Complete Convergence of Weighted Sums for ρ^{*}-Mixing Sequence of Random Variables

Mingle GUO* ${ }^{*}$ Dongjin ZHU
School of Mathematics and Computer Science, Anhui Normal University, Anhui 241003, P. R. China

Abstract

In this paper, the complete convergence of weighted sums for ρ^{*}-mixing sequence of random variables is investigated. By applying moment inequality and truncation methods, the equivalent conditions of complete convergence of weighted sums for ρ^{*}-mixing sequence of random variables are established. We not only promote and improve the results of Li et al. (J. Theoret. Probab., 1995, 8(1): 49-76) from i.i.d. to ρ^{*}-mixing setting but also obtain their necessities and relax their conditions.

Keywords $\quad \rho^{*}$-mixing sequence of random variables; weighted sums; complete convergence; moment inequality.

MR(2010) Subject Classification 60F15

1. Introduction

Let $\left\{X_{n}, n \geq 1\right\}$ be a sequence of random variables defined on probability space (Ω, \mathscr{F}, P). Write $\mathscr{F}_{S}=\sigma\left(X_{k}, k \in S\right) \subset \mathscr{F}$,

$$
\rho^{*}(k)=\sup _{S, T}\left(\sup _{X \in L^{2}\left(\mathscr{F}_{S}\right), Y \in L^{2}\left(\mathscr{F}_{T}\right)} \frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var}(X) \cdot \operatorname{Var}(Y)}}\right)
$$

where S, T are the finite subsets of positive integers such that $\operatorname{dist}(S, T) \geq k$.
We call $\left\{X_{n}, n \geq 1\right\}$ a ρ^{*}-mixing sequence if there exists $k \geq 0$ such that $\rho^{*}(k)<1$.
Without loss of generality we may assume that a ρ^{*}-mixing sequence $\left\{X_{n}, n \geq 1\right\}$ is such that $\rho^{*}(1)<1$ (see [1]). The ρ^{*}-mixing conception is similar to ρ-mixing, but they are quite different from each other. Bryc and Smolenski [1] and Peligrad [2] pointed out the importance of the condition $\rho^{*}(1)<1$ in estimating the moments of partial sums or maximum of partial sums. Various limit properties under the condition $\rho^{*}(1)<1$ were studied. We refer to Bradley [3] for the central limit theorem, Bryc and Smolenski [1] for moment inequalities and almost sure convergence, An and Yuan [4] for complete convergence of weighted sums for ρ^{*}-mixing sequence of random variables, and Peligrad and Gut [5] for the Rosenthal-type maximal inequality.

[^0]When $\left\{X_{n}, n \geq 1\right\}$ are independent and identically distributed (i.i.d.), Baum and Katz [6] proved the following remarkable result concerning the convergence rate of the tail probabilities $P\left(\left|S_{n}\right|>\epsilon n^{1 / p}\right)$ for any $\epsilon>0$, where $S_{n}=\sum_{i=1}^{n} X_{i}$.

Theorem A Let $0<p<2$ and $r \geq p$. Then

$$
\sum_{n=1}^{\infty} n^{\frac{r}{p}-2} P\left(\left|S_{n}\right|>\epsilon n^{1 / p}\right)<\infty \text { for all } \epsilon>0
$$

if and only if $E\left|X_{1}\right|^{r}<\infty$, where $E X_{1}=0$ whenever $1 \leq p<2$.
There is an interesting and substantial literature of investigation apropos of extending the Baum-Katz Theorem along a variety of different paths. Since partial sums are a particular case of weighted sums and the weighted sums are often encountered in some actual questions, the complete convergence for the weighted sums seems more important. Li et al. [7] discussed the complete convergence for independent weighted sums and obtained the following results.

Theorem B Let $\left\{X, X_{k}, k \in Z\right\}$ be a sequence of zero mean i.i.d. real random variables and $\left\{a_{n i}, i \in Z, n \geq 1\right\}$ be an array of real numbers.
(i) Let $p>2$. If $E|X|^{p}<\infty$, and for some $0<\delta<\frac{2}{p}, 2 \leq q<p$,

$$
\begin{equation*}
\sum_{k \in Z}\left|a_{n k}\right|^{2}=O\left(n^{\delta}\right) \text { as } n \rightarrow \infty, \text { and } \sum_{k \in Z}\left|a_{n k}\right|^{q}=o(1) \text { as } n \rightarrow \infty, \tag{1}
\end{equation*}
$$

then, for any $\epsilon>0$,

$$
\begin{equation*}
\sum_{n=1}^{\infty} P\left(\left|\sum_{i \in Z} a_{n i} X_{i}\right|>\epsilon n^{1 / p}\right)<\infty \tag{2}
\end{equation*}
$$

(ii) If

$$
\begin{equation*}
\sum_{k \in Z}\left|a_{n k}\right|^{2}=o(1) \text { as } n \rightarrow \infty \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
E|X|^{2} \log (1+|X|)<\infty \tag{4}
\end{equation*}
$$

then, for any $\epsilon>0$,

$$
\begin{equation*}
\sum_{n=1}^{\infty} P\left(\left|\sum_{i \in Z} a_{n i} X_{i}\right|>\epsilon n^{1 / 2}\right)<\infty \tag{5}
\end{equation*}
$$

Wang et al. [8] improved Theorem B and established the necessary and sufficient conditions of complete convergence for weighted sums of i.i.d. random variables. Liang et al. [9] obtained the equivalent conditions of complete convergence of weighted sums of negatively associated random variables.

