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Abstract In this paper, the complete convergence of weighted sums for p*-mixing sequence
of random variables is investigated. By applying moment inequality and truncation methods,
the equivalent conditions of complete convergence of weighted sums for p*-mixing sequence of
random variables are established. We not only promote and improve the results of Li et al.
(J. Theoret. Probab., 1995, 8(1): 49-76) from i.i.d. to p*-mixing setting but also obtain their
necessities and relax their conditions.
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1. Introduction

Let {X,,n > 1} be a sequence of random variables defined on probability space (Q,.%, P).
Write #g = o(Xy, k € S) C Z,

p*(k) = sup ( sup Cov(X, ¥) )
ST \XeL?(Zs),YeL?(Fr) \/ Var(X) - Var(Y)

where S, T are the finite subsets of positive integers such that dist(S,T) > k.

We call {X,,,n > 1} a p*-mixing sequence if there exists k > 0 such that p*(k) < 1.

Without loss of generality we may assume that a p*-mixing sequence {X,,n > 1} is such
that p*(1) < 1 (see [1]). The p*-mixing conception is similar to p-mixing, but they are quite
different from each other. Bryc and Smolenski [1] and Peligrad [2] pointed out the importance
of the condition p*(1) < 1 in estimating the moments of partial sums or maximum of partial
sums. Various limit properties under the condition p*(1) < 1 were studied. We refer to Bradley
[3] for the central limit theorem, Bryc and Smolenski [1] for moment inequalities and almost sure
convergence, An and Yuan [4] for complete convergence of weighted sums for p*-mixing sequence

of random variables, and Peligrad and Gut [5] for the Rosenthal-type maximal inequality.
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When {X,,n > 1} are independent and identically distributed (i.i.d.), Baum and Katz [6]
proved the following remarkable result concerning the convergence rate of the tail probabilities
P(|Sy| > en'/P) for any € > 0, where S, = Y1 | X;.

Theorem A Let 0 <p <2 andr > p. Then
Zn£72P(|Sn| > en!/P) < 0o for all € >0,
n=1

if and only if E|X;|" < oo, where EX; = 0 whenever 1 < p < 2.

There is an interesting and substantial literature of investigation apropos of extending the
Baum-Katz Theorem along a variety of different paths. Since partial sums are a particular case
of weighted sums and the weighted sums are often encountered in some actual questions, the
complete convergence for the weighted sums seems more important. Li et al. [7] discussed the

complete convergence for independent weighted sums and obtained the following results.

Theorem B Let {X, Xy, k € Z} be a sequence of zero mean 1.i.d. real random variables and
{ani,i € Z,n > 1} be an array of real numbers.
(i) Letp>2. If E|XP < oo, and for some 0 < § < %, 2<¢g<p,
Z lank|? = O(n%) as n — oo, and Z |ank|? = o(1) as n — oo, (1)
kez keZ

then, for any € > 0,

ZP(|ZGMX"| >en1/p> < 0. (2)
n=1 i€z
(i) If
Z lank|®> = o(1) as n — oo, (3)
keZ
and
E|X|*log(1+ |X]|) < o0, (4)

then, for any € > 0,
oo
Z P<| Zam-Xi| > enl/z) < 0. (5)
n=1 i€z

Wang et al. [8] improved Theorem B and established the necessary and sufficient conditions
of complete convergence for weighted sums of i.i.d. random variables. Liang et al. [9] obtained the
equivalent conditions of complete convergence of weighted sums of negatively associated random
variables.

The main purpose of this paper is to discuss again the above results for p*-mixing sequence
of random variables. By applying moment inequality and truncation methods, the equivalent
conditions of complete convergence of weighted sums for p*-mixing sequence of random variables
are established. We not only promote and improve the results of Li et al.[7] from i.i.d. to

p*-mixing setting but also obtain their necessities and relax their conditions.
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For the proofs of the main results, we need to restate a few lemmas for easy reference.
Throughout this paper, C' will represent positive constants, the value of which may change from
one place to another. The symbol I(A) denotes the indicator function of A, [z] indicates the
maximum integer not larger than x. For a finite set B, the symbol §B denotes the number of
elements in the set B. Let a,, < b,, denote that there exists a constant C > 0 such that a,, < Cb,
for sufficiently large n, and let a,, ~ b, mean a, < b, and b, < a,.

