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Abstract In this paper, the complete convergence of weighted sums for ρ∗-mixing sequence

of random variables is investigated. By applying moment inequality and truncation methods,

the equivalent conditions of complete convergence of weighted sums for ρ∗-mixing sequence of

random variables are established. We not only promote and improve the results of Li et al.

(J. Theoret. Probab., 1995, 8(1): 49–76) from i.i.d. to ρ∗-mixing setting but also obtain their

necessities and relax their conditions.
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1. Introduction

Let {Xn, n ≥ 1} be a sequence of random variables defined on probability space (Ω,F , P ).
Write FS = σ(Xk, k ∈ S) ⊂ F ,

ρ∗(k) = sup
S,T

(
sup

X∈L2(FS),Y ∈L2(FT )

Cov(X, Y )√
Var(X) ·Var(Y )

)

where S, T are the finite subsets of positive integers such that dist(S, T ) ≥ k.

We call {Xn, n ≥ 1} a ρ∗-mixing sequence if there exists k ≥ 0 such that ρ∗(k) < 1.

Without loss of generality we may assume that a ρ∗-mixing sequence {Xn, n ≥ 1} is such
that ρ∗(1) < 1 (see [1]). The ρ∗-mixing conception is similar to ρ-mixing, but they are quite
different from each other. Bryc and Smolenski [1] and Peligrad [2] pointed out the importance
of the condition ρ∗(1) < 1 in estimating the moments of partial sums or maximum of partial
sums. Various limit properties under the condition ρ∗(1) < 1 were studied. We refer to Bradley
[3] for the central limit theorem, Bryc and Smolenski [1] for moment inequalities and almost sure
convergence, An and Yuan [4] for complete convergence of weighted sums for ρ∗-mixing sequence
of random variables, and Peligrad and Gut [5] for the Rosenthal-type maximal inequality.
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When {Xn, n ≥ 1} are independent and identically distributed (i.i.d.), Baum and Katz [6]
proved the following remarkable result concerning the convergence rate of the tail probabilities
P (|Sn| > εn1/p) for any ε > 0, where Sn =

∑n
i=1 Xi.

Theorem A Let 0 < p < 2 and r ≥ p. Then

∞∑
n=1

n
r
p−2P (|Sn| > εn1/p) < ∞ for all ε > 0,

if and only if E|X1|r < ∞, where EX1 = 0 whenever 1 ≤ p < 2.

There is an interesting and substantial literature of investigation apropos of extending the
Baum-Katz Theorem along a variety of different paths. Since partial sums are a particular case
of weighted sums and the weighted sums are often encountered in some actual questions, the
complete convergence for the weighted sums seems more important. Li et al. [7] discussed the
complete convergence for independent weighted sums and obtained the following results.

Theorem B Let {X, Xk, k ∈ Z} be a sequence of zero mean i.i.d. real random variables and

{ani, i ∈ Z, n ≥ 1} be an array of real numbers.

(i) Let p > 2. If E|X|p < ∞, and for some 0 < δ < 2
p , 2 ≤ q < p,

∑

k∈Z

|ank|2 = O(nδ) as n →∞, and
∑

k∈Z

|ank|q = o(1) as n →∞, (1)

then, for any ε > 0,
∞∑

n=1

P
(∣∣ ∑

i∈Z

aniXi

∣∣ > εn1/p
)

< ∞. (2)

(ii) If ∑

k∈Z

|ank|2 = o(1) as n →∞, (3)

and

E|X|2 log(1 + |X|) < ∞, (4)

then, for any ε > 0,
∞∑

n=1

P
(∣∣ ∑

i∈Z

aniXi

∣∣ > εn1/2
)

< ∞. (5)

Wang et al. [8] improved Theorem B and established the necessary and sufficient conditions
of complete convergence for weighted sums of i.i.d. random variables. Liang et al. [9] obtained the
equivalent conditions of complete convergence of weighted sums of negatively associated random
variables.

