33], they established the existence of weak solutions of the problem.
Motivated by above, we consider the nonlocal elliptic system (1.1). We establish conditions
ensuring the existence of solutions for system (1.1).

The rest of this paper is organized as follows. In Section 2, we present some necessary
preliminary knowledge on variable exponent Sobolev spaces. In Sections 3, we give our main
results and their proofs.

2. Preliminaries

In order to discuss problem (1.1), we need some theories on W 1,p(x) (Ω) which we call
variable exponent Sobolev space. Firstly we state some basic properties of spaces W 1,p(x) (Ω)
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which will be used later (for details, see [16]). Denote by S(Ω) the set of all measurable real
functions defined on Ω.

Write
C+(Ω) =

{
h : h ∈ C(Ω), h(x) > 1 for any x ∈ Ω

}

and
Lp(x) (Ω) =

{
u ∈ S(Ω) :

∫

Ω

|u(x)|p(x) dx < +∞
}

with the norm
|u|Lp(x)(Ω) = |u|p(x) = inf

{
λ > 0 :

∫

Ω

|u(x)
λ
|p(x)dx ≤ 1

}
,

and
W 1,p(x) (Ω) = {u ∈ Lp(x) (Ω) : |∇u| ∈ Lp(x) (Ω)}

with the norm
‖u‖p(x) = |u|Lp(x)(Ω) + |∇u|Lp(x)(Ω) .

Proposition 2.1 ([16]) The spaces Lp(x) (Ω) and W 1,p(x) (Ω) are separable and reflexive Banach

spaces.

Proposition 2.2 ([16]) Set ρ(u) =
∫
Ω
|u(x)|p(x) dx. For any u ∈ Lp(x) (Ω), then

1) For u 6= 0, |u|p(x) = λ ⇔ ρ(u
λ ) = 1;

2) |u|p(x) < 1 (= 1;> 1) ⇔ ρ(u) < 1 (= 1;> 1);

3) If |u|p(x) > 1, then |u|p−p(x) ≤ ρ (u) ≤ |u|p+

p(x);

4) If |u|p(x) < 1, then |u|p+

p(x) ≤ ρ (u) ≤ |u|p−p(x);

5) lim
k→+∞

|uk|p(x) = 0 ⇐⇒ lim
k→+∞

ρ (uk) = 0;

6) lim
k→+∞

|uk|p(x) = +∞ ⇐⇒ lim
k→+∞

ρ (uk) = +∞.

Proposition 2.3 ([13, 16]) If q ∈ C+(Ω) and q(x) ≤ p∗(x) (q(x) < p∗(x)) for x ∈ Ω, then there

is a continuous (compact) embedding W 1,p(x)(Ω) ↪→ Lq(x)(Ω), where

p∗ =

{
Np

N−p if p(x) < N,

+∞ if p(x) ≥ N.

Proposition 2.4 ([14, 16]) The conjugate space of Lp(x)(Ω) is Lq(x)(Ω), where 1
q(x) + 1

p(x) = 1.

For any u ∈ Lp(x)(Ω) and v ∈ Lq(x)(Ω), we have the following Hölder-type inequality
∣∣∣
∫

Ω

uvdx
∣∣∣ ≤ (

1
p−

+
1
q−

)|u|p(x)|v|q(x).

Let Wc = {1}, that is, the subspace of W 1,p(x)(Ω) spanned by the constant function 1, and
W0 = {z ∈ W 1,p(x)(Ω) :

∫
Ω

zdx = 0} which is called the space of functions of W 1,p(x)(Ω) with
null mean in Ω. By Hahn-Banach Theorem, we can see that

W 1,p(x)(Ω) = W0 ⊕Wc,

i.e., every function u ∈ W 1,p(x)(Ω) is of the form

u = u0 + α,
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where
∫
Ω

u0dx = 0 and α is a constant. Consequently, if (u, v) ∈ W 1,p(x)(Ω)×W 1,p(x)(Ω), then

(u, v) = (u0 + α, v0 + β) = (u0, v0) + (α, β),

where
∫
Ω

u0dx =
∫
Ω

v0dx = 0 and α, β are constants.

It is well known that the Poincaré’s inequality does not hold in the space W 1,p(x)(Ω).
However, it is true in W0 as shown in the next lemma.