The following lemma will play an important role in the proof of our main results. The proof
is due to Peligrad and Gut [5].

Lemma 1 Let {X;,1 < i < n} be a p*-mixing sequence of random variables, Y; € o(X,),
EY; =0, E|Y;|]M < 00, i>1, M > 2. Then there exists a positive constant C such that

B> < e[ (3 B, ©
i=1 i=1 =1

J n
M M 2 M/2

Elléljagxn|;)/;| SC[2E|YI| Ingn ZEY } (7)
Lemma 2 Let {X,,n > 1} be a p*-mixing sequence of random variables, and {an;,1 < i <

n,n > 1} be an array of real numbers. Then there exists a positive constant C such that, for
any x>0 and alln > 1,

1 - c
- —P X; P X <(l1+—=)P X;
(2 (fgaxn |lani Xi| > ) z_; (Jani Xil > ) < (1+ B ) (fglaxn |ani Xi| > ). (8)

Proof Since {maxi<;<p |anX;| > 2} = Ui, {|aniX;| > z, maxi<j<i—1 |a,; X;| < 2}, we have

n
> P(lan:Xi| > x)
i=1
n n
_ZP lan: X;| > x, (Jax lan; X;| < —i—ZP lan: X;| >z, (Joax |lan; X;| > z)
=1 =1
n

= P( max |an; X;| > z) + ZP(|am~Xi| > T, Jax | lan; X;| > ). (9)

1<i<n X
=1

Note that
Zl P(lan; X;| > =, | Jnax | lan; X;| > x)
n
< E(Z;(I(|amXi| > x) — El(|an: X;| > x)))]( 121%)(” lan; X;| > x)—l—
1=
ZlP(|amXi| > z)P( max. |an; X;| > ). (10)
Combining with the Cauchy-Schwarz inequality and (6), we obtain

E(> (I(|aniXi| > z) — EI(|an X;| > x)))1( Joax Jan; Xj| > o)

i=1
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< B UlaniXi| > 2) — EI(|aniXi| > 2)))"P( Jmax fan; X;| > z)
=1
< C;PﬂaanA > Q?)P(lgljagxn |aanj| > .%')
c
<= ZP (Jani Xi| > x) + P( max \amx | > ). (11)

=1
Now we substitute (11) into (10) and then into (9) and obtain (8). O

Lemma 3 Let {X,,n > 1} be a p*-mixing sequence of random variables, and {an;,1 < i <
n,n > 1} be an array of real numbers. Let {b,,n > 1} be a sequence of positive real numbers.
If for some M > 2, o > 0 the following conditions are fulfilled
(a) Yoty bn 32 PlaniXi| > n®) < oo,
(b) Yoy ban™ M 300 Blani Xi| M I(Jani X;] < n%) < oo,
(€) Yoniyban™M(logy n)M (3271 Elani Xnil*I(Jani Xni| < n®))M/? < oo,
then for any € > 0
o k
Z an( max ’Z(amXi — FEan; X I(Jan: X;| < na))| > ena) < 00. (12)
—1 i=1

1<k<n

Proof Similarly to the proof of Theorem 2.3 in [10], we assume X,; = an; X;I(|an; X;| < n%).