The main purpose of this paper is to discuss again the above results for ρ^{*}-mixing sequence of random variables. By applying moment inequality and truncation methods, the equivalent conditions of complete convergence of weighted sums for ρ^{*}-mixing sequence of random variables are established. We not only promote and improve the results of Li et al. [7] from i.i.d. to ρ^{*}-mixing setting but also obtain their necessities and relax their conditions.

For the proofs of the main results, we need to restate a few lemmas for easy reference. Throughout this paper, C will represent positive constants, the value of which may change from one place to another. The symbol $I(A)$ denotes the indicator function of $A,[x]$ indicates the maximum integer not larger than x. For a finite set B, the symbol $\sharp B$ denotes the number of elements in the set B. Let $a_{n} \ll b_{n}$ denote that there exists a constant $C>0$ such that $a_{n} \leq C b_{n}$ for sufficiently large n, and let $a_{n} \approx b_{n}$ mean $a_{n} \ll b_{n}$ and $b_{n} \ll a_{n}$.

The following lemma will play an important role in the proof of our main results. The proof is due to Peligrad and Gut [5].

Lemma 1 Let $\left\{X_{i}, 1 \leq i \leq n\right\}$ be a ρ^{*}-mixing sequence of random variables, $Y_{i} \in \sigma\left(X_{i}\right)$, $E Y_{i}=0, E\left|Y_{i}\right|^{M}<\infty, i \geq 1, M \geq 2$. Then there exists a positive constant C such that

$$
\begin{gather*}
E\left|\sum_{i=1}^{n} Y_{i}\right|^{M} \leq C\left[\sum_{i=1}^{n} E\left|Y_{i}\right|^{M}+\left(\sum_{i=1}^{n} E Y_{i}^{2}\right)^{M / 2}\right] \tag{6}\\
E \max _{1 \leq j \leq n}\left|\sum_{i=1}^{j} Y_{i}\right|^{M} \leq C\left[\sum_{i=1}^{n} E\left|Y_{i}\right|^{M}+\left(\log _{2} n\right)^{M}\left(\sum_{i=1}^{n} E Y_{i}^{2}\right)^{M / 2}\right] . \tag{7}
\end{gather*}
$$

Lemma 2 Let $\left\{X_{n}, n \geq 1\right\}$ be a ρ^{*}-mixing sequence of random variables, and $\left\{a_{n i}, 1 \leq i \leq\right.$ $n, n \geq 1\}$ be an array of real numbers. Then there exists a positive constant C such that, for any $x \geq 0$ and all $n \geq 1$,

$$
\begin{equation*}
\left(\frac{1}{2}-P\left(\max _{1 \leq i \leq n}\left|a_{n i} X_{i}\right|>x\right)\right) \sum_{i=1}^{n} P\left(\left|a_{n i} X_{i}\right|>x\right) \leq\left(1+\frac{C}{2}\right) P\left(\max _{1 \leq i \leq n}\left|a_{n i} X_{i}\right|>x\right) \tag{8}
\end{equation*}
$$

Proof Since $\left\{\max _{1 \leq i \leq n}\left|a_{n i} X_{i}\right|>x\right\}=\bigcup_{i=1}^{n}\left\{\left|a_{n i} X_{i}\right|>x, \max _{1 \leq j \leq i-1}\left|a_{n j} X_{j}\right| \leq x\right\}$, we have

$$
\begin{align*}
& \sum_{i=1}^{n} P\left(\left|a_{n i} X_{i}\right|>x\right) \\
& =\sum_{i=1}^{n} P\left(\left|a_{n i} X_{i}\right|>x, \max _{1 \leq j \leq i-1}\left|a_{n j} X_{j}\right| \leq x\right)+\sum_{i=1}^{n} P\left(\left|a_{n i} X_{i}\right|>x, \max _{1 \leq j \leq i-1}\left|a_{n j} X_{j}\right|>x\right) \\
& =P\left(\max _{1 \leq i \leq n}\left|a_{n i} X_{i}\right|>x\right)+\sum_{i=1}^{n} P\left(\left|a_{n i} X_{i}\right|>x, \max _{1 \leq j \leq i-1}\left|a_{n j} X_{j}\right|>x\right) . \tag{9}
\end{align*}
$$

Note that

$$
\begin{align*}
& \sum_{i=1}^{n} P\left(\left|a_{n i} X_{i}\right|>x, \max _{1 \leq j \leq i-1}\left|a_{n j} X_{j}\right|>x\right) \\
& \quad \leq E\left(\sum_{i=1}^{n}\left(I\left(\left|a_{n i} X_{i}\right|>x\right)-E I\left(\left|a_{n i} X_{i}\right|>x\right)\right)\right) I\left(\max _{1 \leq j \leq n}\left|a_{n j} X_{j}\right|>x\right)+ \\
& \quad \sum_{i=1}^{n} P\left(\left|a_{n i} X_{i}\right|>x\right) P\left(\max _{1 \leq j \leq n}\left|a_{n j} X_{j}\right|>x\right) \tag{10}
\end{align*}
$$