The main purpose of this paper is to discuss again the above results for ρ∗-mixing sequence
of random variables. By applying moment inequality and truncation methods, the equivalent
conditions of complete convergence of weighted sums for ρ∗-mixing sequence of random variables
are established. We not only promote and improve the results of Li et al. [7] from i.i.d. to
ρ∗-mixing setting but also obtain their necessities and relax their conditions.
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For the proofs of the main results, we need to restate a few lemmas for easy reference.
Throughout this paper, C will represent positive constants, the value of which may change from
one place to another. The symbol I(A) denotes the indicator function of A, [x] indicates the
maximum integer not larger than x. For a finite set B, the symbol ]B denotes the number of
elements in the set B. Let an ¿ bn denote that there exists a constant C > 0 such that an ≤ Cbn

for sufficiently large n, and let an ≈ bn mean an ¿ bn and bn ¿ an.
The following lemma will play an important role in the proof of our main results. The proof

is due to Peligrad and Gut [5].

Lemma 1 Let {Xi, 1 ≤ i ≤ n} be a ρ∗-mixing sequence of random variables, Yi ∈ σ(Xi),
EYi = 0, E|Yi|M < ∞, i ≥ 1, M ≥ 2. Then there exists a positive constant C such that

E
∣∣

n∑

i=1

Yi

∣∣M ≤ C
[ n∑

i=1

E|Yi|M +
( n∑

i=1

EY 2
i

)M/2
]
, (6)

E max
1≤j≤n

∣∣
j∑

i=1

Yi

∣∣M ≤ C
[ n∑

i=1

E|Yi|M + (log2 n)M
( n∑

i=1

EY 2
i

)M/2
]
. (7)

Lemma 2 Let {Xn, n ≥ 1} be a ρ∗-mixing sequence of random variables, and {ani, 1 ≤ i ≤
n, n ≥ 1} be an array of real numbers. Then there exists a positive constant C such that, for

any x ≥ 0 and all n ≥ 1,

(1
2
− P ( max

1≤i≤n
|aniXi| > x)

) n∑

i=1

P (|aniXi| > x) ≤ (1 +
C

2
)P ( max

1≤i≤n
|aniXi| > x). (8)

Proof Since {max1≤i≤n |aniXi| > x} =
⋃n

i=1{|aniXi| > x,max1≤j≤i−1 |anjXj | ≤ x}, we have
n∑

i=1

P (|aniXi| > x)

=
n∑

i=1

P
(|aniXi| > x, max

1≤j≤i−1
|anjXj | ≤ x

)
+

n∑

i=1

P
(|aniXi| > x, max

1≤j≤i−1
|anjXj | > x

)

= P
(

max
1≤i≤n

|aniXi| > x
)

+
n∑

i=1

P
(|aniXi| > x, max

1≤j≤i−1
|anjXj | > x

)
. (9)

Note that
n∑

i=1

P
(|aniXi| > x, max

1≤j≤i−1
|anjXj | > x

)

≤ E
( n∑

i=1

(I(|aniXi| > x)− EI(|aniXi| > x))
)
I
(

max
1≤j≤n

|anjXj | > x
)
+

n∑

i=1

P (|aniXi| > x)P
(

max
1≤j≤n

|anjXj | > x
)
. (10)

Combining with the Cauchy-Schwarz inequality and (6), we obtain

E
( n∑

i=1

(I(|aniXi| > x)− EI(|aniXi| > x))
)
I
(

max
1≤j≤n

|anjXj | > x
)



486 Mingle GUO and Dongjin ZHU

≤
√√√√E

( n∑

i=1

(I(|aniXi| > x)− EI(|aniXi| > x))
)2

P
(

max
1≤j≤n

|anjXj | > x
)

≤
√√√√C

n∑

i=1

P (|aniXi| > x)P
(

max
1≤j≤n

|anjXj | > x
)

≤ 1
2

n∑

i=1

P (|aniXi| > x) +
C

2
P

(
max

1≤i≤n
|aniXi| > x

)
. (11)

Now we substitute (11) into (10) and then into (9) and obtain (8). ¤

Lemma 3 Let {Xn, n ≥ 1} be a ρ∗-mixing sequence of random variables, and {ani, 1 ≤ i ≤
n, n ≥ 1} be an array of real numbers. Let {bn, n ≥ 1} be a sequence of positive real numbers.