Using Lemma 1, Markov’s inequality and C,. inequality, we obtain
(1%@ = BXn)| > ent)

M M
< e Mp—Map 1nax|§ X —F m|
1<k<n

n

< CeMp~Ma [ZE|XM — X + (logy )™ (. E(Xoi — EXM)Q)M/Q}

i=1 i=1
_ = M/2
Cn M“[ZE\XTLAM (logy )™M ZE } (13)
i=1

Moreover, we see that

P(lgl]?%(n | Z i X — Bani XiI(Jani X;| < n®))| > ena)

< P( ma | z;(Xm — EX,0)| > ena) n Z;P(|amXi| > n®). (14)
1= 1=
Therefore, by (13), (14), (a), (b) and (c) we see that (12) holds. O

2. Main results

Now we state our main results. The proofs will be given in Section 3.
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Theorem 1 Let {X,X,,n > 1} be a p*-mixing sequence of identically distributed random
variables and {an;,1 <i < n,n > 1} be an array of real numbers. Let r > 1, p > 2. If, for some

2<q<p,

N(n,m+ D)2k > 1, |ane| > (m+1)"YP} x maT=D/P - om > 1, (15)
EX =0, when q(r—1)>1; (16)
n 2
Z lank])? < n® when q(r—1)>2, where 0 <6< =, (17)
k=1 p
then, for r > 2,
EIX]PrY < oo (18)
if and only if
) k
r—2 X, 1/p
Zln P(lrgnggn ‘ Zlasz‘ > en ) < oo, Ve>0. (19)
n= 1=

For 1 < r < 2, (18) implies (19). Conversely, if lim,, .o, P(max;<i<y, |aniX;| > en'/?) = 0, then
(19) implies (18).
For p = 2, g = 2, we have the following theorem.

Theorem 2 Let {X,X,,n > 1} be a p*-mixing sequence of identically distributed random

variables and {a,;,1 <i < n,n > 1} be an array of real numbers, and let r > 1. If

N(n,m+ 1)=t{k > 1, lank| > (m + 1)*1/2} ~mtl on,m > 1, (20)
EX =0, when 2(r—1)>1, (21)
> lau*Y = 0(1), (22)
k=1
then, for r > 2,
E|X|2=Yiog(1 + |X]) < oo (23)
if and only if
0o k
2 1/2
Zlnr P(1?g§n|§amXi’>en/ ) < oo, Ve>D0. (24)

For 1 <r <2, (23) implies (24). Conversely, if lim,,_,oc P(maxi<;<n |ani X;| > en1/2) =0, then
(24) implies (23).

Remark 1 Since independent random variables are a special case of p*-mixing random variables,
Theorems 1 and 2 extend the results of Wang et al. [8].

Remark 2 Note that Y, _; [an.|?""Y < 1 as n — 00,2 < ¢ < p implies
#{k, lank] > (m +1)7YP} <« mI=D/P a5 n - oo

Taking r = 2, then conditions (15) and (20) are weaker than conditions (1) and (3) in Li et al. [7].
Therefore, Theorems 1 and 2 not only promote and improve the results of Li et al. [7] from i.i.d.

to p*-mixing setting but also obtain their necessities and relax the range of r.
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3. Proofs of the main results

Proof of Theorem 1 We firstly prove (18) = (19). Put b, =n""2, a = 1/p in Lemma 3. For
any ¢’ > ¢, we have

Z\amlq oy > a7V
m=1 (1)~ <Jani [P <m—1
< Z (n,m+1) — N(n,m))m=9=1/»

< Z mar=1/p=d (r=1)/p=1 - (25)

m=1

Let Y = X/e. By exchanging sum order and (15), we get

ZP(\aniXi\ > enl/?) = ZP(|amX| > enl/P) = ZP(\amY| > nl/P)
i=1

i=1 i=1

=X X Pla¥|> )= (N g) = N = D)PIY] > (09)')
Jj=1 (.7+1) 1S|ani‘p<j_1 j=1

=3 (N(mj) = N(n,j—1) Y Pk < [Y]? <k+1)
Jj=1 k=nj
s (k/n]