Combining with the Cauchy-Schwarz inequality and (6), we obtain

$$
E\left(\sum_{i=1}^{n}\left(I\left(\left|a_{n i} X_{i}\right|>x\right)-E I\left(\left|a_{n i} X_{i}\right|>x\right)\right)\right) I\left(\max _{1 \leq j \leq n}\left|a_{n j} X_{j}\right|>x\right)
$$

$$
\begin{align*}
& \leq \sqrt{E\left(\sum_{i=1}^{n}\left(I\left(\left|a_{n i} X_{i}\right|>x\right)-E I\left(\left|a_{n i} X_{i}\right|>x\right)\right)\right)^{2} P\left(\max _{1 \leq j \leq n}\left|a_{n j} X_{j}\right|>x\right)} \\
& \leq \sqrt{C \sum_{i=1}^{n} P\left(\left|a_{n i} X_{i}\right|>x\right) P\left(\max _{1 \leq j \leq n}\left|a_{n j} X_{j}\right|>x\right)} \\
& \leq \frac{1}{2} \sum_{i=1}^{n} P\left(\left|a_{n i} X_{i}\right|>x\right)+\frac{C}{2} P\left(\max _{1 \leq i \leq n}\left|a_{n i} X_{i}\right|>x\right) . \tag{11}
\end{align*}
$$

Now we substitute (11) into (10) and then into (9) and obtain (8).
Lemma 3 Let $\left\{X_{n}, n \geq 1\right\}$ be a ρ^{*}-mixing sequence of random variables, and $\left\{a_{n i}, 1 \leq i \leq\right.$ $n, n \geq 1\}$ be an array of real numbers. Let $\left\{b_{n}, n \geq 1\right\}$ be a sequence of positive real numbers. If for some $M \geq 2, \alpha>0$ the following conditions are fulfilled
(a) $\sum_{n=1}^{\infty} b_{n} \sum_{i=1}^{n} P\left(\left|a_{n i} X_{i}\right|>n^{\alpha}\right)<\infty$,
(b) $\sum_{n=1}^{\infty} b_{n} n^{-M \alpha} \sum_{i=1}^{n} E\left|a_{n i} X_{i}\right|^{M} I\left(\left|a_{n i} X_{i}\right| \leq n^{\alpha}\right)<\infty$,
(c) $\sum_{n=1}^{\infty} b_{n} n^{-M \alpha}\left(\log _{2} n\right)^{M}\left(\sum_{i=1}^{n} E\left|a_{n i} X_{n i}\right|^{2} I\left(\left|a_{n i} X_{n i}\right| \leq n^{\alpha}\right)\right)^{M / 2}<\infty$,
then for any $\epsilon>0$

$$
\begin{equation*}
\sum_{n=1}^{\infty} b_{n} P\left(\max _{1 \leq k \leq n}\left|\sum_{i=1}^{k}\left(a_{n i} X_{i}-E a_{n i} X_{i} I\left(\left|a_{n i} X_{i}\right| \leq n^{\alpha}\right)\right)\right|>\epsilon n^{\alpha}\right)<\infty \tag{12}
\end{equation*}
$$

Proof Similarly to the proof of Theorem 2.3 in [10], we assume $X_{n i}=a_{n i} X_{i} I\left(\left|a_{n i} X_{i}\right| \leq n^{\alpha}\right)$. Using Lemma 1, Markov's inequality and C_{r} inequality, we obtain

$$
\begin{align*}
& P\left(\max _{1 \leq k \leq n}\left|\sum_{i=1}^{k}\left(X_{n i}-E X_{n i}\right)\right|>\epsilon n^{\alpha}\right) \\
& \quad \leq \epsilon^{-M} n^{-M \alpha} E \max _{1 \leq k \leq n}\left|\sum_{i=1}^{k}\left(X_{n i}-E X_{n i}\right)\right|^{M} \\
& \quad \leq C \epsilon^{-M} n^{-M \alpha}\left[\sum_{i=1}^{n} E\left|X_{n i}-E X_{n i}\right|^{M}+\left(\log _{2} n\right)^{M}\left(\sum_{i=1}^{n} E\left(X_{n i}-E X_{n i}\right)^{2}\right)^{M / 2}\right] \\
& \quad \leq C n^{-M \alpha}\left[\sum_{i=1}^{n} E\left|X_{n i}\right|^{M}+\left(\log _{2} n\right)^{M}\left(\sum_{i=1}^{n} E X_{n i}^{2}\right)^{M / 2}\right] \tag{13}
\end{align*}
$$

Moreover, we see that

$$
\begin{align*}
& P\left(\max _{1 \leq k \leq n}\left|\sum_{i=1}^{k}\left(a_{n i} X_{i}-E a_{n i} X_{i} I\left(\left|a_{n i} X_{i}\right| \leq n^{\alpha}\right)\right)\right|>\epsilon n^{\alpha}\right) \\
& \quad \leq P\left(\max _{1 \leq k \leq n}\left|\sum_{i=1}^{k}\left(X_{n i}-E X_{n i}\right)\right|>\epsilon n^{\alpha}\right)+\sum_{i=1}^{n} P\left(\left|a_{n i} X_{i}\right|>n^{\alpha}\right) . \tag{14}
\end{align*}
$$

Therefore, by (13), (14), (a), (b) and (c) we see that (12) holds.