If for some M ≥ 2, α > 0 the following conditions are fulfilled

(a)
∑∞

n=1 bn

∑n
i=1 P (|aniXi| > nα) < ∞,

(b)
∑∞

n=1 bnn−Mα
∑n

i=1 E|aniXi|MI(|aniXi| ≤ nα) < ∞,

(c)
∑∞

n=1 bnn−Mα(log2 n)M (
∑n

i=1 E|aniXni|2I(|aniXni| ≤ nα))M/2 < ∞,

then for any ε > 0
∞∑

n=1

bnP
(

max
1≤k≤n

∣∣
k∑

i=1

(aniXi − EaniXiI(|aniXi| ≤ nα))
∣∣ > εnα

)
< ∞. (12)

Proof Similarly to the proof of Theorem 2.3 in [10], we assume Xni = aniXiI(|aniXi| ≤ nα).
Using Lemma 1, Markov’s inequality and Cr inequality, we obtain

P
(

max
1≤k≤n

∣∣
k∑

i=1

(Xni − EXni)
∣∣ > εnα

)

≤ ε−Mn−MαE max
1≤k≤n

∣∣
k∑

i=1

(Xni − EXni)
∣∣M

≤ Cε−Mn−Mα
[ n∑

i=1

E|Xni − EXni|M + (log2 n)M
( n∑

i=1

E(Xni − EXni)2
)M/2

]

≤ Cn−Mα
[ n∑

i=1

E|Xni|M + (log2 n)M
( n∑

i=1

EX2
ni

)M/2
]
. (13)

Moreover, we see that

P
(

max
1≤k≤n

∣∣
k∑

i=1

(aniXi − EaniXiI(|aniXi| ≤ nα))
∣∣ > εnα

)

≤ P
(

max
1≤k≤n

∣∣
k∑

i=1

(Xni − EXni)
∣∣ > εnα

)
+

n∑

i=1

P (|aniXi| > nα). (14)

Therefore, by (13), (14), (a), (b) and (c) we see that (12) holds. ¤

2. Main results

Now we state our main results. The proofs will be given in Section 3.
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Theorem 1 Let {X, Xn, n ≥ 1} be a ρ∗-mixing sequence of identically distributed random

variables and {ani, 1 ≤ i ≤ n, n ≥ 1} be an array of real numbers. Let r > 1, p > 2. If, for some

2 ≤ q < p,

N(n,m + 1)=̂]{k ≥ 1, |ank| ≥ (m + 1)−1/p} ≈ mq(r−1)/p, n, m ≥ 1; (15)

EX = 0, when q(r − 1) ≥ 1; (16)
n∑

k=1

|ank|2 ¿ nδ when q(r − 1) ≥ 2, where 0 < δ <
2
p
, (17)

then, for r ≥ 2,

E|X|p(r−1) < ∞ (18)

if and only if
∞∑

n=1

nr−2P
(

max
1≤k≤n

∣∣
k∑

i=1

aniXi

∣∣ > εn1/p
)

< ∞, ∀ε > 0. (19)

For 1 < r < 2, (18) implies (19). Conversely, if limn→∞ P (max1≤i≤n |aniXi| > εn1/p) = 0, then

(19) implies (18).

For p = 2, q = 2, we have the following theorem.

Theorem 2 Let {X, Xn, n ≥ 1} be a ρ∗-mixing sequence of identically distributed random

variables and {ani, 1 ≤ i ≤ n, n ≥ 1} be an array of real numbers, and let r > 1. If

N(n,m + 1)=̂]{k ≥ 1, |ank| ≥ (m + 1)−1/2} ≈ mr−1, n,m ≥ 1; (20)

EX = 0, when 2(r − 1) ≥ 1; (21)
n∑

k=1

|ank|2(r−1) = O(1), (22)

then, for r ≥ 2,

E|X|2(r−1) log(1 + |X|) < ∞ (23)

if and only if
∞∑

n=1

nr−2P
(

max
1≤k≤n

∣∣
k∑

i=1

aniXi

∣∣ > εn1/2
)

< ∞, ∀ε > 0. (24)

For 1 < r < 2, (23) implies (24). Conversely, if limn→∞ P (max1≤i≤n |aniXi| > εn1/2) = 0, then

(24) implies (23).