=> P<|YP<k+1) ) (N(n,j)— N(n,j—1))
k=n j=1

~ Z(k/n)Q(rfl)/Pp(k <|[YPP<k+1). (26)
k=n

Noting that » —2 — ¢(r — 1) /p > —1, by (26), we have

an—2 ZP(|CL7”XZ| > 6,nl/P) ~ an—Q Z(k/n)q(r—l)/Pp(k < ‘Y‘p <k+ 1)
n=1 i=1 n= k=n

k
kq(T‘—l)/pp(k < |y|p <k+ 1) Z nr—2-a(r=1)/p

=~
Il
-

2
K

EIP(k<|YP<k+1)= E[Y]PUY ~ E|X|PrD < oo, (27)

E
Il
-

Choosing sufficiently large M > max{2, p(r — 1)} such that r —2 — M/p < —=1,q(r —1)/p—1—
M/p < —1. By exchanging sum order, we obtain

> a2 MEN EBlan X M (|an X;] < n'/P)
n=1 i=1

< an72fM/p Z(N(n,]) — N(n,j—1))j 7M/pE‘X|MI(|X| < (n(j+ 1))1/10)

n=1 j=1
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~ Z nr—2—ZVI/p ZjQ(T_l)/p_l_Z\/j/pEp(‘MI(‘le <on— 1)_~_

n=1 7j=1

00 o) n(j+1)

Z nr—2—M/p qu(rfl)/pflfM/p Z EIXMIk—1<|X[P<k)

n=1 Jj=1 k=2n
=1 + I, (28)

Noting that r —2 — M/p < =1, q(r — 1)/p — 1 — M/p < —1, we have
L<Y MBI XIMI(IXP < 2n - 1) & BIX]POTY < oo, (29)
n=1

By exchanging sum order, we obtain

I, = ZnT*%M/p Z EIXMI(k—1<|X[P<k) Z jalr=1/p=1-M/p

n=1 k=2n j=l[k/n]-1

> M N ()M B XM (R -1 < | X|P < k)
n=1 k=2n
oo [k/2]

= qu(rfl)/p*M/pE|X|MI(k —1<|X[P<k) Z nr—2-a(r=1)/p
k=2 n=1
(o)

A RTUMPEIXIMI(k—1 < |XP < k)~ E[X[PUTY < oo (30)
k=2

Combining with (28), (29) and (30), we see
> T MIPN T Blan: X M (|an Xi| < n'/P) < oo (31)

n=1 i=1
When g(r — 1) < 2, take ¢ < ¢’ < p such that ¢’(r — 1) < 2. Taking sufficiently large M such
that r —2 — Mq/(r —1)/(2p) < =1, by (25) and E|X|7 "~ < o0, we have

S w2 M (logy m)™ (3 Blan X 21 (lan Xi| < nt/r)) M2

n=1 i=1

oo n
< Z nT‘*Q*M/pnM/pfj\/[q’(7‘71)/(2;0)(10g2 n)M(ZE|am»Xi|q'(T71)I(\am‘Xz‘\ < n1/p))M/2
n=1 i=1

< Z p 2 Ma =1/ 20) (1og, n)M < o0, (32)
n=1
For g(r—1) > 2, since § < 2/p, we can take sufficiently large M such that r —2— M /p+ Mé/2 <
—1. Therefore, by (17), we get

> M (logy )M (Y Elan: Xil*T(|ani Xi| < nl/ry) M/

n=1 i=1
< Z n"~2=M/P(log, n)M(Z |Olm-|2)M/2 < Z n’ "2 M/PEMI/2 (160, )M < 0o, (33)
n=1 =1 n=1

Thus we have established that all assumptions from Lemma 3 are fulfilled. Therefore, to prove
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(19), it suffices to prove that

k
1
max |ZEam-XiI(|am-Xi| < nl/p)| — 0 as n— 0. (34)
pat

nl/p 1<k<n

For ¢(r — 1) < 1, taking ¢ < ¢’ < p such that ¢’(r — 1) < 1, by (25), we get

k
1> BaniXil(Jani X;| < n'/?)| <

i=1

1

w7 5, Z Elan Xil (Jan Xil < n'/7)

1/1)