Proposition 2.5 (Poincaré-Wirtinger’s Inequality) There is a positive constant C such that

|u|p(x) ≤ C|∇u|p(x) for all z ∈ W0.

Proof Let ϕ : W0 → R be the functional given by ϕ(u) = |∇u|p(x) for all u ∈ W0 and S be the
manifold

S =
{
u ∈ W0 : |u|p(x) = 1

}
.

Since ϕ is bounded from below on S and lower semicontinuous, it follows that there is a mini-
mizing sequence (un) ⊂ S, that is,

ϕ (un) → inf
S

ϕ = ϕ0 ≥ 0.

Consequently, |un|p(x) = 1 and there is a positive constant C1 such that |∇un|p(x) ≤ C1, for
all n ∈ N. From these facts we infer that the sequence (un) is bounded in W 1,p(x)(Ω). Then
there is a subsequence still denoted by (un) which converges weakly in W 1,p(x)(Ω). Without loss
of generality, we assume that un ⇀ u in W 1,p(x)(Ω). By virtue of compactness of the Sobolev
embedding we have that un → u in Lr(x)(Ω), r ∈ C+(Ω) and r(x) < p∗(x) for all x ∈ Ω. In
particular, 0 =

∫
Ω

undx → ∫
Ω

udx = 0 and 1 = |un|p(x) → |u|p(x) and thus u ∈ S.

Let us show that ϕ0 > 0. Suppose on the contrary that ϕ0 = 0. In this case, up to
subsequences, we have

0 = lim
n→+∞

|∇un|p(x) = lim
n→+∞

(|∇un|p(x) + |un|p(x) − |un|p(x))

= lim
n→+∞

(‖un‖p(x) − |un|p(x)) = lim
n→+∞

‖un‖p(x) − lim
n→+∞

|un|p(x) ≥ ‖u‖p(x) − |u|p(x)

= |∇u|p(x),

which yields |∇u|p(x) ≤ 0. Therefore, u(x) = C2 a.e., in Ω, with C2 a real constant. Since
u ∈ S ⊂ W0, one has ∫

Ω

udx =
∫

Ω

C2dx = 0

and we conclude that C2 = 0, which is impossible because |u|p(x) = 1. Consequently, ϕ0 > 0.
Thus,

ϕ0 = lim
n→+∞

|∇un|p(x) ≥ |∇u|p(x) ≥ ϕ0.

Hence, ϕ(u) = |∇u|p(x) = ϕ0, which shows that the infimum of ϕ is attained on S. Consequently,

ϕ0 ≤ |∇u|p(x)
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for all u ∈ W0 with |u|p(x) = 1. If 0 6= u ∈ W0,

ϕ0 ≤ |∇ u

|u|p(x)
|p(x) =

|∇u|p(x)

|u|p(x)
.

It follows that

|u|p(x) ≤
1
ϕ0
|∇u|p(x) for all u ∈ W0,

which shows the Poincaré-Wirtinger’s inequality in W0.
For every (u, v) and (ϕ,ψ) in W := W 1,p(x)(Ω)×W 1,q(x)(Ω), let

F(u, v) :=
∫

Ω

F (u, v)dx.

Then F ′(u, v)(ϕ,ψ) = D1F(u, v)(ϕ) + D2F(u, v)(ψ), where

D1F(u, v)(ϕ) =
∫

Ω

∂F

∂u
(u, v)ϕdx

and

D2F(u, v)(ψ) =
∫

Ω

∂F

∂v
(u, v)ψdx.

The Euler-Lagrange functional associated to (1.1) is given by

J(u, v) =M̂
( ∫

Ω

1
p(x)

|∇u|p(x)dx
)

+ M̂
( ∫

Ω

1
q(x)

|∇v|q(x)dx
)
−

F(u, v)−
∫

Ω

ρ1(x)udx−
∫

Ω

ρ2(x)vdx,

where M̂(t) :=
∫ t

0
M(τ)dτ . It is easy to verify that J ∈ C1(W,R) and (u, v) ∈ W is a weak

solution of (1.1) if and only if (u, v) is a critical point of J . Moreover, we have

J ′(u, v)(ϕ,ψ) = D1J(u, v)(ϕ) + D2J(u, v)(ψ),

where

D1J(u, v)(ϕ) = M
( ∫

Ω

1
p(x)

|∇u|p(x)dx
) ∫

Ω

|∇u|p(x)−2∇u∇ϕdx−D1F(u, v)(ϕ)−
∫

Ω

ρ1ϕdx,

D2J(u, v)(ϕ) = M
( ∫

Ω

1
q(x)

|∇v|q(x)dx
) ∫

Ω

|∇v|q(x)−2∇v∇ψdx−D2F(u, v)(ψ)−
∫

Ω

ρ2ψdx.