Remark 1 Since independent random variables are a special case of ρ∗-mixing random variables,
Theorems 1 and 2 extend the results of Wang et al. [8].

Remark 2 Note that
∑n

k=1 |ank|q(r−1) ¿ 1 as n →∞, 2 ≤ q < p implies

]{k, |ank| ≥ (m + 1)−1/p} ¿ mq(r−1)/p as n →∞.

Taking r = 2, then conditions (15) and (20) are weaker than conditions (1) and (3) in Li et al. [7].
Therefore, Theorems 1 and 2 not only promote and improve the results of Li et al. [7] from i.i.d.
to ρ∗-mixing setting but also obtain their necessities and relax the range of r.
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3. Proofs of the main results

Proof of Theorem 1 We firstly prove (18) ⇒ (19). Put bn = nr−2, α = 1/p in Lemma 3. For
any q′ > q, we have

n∑

i=1

|ani|q
′(r−1) =

∞∑
m=1

∑

(m+1)−1≤|ani|p<m−1

|ani|q
′(r−1)

¿
∞∑

m=1

(N(n,m + 1)−N(n,m))m−q′(r−1)/p

¿
∞∑

m=1

mq(r−1)/p−q′(r−1)/p−1 < ∞. (25)

Let Y = X/ε. By exchanging sum order and (15), we get

n∑

i=1

P (|aniXi| > εn1/p) =
n∑

i=1

P (|aniX| > εn1/p) =
n∑

i=1

P (|aniY | > n1/p)

=
∞∑

j=1

∑

(j+1)−1≤|ani|p<j−1

P (|aniY | > n1/p) ≈
∞∑

j=1

(N(n, j)−N(n, j − 1))P (|Y | > (nj)1/p)

=
∞∑

j=1

(N(n, j)−N(n, j − 1))
∞∑

k=nj

P (k < |Y |p ≤ k + 1)

=
∞∑

k=n

P (k < |Y |p ≤ k + 1)
[k/n]∑

j=1

(N(n, j)−N(n, j − 1))

≈
∞∑

k=n

(k/n)q(r−1)/pP (k < |Y |p ≤ k + 1). (26)

Noting that r − 2− q(r − 1)/p > −1, by (26), we have

∞∑
n=1

nr−2
n∑

i=1

P (|aniXi| > εn1/p) ≈
∞∑

n=1

nr−2
∞∑

k=n

(k/n)q(r−1)/pP (k < |Y |p ≤ k + 1)

=
∞∑

k=1

kq(r−1)/pP (k < |Y |p ≤ k + 1)
k∑

n=1

nr−2−q(r−1)/p

≈
∞∑

k=1

kr−1P (k < |Y |p ≤ k + 1) ≈ E|Y |p(r−1) ≈ E|X|p(r−1) < ∞. (27)

Choosing sufficiently large M > max{2, p(r − 1)} such that r − 2−M/p < −1, q(r − 1)/p− 1−
M/p < −1. By exchanging sum order, we obtain

∞∑
n=1

nr−2−M/p
n∑

i=1

E|aniXi|MI(|aniXi| ≤ n1/p)

¿
∞∑

n=1

nr−2−M/p
∞∑

j=1

(N(n, j)−N(n, j − 1))j−M/pE|X|MI(|X| ≤ (n(j + 1))1/p)
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≈
∞∑

n=1

nr−2−M/p
∞∑

j=1

jq(r−1)/p−1−M/pE|X|MI(|X|p ≤ 2n− 1)+

∞∑
n=1

nr−2−M/p
∞∑

j=1

jq(r−1)/p−1−M/p

n(j+1)∑

k=2n

E|X|MI(k − 1 < |X|p ≤ k)

=: I1 + I2. (28)

Noting that r − 2−M/p < −1, q(r − 1)/p− 1−M/p < −1, we have

I1 ≤
∞∑

n=1

nr−2−M/pE|X|MI(|X|p ≤ 2n− 1) ≈ E|X|p(r−1) < ∞. (29)