2. Main results

Now we state our main results. The proofs will be given in Section 3.

Theorem 1 Let $\left\{X, X_{n}, n \geq 1\right\}$ be a ρ^{*}-mixing sequence of identically distributed random variables and $\left\{a_{n i}, 1 \leq i \leq n, n \geq 1\right\}$ be an array of real numbers. Let $r>1, p>2$. If, for some $2 \leq q<p$,

$$
\begin{align*}
& N(n, m+1) \hat{=} \sharp\left\{k \geq 1,\left|a_{n k}\right| \geq(m+1)^{-1 / p}\right\} \approx m^{q(r-1) / p}, \quad n, m \geq 1 ; \tag{15}\\
& E X=0, \text { when } q(r-1) \geq 1 ; \tag{16}\\
& \sum_{k=1}^{n}\left|a_{n k}\right|^{2} \ll n^{\delta} \text { when } q(r-1) \geq 2, \text { where } 0<\delta<\frac{2}{p}, \tag{17}
\end{align*}
$$

then, for $r \geq 2$,

$$
\begin{equation*}
E|X|^{p(r-1)}<\infty \tag{18}
\end{equation*}
$$

if and only if

$$
\begin{equation*}
\sum_{n=1}^{\infty} n^{r-2} P\left(\max _{1 \leq k \leq n}\left|\sum_{i=1}^{k} a_{n i} X_{i}\right|>\epsilon n^{1 / p}\right)<\infty, \quad \forall \epsilon>0 \tag{19}
\end{equation*}
$$

For $1<r<2$, (18) implies (19). Conversely, if $\lim _{n \rightarrow \infty} P\left(\max _{1 \leq i \leq n}\left|a_{n i} X_{i}\right|>\epsilon n^{1 / p}\right)=0$, then (19) implies (18).

For $p=2, q=2$, we have the following theorem.
Theorem 2 Let $\left\{X, X_{n}, n \geq 1\right\}$ be a ρ^{*}-mixing sequence of identically distributed random variables and $\left\{a_{n i}, 1 \leq i \leq n, n \geq 1\right\}$ be an array of real numbers, and let $r>1$. If

$$
\begin{align*}
& N(n, m+1) \hat{=} \sharp\left\{k \geq 1,\left|a_{n k}\right| \geq(m+1)^{-1 / 2}\right\} \approx m^{r-1}, \quad n, m \geq 1 \tag{20}\\
& E X=0, \text { when } 2(r-1) \geq 1 \tag{21}\\
& \sum_{k=1}^{n}\left|a_{n k}\right|^{2(r-1)}=O(1) \tag{22}
\end{align*}
$$

then, for $r \geq 2$,

$$
\begin{equation*}
E|X|^{2(r-1)} \log (1+|X|)<\infty \tag{23}
\end{equation*}
$$

if and only if

$$
\begin{equation*}
\sum_{n=1}^{\infty} n^{r-2} P\left(\max _{1 \leq k \leq n}\left|\sum_{i=1}^{k} a_{n i} X_{i}\right|>\epsilon n^{1 / 2}\right)<\infty, \quad \forall \epsilon>0 \tag{24}
\end{equation*}
$$

For $1<r<2$, (23) implies (24). Conversely, if $\lim _{n \rightarrow \infty} P\left(\max _{1 \leq i \leq n}\left|a_{n i} X_{i}\right|>\epsilon n^{1 / 2}\right)=0$, then (24) implies (23).

Remark 1 Since independent random variables are a special case of ρ^{*}-mixing random variables, Theorems 1 and 2 extend the results of Wang et al. [8].

Remark 2 Note that $\sum_{k=1}^{n}\left|a_{n k}\right|^{q(r-1)} \ll 1$ as $n \rightarrow \infty, 2 \leq q<p$ implies

$$
\sharp\left\{k,\left|a_{n k}\right| \geq(m+1)^{-1 / p}\right\} \ll m^{q(r-1) / p} \text { as } n \rightarrow \infty .
$$

Taking $r=2$, then conditions (15) and (20) are weaker than conditions (1) and (3) in Li et al. [7]. Therefore, Theorems 1 and 2 not only promote and improve the results of Li et al. [7] from i.i.d. to ρ^{*}-mixing setting but also obtain their necessities and relax the range of r.