Let us choose on W the norm ‖ · ‖ defined by

‖(u, v)‖ := ‖u‖p(x) + ‖v‖q(x).

3. Existence of solution

In this section we shall discuss the existence of weak solution of (1.1). For simplicity, we
use C, Ci, i = 1, 2, . . . to denote the general positive constant (the exact value may change from
line to line).

Before stating our results, we introduce some natural hypotheses on the righthand side of
(1.1) and the nonlocal coefficient M(t).
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(H1) There is k > 0 such that F (u + k, v + k) = F (u, v), for all (u, v) ∈ R2.

(H2) ∃m0 > 0 such that M(t) ≥ m0.

(H3) ρ1(x) ∈ Lp′(x)(Ω) with 1
p(x) + 1

p′(x) = 1 , ρ2(x) ∈ Lq′(x)(Ω) with 1
q(x) + 1

q′(x) = 1 and∫
Ω

ρ1(x)dx =
∫
Ω

ρ2(x)dx = 0.

Lemma 3.1 If (H1), (H2) and (H3) hold, the functional J is bounded from below.

Proof Firstly, we shall prove that J is well defined. To do this, it is enough to show that F ,∫
Ω

ρ1udx and
∫
Ω

ρ2vdx are well defined. Since F is continuous on [0, k]×[0, k] and F (u+k, v+k) =
F (u, v) for all (u, v) ∈ R2, it follows that |F (u, v)| ≤ C3, for all (u, v) ∈ R2, and so

F(u, v) ≤ C3|Ω| for all (u, v) ∈ W.

On the other hand, from (H3), we can easily see that
∫
Ω

ρ1udx ≤ C4 for u ∈ W 1,p(x)(Ω) and∫
Ω

ρ2vdx ≤ C5 for v ∈ W 1,q(x)(Ω).

Let us show that J is bounded from below. If (u, v) ∈ W , u and v may be written as

u = u0 + α and v = v0 + β,

where α, β ∈ R and
∫
Ω

u0dx =
∫
Ω

v0dx = 0. Thus by Poincaré-Wirtinger’s Inequality, we have

J(u, v) ≥m0

p+

∫

Ω

|∇u|p(x)dx +
m0

q+

∫

Ω

|∇v|q(x)dx−
∫

Ω

ρ1 (u0 + α) dx−
∫

Ω

ρ2 (v0 + β) dx− C6

≥m0

p+

∫

Ω

|∇u|p(x)dx +
m0

q+

∫

Ω

|∇v|q(x)dx−
∫

Ω

ρ1u0dx−
∫

Ω

ρ2v0dx− C6

≥m0

p+

∫

Ω

|∇u|p(x)dx +
m0

q+

∫

Ω

|∇v|q(x)dx− |ρ1|p′ |u0|p(x) − |ρ2|q′(x) |v0|q(x) − C6

≥m0

p+

∫

Ω

|∇u|p(x)dx +
m0

q+

∫

Ω

|∇v|q(x)dx− C7 |ρ1|p′(x) |∇u0|p(x) − C8 |ρ2|q′(x) |∇v0|q(x) − C6

≥m0

p+
min{|∇u0|p

−

p(x) , |∇u0|p
+

p(x)}+
m0

q+
min{|∇v0|q

−

q(x) , |∇v0|q
+

q(x)}−
C7 |ρ1|p′(x) |∇u0|p(x) − C8 |ρ2|q′(x) |∇v0|q(x) − C6.

Because the function

(s, t) 7→ m0

p+
min{sp− , sp+}+

m0

q+
min{tq− , tq

+} − C7 |ρ1|p′(x) s− C8 |ρ2|q′(x) t− C6, s, t ≥ 0

is bounded from below, we conclude that J is also bounded from below.

Theorem 3.1 Under assumptions (H1)–(H3), problem (1.1) possesses a weak solution (u, v) ∈
W .