By exchanging sum order, we obtain

I2 =
∞∑

n=1

nr−2−M/p
∞∑

k=2n

E|X|MI(k − 1 < |X|p ≤ k)
∞∑

j=[k/n]−1

jq(r−1)/p−1−M/p

≈
∞∑

n=1

nr−2−M/p
∞∑

k=2n

(k/n)q(r−1)/p−M/pE|X|MI(k − 1 < |X|p ≤ k)

=
∞∑

k=2

kq(r−1)/p−M/pE|X|MI(k − 1 < |X|p ≤ k)
[k/2]∑
n=1

nr−2−q(r−1)/p

≈
∞∑

k=2

kr−1−M/pE|X|MI(k − 1 < |X|p ≤ k) ≈ E|X|p(r−1) < ∞. (30)

Combining with (28), (29) and (30), we see
∞∑

n=1

nr−2−M/p
n∑

i=1

E|aniXi|MI(|aniXi| ≤ n1/p) < ∞. (31)

When q(r − 1) < 2, take q < q′ < p such that q′(r − 1) < 2. Taking sufficiently large M such
that r − 2−Mq′(r − 1)/(2p) < −1 , by (25) and E|X|q′(r−1) < ∞, we have

∞∑
n=1

nr−2−M/p(log2 n)M
( n∑

i=1

E|aniXi|2I(|aniXi| ≤ n1/p)
)M/2

≤
∞∑

n=1

nr−2−M/pnM/p−Mq′(r−1)/(2p)(log2 n)M
( n∑

i=1

E|aniXi|q
′(r−1)I(|aniXi| ≤ n1/p)

)M/2

¿
∞∑

n=1

nr−2−Mq′(r−1)/(2p)(log2 n)M < ∞. (32)

For q(r−1) ≥ 2, since δ < 2/p, we can take sufficiently large M such that r−2−M/p+Mδ/2 <

−1. Therefore, by (17), we get
∞∑

n=1

nr−2−M/p(log2 n)M
( n∑

i=1

E|aniXi|2I(|aniXi| ≤ n1/p)
)M/2

¿
∞∑

n=1

nr−2−M/p(log2 n)M
( n∑

i=1

|ani|2
)M/2 ¿

∞∑
n=1

nr−2−M/p+Mδ/2(log2 n)M < ∞. (33)

Thus we have established that all assumptions from Lemma 3 are fulfilled. Therefore, to prove
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(19), it suffices to prove that

1
n1/p

max
1≤k≤n

∣∣
k∑

i=1

EaniXiI(|aniXi| ≤ n1/p)
∣∣ → 0 as n →∞. (34)

For q(r − 1) < 1, taking q < q′ < p such that q′(r − 1) < 1, by (25), we get

1
n1/p

max
1≤k≤n

∣∣
k∑

i=1

EaniXiI(|aniXi| ≤ n1/p)
∣∣ ≤ 1

n1/p

n∑

i=1

E|aniXi|I(|aniXi| ≤ n1/p)

≤ 1
n1/p

n1/p−q′(r−1)/p
n∑

i=1

E|aniXi|q
′(r−1)I(|aniXi| ≤ n1/p) ¿ n−q′(r−1)/p → 0 as n →∞.

For q(r − 1) ≥ 1, noting that EX = 0, by (25) , we obtain

1
n1/p

max
1≤k≤n

∣∣
k∑

i=1

EaniXiI(|aniXi| ≤ n1/p)
∣∣ =

1
n1/p

max
1≤k≤n

∣∣
k∑

i=1

EaniXiI(|aniXi| > n1/p)
∣∣

≤ 1
n1/p

n1/p−r+1
n∑

i=1

E|aniXi|p(r−1)I(|aniXi| > n1/p) ¿ n−r+1 → 0 as n →∞.