3. Proofs of the main results

Proof of Theorem 1 We firstly prove (18) \Rightarrow (19). Put $b_{n}=n^{r-2}, \alpha=1 / p$ in Lemma 3. For any $q^{\prime}>q$, we have

$$
\begin{align*}
& \sum_{i=1}^{n}\left|a_{n i}\right|^{q^{\prime}(r-1)}=\sum_{m=1}^{\infty} \sum_{(m+1)^{-1} \leq\left|a_{n i}\right|^{p}<m^{-1}}\left|a_{n i}\right|^{q^{\prime}(r-1)} \\
& \quad \ll \sum_{m=1}^{\infty}(N(n, m+1)-N(n, m)) m^{-q^{\prime}(r-1) / p} \\
& \quad \ll \sum_{m=1}^{\infty} m^{q(r-1) / p-q^{\prime}(r-1) / p-1}<\infty \tag{25}
\end{align*}
$$

Let $Y=X / \epsilon$. By exchanging sum order and (15), we get

$$
\begin{align*}
& \sum_{i=1}^{n} P\left(\left|a_{n i} X_{i}\right|>\epsilon n^{1 / p}\right)=\sum_{i=1}^{n} P\left(\left|a_{n i} X\right|>\epsilon n^{1 / p}\right)=\sum_{i=1}^{n} P\left(\left|a_{n i} Y\right|>n^{1 / p}\right) \\
& \quad=\sum_{j=1}^{\infty} \sum_{(j+1)^{-1} \leq\left|a_{n i}\right|^{p}<j^{-1}} P\left(\left|a_{n i} Y\right|>n^{1 / p}\right) \approx \sum_{j=1}^{\infty}(N(n, j)-N(n, j-1)) P\left(|Y|>(n j)^{1 / p}\right) \\
& \quad=\sum_{j=1}^{\infty}(N(n, j)-N(n, j-1)) \sum_{k=n j}^{\infty} P\left(k<|Y|^{p} \leq k+1\right) \\
& \quad=\sum_{k=n}^{\infty} P\left(k<|Y|^{p} \leq k+1\right) \sum_{j=1}^{[k / n]}(N(n, j)-N(n, j-1)) \\
& \quad \approx \sum_{k=n}^{\infty}(k / n)^{q(r-1) / p} P\left(k<|Y|^{p} \leq k+1\right) \tag{26}
\end{align*}
$$

Noting that $r-2-q(r-1) / p>-1$, by (26), we have

$$
\begin{align*}
& \sum_{n=1}^{\infty} n^{r-2} \sum_{i=1}^{n} P\left(\left|a_{n i} X_{i}\right|>\epsilon n^{1 / p}\right) \approx \sum_{n=1}^{\infty} n^{r-2} \sum_{k=n}^{\infty}(k / n)^{q(r-1) / p} P\left(k<|Y|^{p} \leq k+1\right) \\
& \quad=\sum_{k=1}^{\infty} k^{q(r-1) / p} P\left(k<|Y|^{p} \leq k+1\right) \sum_{n=1}^{k} n^{r-2-q(r-1) / p} \\
& \quad \approx \sum_{k=1}^{\infty} k^{r-1} P\left(k<|Y|^{p} \leq k+1\right) \approx E|Y|^{p(r-1)} \approx E|X|^{p(r-1)}<\infty . \tag{27}
\end{align*}
$$

Choosing sufficiently large $M>\max \{2, p(r-1)\}$ such that $r-2-M / p<-1, q(r-1) / p-1-$ $M / p<-1$. By exchanging sum order, we obtain

$$
\begin{aligned}
& \sum_{n=1}^{\infty} n^{r-2-M / p} \sum_{i=1}^{n} E\left|a_{n i} X_{i}\right|^{M} I\left(\left|a_{n i} X_{i}\right| \leq n^{1 / p}\right) \\
& \ll \sum_{n=1}^{\infty} n^{r-2-M / p} \sum_{j=1}^{\infty}(N(n, j)-N(n, j-1)) j^{-M / p} E|X|^{M} I\left(|X| \leq(n(j+1))^{1 / p}\right)
\end{aligned}
$$

$$
\begin{align*}
\approx & \sum_{n=1}^{\infty} n^{r-2-M / p} \sum_{j=1}^{\infty} j^{q(r-1) / p-1-M / p} E|X|^{M} I\left(|X|^{p} \leq 2 n-1\right)+ \\
& \sum_{n=1}^{\infty} n^{r-2-M / p} \sum_{j=1}^{\infty} j^{q(r-1) / p-1-M / p} \sum_{k=2 n}^{n(j+1)} E|X|^{M} I\left(k-1<|X|^{p} \leq k\right) \\
= & I_{1}+I_{2} . \tag{28}
\end{align*}
$$

Noting that $r-2-M / p<-1, q(r-1) / p-1-M / p<-1$, we have

$$
\begin{equation*}
I_{1} \leq \sum_{n=1}^{\infty} n^{r-2-M / p} E|X|^{M} I\left(|X|^{p} \leq 2 n-1\right) \approx E|X|^{p(r-1)}<\infty \tag{29}
\end{equation*}
$$