< Wnl/pfq/(kl)/p E BElan Xi|7 "V (|an: X;| < n'/P) <0 0D/P 0 as n— oo
n
i=1

For ¢(r — 1) > 1, noting that EX = 0, by (25) , we obtain

1 1
< 1/py\| — 1/p
nl/p 1<l~c< |ZEamX I(JaniX;| <n )| nl/p 1<k< }ZEC“”X I(Jani Xi| > n )|
< 1/pn1/p_r+1 ZE\GMXHP(T_I)IUGMXH N nl/p) <n "1 L0 as n— oo.
n

i=1
Now we proceed to prove (19) = (18). Since maxj<p<n |ank Xk < 2maxi<p<n | Zle aniXil,

then from (19) we have

o0

Z = 2P max |anka| > enl/”) < oo, Ve>0. (35)

When 7 > 2, it is obvious that P(maxi<k<n |ankXk| > en'/?) — 0 as n — oo. Combining with
the hypotheses of Theorem, for r > 1, we have P(maxi<k<p |antXg| > en'/P) — 0 as n — oo.

Therefore, by Lemma 2, we have

ZP i X, > en'/P) < P( max- |anka| > en'/?). (36)
i=1

Substituting (36) into (35), we get

Z n"? ZP(|am-Xi| > en'/P) < o0. (37)
n=1 i=1
By (27), we have
E|X|P0r=1 ~ Z n"2 ZP(|amXi| > enl/P). (38)
n=1 i=1

Therefore (18) holds. O

Proof of Theorem 2 Let p = 2, ¢ = 2. Applying the same notations and method as in
Theorem 1, we need only to give the different parts. Similarly to the proof of (26) and (27),
noting that F| X2~ log(1 + | X|) < oo, we have

> w2y PlaniXi| > en'/?) ~ an 2 Z (k/n)" "'P(k <|Y|> < (k+1))
n=1 i=1

n=1
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k o)
—Zkr Pk <|Y]? < (k+1)) Z Zk’”llogl+k) (k<|Y]?<(k+1))
k=1
~ E|Y|?"Vlog(1 4 |V]) =~ E|X|* T—” log(l + 1X]) < oo. (39)

Choose M > max{2,2(r — 1)}. Since E|X|>"=Dlog(1+ |X|) < oo implies E|X[?"~1 < oo, for
p =2, by (28), (29) and (30), we have
> P MEN Blan X M (an Xi] < n'/?) < oc. (40)
n=1 i=1

For r — 1 < 1, noting that r —2 — M(r — 1)/2 < —1, by (22) and Markov’s inequality, we obtain

00 n
Z r—2— M/2 10g2n)M(ZE|aniXi|21(|afniXi| Snl/Q))M/Q

=1
< Z r— 2—M/2nM/2—M(r—1)/2(log2 n)M(ZE|amXi|2(7'_1)I(\amX¢\ < n1/2))M/2
n=1 =1
<Y MO (log, n)M < oo, (41)
n=1

For » —1 > 1, choosing sufficiently large M such that r —2 — % < —1, by Holder’s inequality

and (22), we have

Z r—2— M/2 10g2 n)M(ZE|asz|21(|amX%| < n1/2))1\/1/2

i=1
<3 w2 (log, n) Z\ i)™
n=1
> n n r—2\ M/2
< ZnT*Q*M/Q(logQ n)M((Z 2(r— 1) Zl = 1)
n=1 i=1 i=1
e M
< Z n" 27201 (logy, n)M < . (42)
n=1
Let (22) take the place of (25). Similarly to the proof of (34), we have
1 k
iz 1<k< |ZEamX I(|an; X;| < n'/?) ’ —0 as n— 0. (43)

Thus, we have proved (23) = (24). Now we proceed to prove (24) = (23). Using the same

arguments as those in the necessary part of Theorem 1, by (39), we can easily prove
E|X |2 Ylog(1 4 |X|) ~ an QZP lani Xi| > en'/?). (44)

Therefore (23) holds. O
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