Now we proceed to prove (19) ⇒ (18). Since max1≤k≤n |ankXk| ≤ 2max1≤k≤n |
∑k

i=1 aniXi|,
then from (19) we have

∞∑
n=1

nr−2P
(

max
1≤k≤n

|ankXk| > εn1/p
)

< ∞, ∀ε > 0. (35)

When r ≥ 2, it is obvious that P (max1≤k≤n |ankXk| > εn1/p) → 0 as n → ∞. Combining with
the hypotheses of Theorem, for r > 1, we have P (max1≤k≤n |ankXk| > εn1/p) → 0 as n → ∞.
Therefore, by Lemma 2, we have

n∑

i=1

P (|aniXi| > εn1/p) ¿ P
(

max
1≤k≤n

|ankXk| > εn1/p
)
. (36)

Substituting (36) into (35), we get
∞∑

n=1

nr−2
n∑

i=1

P (|aniXi| > εn1/p) < ∞. (37)

By (27), we have

E|X|p(r−1) ≈
∞∑

n=1

nr−2
n∑

i=1

P (|aniXi| > εn1/p). (38)

Therefore (18) holds. ¤

Proof of Theorem 2 Let p = 2, q = 2. Applying the same notations and method as in
Theorem 1, we need only to give the different parts. Similarly to the proof of (26) and (27),
noting that E|X|2(r−1) log(1 + |X|) < ∞, we have

∞∑
n=1

nr−2
n∑

i=1

P (|aniXi| > εn1/2) ≈
∞∑

n=1

nr−2
∞∑

k=n

(k/n)r−1P (k < |Y |2 ≤ (k + 1))
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=
∞∑

k=1

kr−1P (k < |Y |2 ≤ (k + 1))
k∑

n=1

n−1 ≈
∞∑

k=1

kr−1 log(1 + k)P (k < |Y |2 ≤ (k + 1))

≈ E|Y |2(r−1) log(1 + |Y |) ≈ E|X|2(r−1) log(1 + |X|) < ∞. (39)

Choose M > max{2, 2(r − 1)}. Since E|X|2(r−1) log(1 + |X|) < ∞ implies E|X|2(r−1) < ∞, for
p = 2, by (28), (29) and (30), we have

∞∑
n=1

nr−2−M/2
n∑

i=1

E|aniXi|MI(|aniXi| ≤ n1/2) < ∞. (40)

For r− 1 ≤ 1, noting that r− 2−M(r− 1)/2 < −1, by (22) and Markov’s inequality, we obtain
∞∑

n=1

nr−2−M/2(log2 n)M
( n∑

i=1

E|aniXi|2I(|aniXi| ≤ n1/2)
)M/2

≤
∞∑

n=1

nr−2−M/2nM/2−M(r−1)/2(log2 n)M
( n∑

i=1

E|aniXi|2(r−1)I(|aniXi| ≤ n1/2)
)M/2

¿
∞∑

n=1

nr−2−M(r−1)/2(log2 n)M < ∞. (41)

For r−1 > 1, choosing sufficiently large M such that r−2− M
2(r−1) < −1, by Hölder’s inequality

and (22), we have
∞∑

n=1

nr−2−M/2(log2 n)M
( n∑

i=1

E|aniXi|2I(|aniXi| ≤ n1/2)
)M/2

≤
∞∑

n=1

nr−2−M/2(log2 n)M
( n∑

i=1

|ani|2
)M/2

≤
∞∑

n=1

nr−2−M/2(log2 n)M
(( n∑

i=1

a
2(r−1)
ni

) 1
r−1

( n∑

i=1

1
) r−2

r−1
)M/2

¿
∞∑

n=1

nr−2− M
2(r−1) (log2 n)M < ∞. (42)

Let (22) take the place of (25). Similarly to the proof of (34), we have

1
n1/2

max
1≤k≤n

∣∣
k∑

i=1

EaniXiI(|aniXi| ≤ n1/2)
∣∣ → 0 as n →∞. (43)

Thus, we have proved (23) ⇒ (24). Now we proceed to prove (24) ⇒ (23). Using the same
arguments as those in the necessary part of Theorem 1, by (39), we can easily prove

E|X|2(r−1) log(1 + |X|) ≈
∞∑

n=1

nr−2
n∑

i=1

P (|aniXi| > εn1/2). (44)

Therefore (23) holds. ¤
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