By exchanging sum order, we obtain

$$
\begin{align*}
I_{2} & =\sum_{n=1}^{\infty} n^{r-2-M / p} \sum_{k=2 n}^{\infty} E|X|^{M} I\left(k-1<|X|^{p} \leq k\right) \sum_{j=[k / n]-1}^{\infty} j^{q(r-1) / p-1-M / p} \\
& \approx \sum_{n=1}^{\infty} n^{r-2-M / p} \sum_{k=2 n}^{\infty}(k / n)^{q(r-1) / p-M / p} E|X|^{M} I\left(k-1<|X|^{p} \leq k\right) \\
& =\sum_{k=2}^{\infty} k^{q(r-1) / p-M / p} E|X|^{M} I\left(k-1<|X|^{p} \leq k\right) \sum_{n=1}^{[k / 2]} n^{r-2-q(r-1) / p} \\
& \approx \sum_{k=2}^{\infty} k^{r-1-M / p} E|X|^{M} I\left(k-1<|X|^{p} \leq k\right) \approx E|X|^{p(r-1)}<\infty . \tag{30}
\end{align*}
$$

Combining with (28), (29) and (30), we see

$$
\begin{equation*}
\sum_{n=1}^{\infty} n^{r-2-M / p} \sum_{i=1}^{n} E\left|a_{n i} X_{i}\right|^{M} I\left(\left|a_{n i} X_{i}\right| \leq n^{1 / p}\right)<\infty \tag{31}
\end{equation*}
$$

When $q(r-1)<2$, take $q<q^{\prime}<p$ such that $q^{\prime}(r-1)<2$. Taking sufficiently large M such that $r-2-M q^{\prime}(r-1) /(2 p)<-1$, by (25) and $E|X|^{q^{\prime}(r-1)}<\infty$, we have

$$
\begin{align*}
& \sum_{n=1}^{\infty} n^{r-2-M / p}\left(\log _{2} n\right)^{M}\left(\sum_{i=1}^{n} E\left|a_{n i} X_{i}\right|^{2} I\left(\left|a_{n i} X_{i}\right| \leq n^{1 / p}\right)\right)^{M / 2} \\
& \leq \sum_{n=1}^{\infty} n^{r-2-M / p} n^{M / p-M q^{\prime}(r-1) /(2 p)}\left(\log _{2} n\right)^{M}\left(\sum_{i=1}^{n} E\left|a_{n i} X_{i}\right|^{q^{\prime}(r-1)} I\left(\left|a_{n i} X_{i}\right| \leq n^{1 / p}\right)\right)^{M / 2} \\
& \ll \sum_{n=1}^{\infty} n^{r-2-M q^{\prime}(r-1) /(2 p)}\left(\log _{2} n\right)^{M}<\infty \tag{32}
\end{align*}
$$

For $q(r-1) \geq 2$, since $\delta<2 / p$, we can take sufficiently large M such that $r-2-M / p+M \delta / 2<$ -1 . Therefore, by (17), we get

$$
\begin{align*}
& \sum_{n=1}^{\infty} n^{r-2-M / p}\left(\log _{2} n\right)^{M}\left(\sum_{i=1}^{n} E\left|a_{n i} X_{i}\right|^{2} I\left(\left|a_{n i} X_{i}\right| \leq n^{1 / p}\right)\right)^{M / 2} \\
& \quad \ll \sum_{n=1}^{\infty} n^{r-2-M / p}\left(\log _{2} n\right)^{M}\left(\sum_{i=1}^{n}\left|a_{n i}\right|^{2}\right)^{M / 2} \ll \sum_{n=1}^{\infty} n^{r-2-M / p+M \delta / 2}\left(\log _{2} n\right)^{M}<\infty . \tag{33}
\end{align*}
$$

Thus we have established that all assumptions from Lemma 3 are fulfilled. Therefore, to prove
(19), it suffices to prove that

$$
\begin{equation*}
\frac{1}{n^{1 / p}} \max _{1 \leq k \leq n}\left|\sum_{i=1}^{k} E a_{n i} X_{i} I\left(\left|a_{n i} X_{i}\right| \leq n^{1 / p}\right)\right| \rightarrow 0 \text { as } n \rightarrow \infty \tag{34}
\end{equation*}
$$

For $q(r-1)<1$, taking $q<q^{\prime}<p$ such that $q^{\prime}(r-1)<1$, by (25), we get

$$
\begin{aligned}
& \frac{1}{n^{1 / p}} \max _{1 \leq k \leq n}\left|\sum_{i=1}^{k} E a_{n i} X_{i} I\left(\left|a_{n i} X_{i}\right| \leq n^{1 / p}\right)\right| \leq \frac{1}{n^{1 / p}} \sum_{i=1}^{n} E\left|a_{n i} X_{i}\right| I\left(\left|a_{n i} X_{i}\right| \leq n^{1 / p}\right) \\
& \quad \leq \frac{1}{n^{1 / p}} n^{1 / p-q^{\prime}(r-1) / p} \sum_{i=1}^{n} E\left|a_{n i} X_{i}\right|^{q^{\prime}(r-1)} I\left(\left|a_{n i} X_{i}\right| \leq n^{1 / p}\right) \ll n^{-q^{\prime}(r-1) / p} \rightarrow 0 \text { as } n \rightarrow \infty .
\end{aligned}
$$