Proof We shall find a critical point of the functional J . As J is a C1 and bounded from below
functional, it follows from the Ekeland Variational Principle that there exists (un, vn) ∈ W such
that

J (un, vn) → inf
W

J and J ′ (un, vn) → 0. (1)
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For each n ∈ N, we have
un = u0

n + αn and vn = v0
n + βn,

where αn and βn are real constants and
∫
Ω

u0
ndx =

∫
Ω

v0
ndx = 0. From (3.1) we have |J (un, vn) | ≤

C9, for some positive constant C9 and for all n ∈ N. We now use the Lemma 3.1 to obtain

C10 ≤m0

p+
min{∣∣∇u0

n

∣∣p−
p(x)

,
∣∣∇u0

n

∣∣p+

p(x)
}+

m0

q+
min{∣∣∇v0

n

∣∣q−
q(x)

,
∣∣∇v0

n

∣∣q+

q(x)
}−

c |ρ1|p(x)′
∣∣∇u0

n

∣∣
p(x)

− c |ρ2|q′(x)

∣∣∇v0
n

∣∣
q(x)

≤ C9

which implies that the sequences
∣∣∇u0

n

∣∣
p(x)

and
∣∣∇v0

n

∣∣
q(x)

are bounded. By virtue of the Poincaré-
Wirtinger’s inequality

∣∣u0
n

∣∣
p(x)

and
∣∣v0

n

∣∣
q(x)

are bounded too. Consequently,
(
u0

n

)
is bounded

sequences in W 1,p(x)(Ω) and
(
v0

n

)
is bounded sequences in W 1,q(x)(Ω). It is obvious that there

exists constant k large enough such that αn, βn ∈ [0, k] for all n ∈ N. So (un) is bounded sequence
in W 1,p(x)(Ω) and (vn) is bounded sequence in W 1,q(x)(Ω). Hence, up to a subsequence, we have

(un, vn) ⇀ (u, v) in W,
∫

Ω

ρ1undx →
∫

Ω

ρ1udx,

∫

Ω

ρ2vndx →
∫

Ω

ρ2vdx

and
(un, vn) → (u, v) a.e. in Ω.

Due to the continuity of F , F (un, vn) → F (u, v) a.e., in Ω and because |F (un(x), vn(x)) | ≤ C3

for all n ∈ N a.e., in Ω, we may use the Lebesgue dominated convergence theorem to conclude
that ∫

Ω

F (un, vn) dx →
∫

Ω

F (u, v)dx.

On the other hand, by Proposition 3.1 of [31], we have

M̂
( ∫

Ω

1
p(x)

|∇u|p(x)dx
)
≤ lim

n→+∞
M̂

( ∫

Ω

1
p(x)

|∇un|p(x)dx
)

and
M̂

( ∫

Ω

1
q(x)

|∇v|q(x)dx
)
≤ lim

n→+∞
M̂

( ∫

Ω

1
q(x)

|∇vn|q(x)dx
)
.

Consequently,
inf
W

J = lim
n→+∞

J (un, vn) ≥ J(u, v),

which implies that J(u, v) = infW J . Since (u, v) ∈ W and is a weak solution of problem (1.1),
we conclude that such a function satisfies the Neumann boundary condition in the trace sense.
This finishes the proof of the theorem. ¤

References

[1] M. RU̇Z̆IC̆KA. Electrorheological Fluids: Modeling and Mathematical Theory. Springer-Verlag, Berlin, 2000.

[2] V. V. ZHIKOV. Averaging of functionals of the calculus of variations and elasticity theory. Izv. Akad. Nauk

SSSR Ser. Mat., 1986, 50(4): 675–710.

[3] S. N. ANTONTSEV, S. I. SHMAREV. A Model porous medium equation with variable exponent of nonlin-

earity: existence, uniqueness and localization properties of solutions. Nonlinear Anal., 2005, 60(3): 515–545.



450 Guowei DAI and Xiaoyan LI

[4] S. N. ANTONTSEV, J. F. RODRIGUES. On stationary thermo-rheological viscous flows. Ann. Univ.

Ferrara Sez. VII Sci. Mat., 2006, 52(1): 19–36.

[5] Yunmei CHEN, S. LEVINE, M. RAO. Variable exponent, linear growth functionals in image restoration.

SIAM J. Appl. Math., 2006, 66(4): 1383–1406.
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