For $q(r-1) \geq 1$, noting that $E X=0$, by (25), we obtain

$$
\begin{aligned}
& \frac{1}{n^{1 / p}} \max _{1 \leq k \leq n}\left|\sum_{i=1}^{k} E a_{n i} X_{i} I\left(\left|a_{n i} X_{i}\right| \leq n^{1 / p}\right)\right|=\frac{1}{n^{1 / p}} \max _{1 \leq k \leq n}\left|\sum_{i=1}^{k} E a_{n i} X_{i} I\left(\left|a_{n i} X_{i}\right|>n^{1 / p}\right)\right| \\
& \quad \leq \frac{1}{n^{1 / p}} n^{1 / p-r+1} \sum_{i=1}^{n} E\left|a_{n i} X_{i}\right|^{p(r-1)} I\left(\left|a_{n i} X_{i}\right|>n^{1 / p}\right) \ll n^{-r+1} \rightarrow 0 \text { as } n \rightarrow \infty .
\end{aligned}
$$

Now we proceed to prove (19) \Rightarrow (18). Since $\max _{1 \leq k \leq n}\left|a_{n k} X_{k}\right| \leq 2 \max _{1 \leq k \leq n}\left|\sum_{i=1}^{k} a_{n i} X_{i}\right|$, then from (19) we have

$$
\begin{equation*}
\sum_{n=1}^{\infty} n^{r-2} P\left(\max _{1 \leq k \leq n}\left|a_{n k} X_{k}\right|>\epsilon n^{1 / p}\right)<\infty, \quad \forall \epsilon>0 \tag{35}
\end{equation*}
$$

When $r \geq 2$, it is obvious that $P\left(\max _{1 \leq k \leq n}\left|a_{n k} X_{k}\right|>\epsilon n^{1 / p}\right) \rightarrow 0$ as $n \rightarrow \infty$. Combining with the hypotheses of Theorem, for $r>1$, we have $P\left(\max _{1 \leq k \leq n}\left|a_{n k} X_{k}\right|>\epsilon n^{1 / p}\right) \rightarrow 0$ as $n \rightarrow \infty$. Therefore, by Lemma 2, we have

$$
\begin{equation*}
\sum_{i=1}^{n} P\left(\left|a_{n i} X_{i}\right|>\epsilon n^{1 / p}\right) \ll P\left(\max _{1 \leq k \leq n}\left|a_{n k} X_{k}\right|>\epsilon n^{1 / p}\right) . \tag{36}
\end{equation*}
$$

Substituting (36) into (35), we get

$$
\begin{equation*}
\sum_{n=1}^{\infty} n^{r-2} \sum_{i=1}^{n} P\left(\left|a_{n i} X_{i}\right|>\epsilon n^{1 / p}\right)<\infty . \tag{37}
\end{equation*}
$$

By (27), we have

$$
\begin{equation*}
E|X|^{p(r-1)} \approx \sum_{n=1}^{\infty} n^{r-2} \sum_{i=1}^{n} P\left(\left|a_{n i} X_{i}\right|>\epsilon n^{1 / p}\right) \tag{38}
\end{equation*}
$$

Therefore (18) holds.
Proof of Theorem 2 Let $p=2, q=2$. Applying the same notations and method as in Theorem 1, we need only to give the different parts. Similarly to the proof of (26) and (27), noting that $E|X|^{2(r-1)} \log (1+|X|)<\infty$, we have

$$
\sum_{n=1}^{\infty} n^{r-2} \sum_{i=1}^{n} P\left(\left|a_{n i} X_{i}\right|>\epsilon n^{1 / 2}\right) \approx \sum_{n=1}^{\infty} n^{r-2} \sum_{k=n}^{\infty}(k / n)^{r-1} P\left(k<|Y|^{2} \leq(k+1)\right)
$$

$$
\begin{align*}
& =\sum_{k=1}^{\infty} k^{r-1} P\left(k<|Y|^{2} \leq(k+1)\right) \sum_{n=1}^{k} n^{-1} \approx \sum_{k=1}^{\infty} k^{r-1} \log (1+k) P\left(k<|Y|^{2} \leq(k+1)\right) \\
& \approx E|Y|^{2(r-1)} \log (1+|Y|) \approx E|X|^{2(r-1)} \log (1+|X|)<\infty \tag{39}
\end{align*}
$$

Choose $M>\max \{2,2(r-1)\}$. Since $E|X|^{2(r-1)} \log (1+|X|)<\infty$ implies $E|X|^{2(r-1)}<\infty$, for $p=2$, by (28), (29) and (30), we have

$$
\begin{equation*}
\sum_{n=1}^{\infty} n^{r-2-M / 2} \sum_{i=1}^{n} E\left|a_{n i} X_{i}\right|^{M} I\left(\left|a_{n i} X_{i}\right| \leq n^{1 / 2}\right)<\infty . \tag{40}
\end{equation*}
$$

For $r-1 \leq 1$, noting that $r-2-M(r-1) / 2<-1$, by (22) and Markov's inequality, we obtain

$$
\begin{align*}
& \sum_{n=1}^{\infty} n^{r-2-M / 2}\left(\log _{2} n\right)^{M}\left(\sum_{i=1}^{n} E\left|a_{n i} X_{i}\right|^{2} I\left(\left|a_{n i} X_{i}\right| \leq n^{1 / 2}\right)\right)^{M / 2} \\
& \quad \leq \sum_{n=1}^{\infty} n^{r-2-M / 2} n^{M / 2-M(r-1) / 2}\left(\log _{2} n\right)^{M}\left(\sum_{i=1}^{n} E\left|a_{n i} X_{i}\right|^{2(r-1)} I\left(\left|a_{n i} X_{i}\right| \leq n^{1 / 2}\right)\right)^{M / 2} \\
& \quad \ll \sum_{n=1}^{\infty} n^{r-2-M(r-1) / 2}\left(\log _{2} n\right)^{M}<\infty \tag{41}
\end{align*}
$$

For $r-1>1$, choosing sufficiently large M such that $r-2-\frac{M}{2(r-1)}<-1$, by Hölder's inequality and (22), we have

$$
\begin{align*}
& \sum_{n=1}^{\infty} n^{r-2-M / 2}\left(\log _{2} n\right)^{M}\left(\sum_{i=1}^{n} E\left|a_{n i} X_{i}\right|^{2} I\left(\left|a_{n i} X_{i}\right| \leq n^{1 / 2}\right)\right)^{M / 2} \\
& \quad \leq \sum_{n=1}^{\infty} n^{r-2-M / 2}\left(\log _{2} n\right)^{M}\left(\sum_{i=1}^{n}\left|a_{n i}\right|^{2}\right)^{M / 2} \\
& \quad \leq \sum_{n=1}^{\infty} n^{r-2-M / 2}\left(\log _{2} n\right)^{M}\left(\left(\sum_{i=1}^{n} a_{n i}^{2(r-1)}\right)^{\frac{1}{r-1}}\left(\sum_{i=1}^{n} 1\right)^{\frac{r-2}{r-1}}\right)^{M / 2} \\
& \quad \ll \sum_{n=1}^{\infty} n^{r-2-\frac{M}{2(r-1)}}\left(\log _{2} n\right)^{M}<\infty \tag{42}
\end{align*}
$$

Let (22) take the place of (25). Similarly to the proof of (34), we have

$$
\begin{equation*}
\frac{1}{n^{1 / 2}} \max _{1 \leq k \leq n}\left|\sum_{i=1}^{k} E a_{n i} X_{i} I\left(\left|a_{n i} X_{i}\right| \leq n^{1 / 2}\right)\right| \rightarrow 0 \text { as } n \rightarrow \infty \tag{43}
\end{equation*}
$$

Thus, we have proved $(23) \Rightarrow(24)$. Now we proceed to prove $(24) \Rightarrow(23)$. Using the same arguments as those in the necessary part of Theorem 1, by (39), we can easily prove

$$
\begin{equation*}
E|X|^{2(r-1)} \log (1+|X|) \approx \sum_{n=1}^{\infty} n^{r-2} \sum_{i=1}^{n} P\left(\left|a_{n i} X_{i}\right|>\epsilon n^{1 / 2}\right) . \tag{44}
\end{equation*}
$$

Therefore (23) holds.

References

[1] W. BRYC, W. SMOLEŃSKI. Moment conditions for almost sure convergence of weakly correlated random variables. Proc. Amer. Math. Soc., 1993, 119(2): 629-635.
[2] M. PELIGRAD. Maximum of partial sums and an invariance principle for a class of weak dependent random variables. Proc. Amer. Math. Soc., 1998, 126(4): 1181-1189.
[3] R. C. BRADLEY. On the spectral density and asymptotic normality of weakly dependent random fields. J. Theoret. Probab., 1992, 5(2): 355-374.
[4] Jun AN, Demei YUAN. Complete convergence of weighted sums for ρ^{*}-mixing sequence of random variables. Statist. Probab. Lett., 2008, 78(12): 1466-1472.
[5] M. PELIGRAD, A. GUT. Almost-sure results for a class of dependent random variables. J. Theoret. Probab., 1999, 12(1): 87-104.
[6] L. E. BAUM, M. KATZ. Convergence rates in the law of large numbers. Trans. Amer. Math. Soc., 1965, 120(1): 108-123.
[7] Deli LI, M. B. RAO, Tiefeng JIANG, et al. Complete convergence and almost sure convergence of weighted sums of random variables. J. Theoret. Probab., 1995,8(1): 49-76.
[8] Yuebao WANG, Xuguo LIU, Chun SU. Equivalent conditions of complete convergence for independent weighted sums. Sci. China Ser. A, 1998, 41(9): 939-949.
[9] Hanying LIANG, Deli LI, A. ROSALSKY. Complete moment and integral convergence for sums of negatively associated random variables. Acta Math. Sin. (Engl. Ser.), 2010, 26(3): 419-432.
[10] A. KUCZMASZEWSKA. On complete convergence for arrays of rowwise dependent random variables. Statist. Probab. Lett., 2007, 77(11): 1050-1060.

[^0]: Received May 6, 2012; Accepted September 3, 2012
 Supported by the National Natural Science Foundation of China (Grant Nos. 11271020; 11201004), the Key Project of Chinese Ministry of Education (Grant No. 211077) and the Natural Science Foundation of Anhui Province (Grant Nos. 10040606Q30; 1208085MA11).

 * Corresponding author

 E-mail address: mlguo@mail.ahnu.edu.cn (Mingle GUO); zhudj@mail.ahnu.edu.cn (Dongjin ZHU)

