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Abstract In this paper, we consider the variable selection for the parametric components

of varying coefficient partially linear models with censored data. By constructing a penalized

auxiliary vector ingeniously, we propose an empirical likelihood based variable selection pro-

cedure, and show that it is consistent and satisfies the sparsity. The simulation studies show

that the proposed variable selection method is workable.
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1. Introduction

The varying coefficient partially linear model has proved to be very useful as it combines the
flexibility of nonparametric models and the interpretation of linear models. The model structure
can be defined as follows

Yi = XT
i θ(Ui) + ZT

i β + εi, i = 1, . . . , n, (1)

where β is a q × 1 vector of unknown parameters, θ(·) is a p × 1 vector of unknown function,
Xi, Zi and Ui are covariates, and εi is the model error with E(εi|Xi, Zi, Ui) = 0.

Recently, a variety of methods have been proposed for the estimation and variable selection
of model (1). Li et al. [1], Fan and Huang [2], and You and Zhou [3] considered the estimation
of model (1) based on different methods. Li and Liang [4], and Zhao and Xue [5] considered
the variable selection procedure for model (1) via nonconcave penalized likelihood method. An
essential assumption in these papers is that all data can be observed directly. However, the
presence of censoring causes major difficulties in the implementation of the existing approaches,
because the value of Yi is unknown for the censored observations.

Outcome censoring often occurs in many disciplines such as econometrics, biostatistics and
bio-informatics. There have been many recent researches in the area of statistical inference for
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censored data. Based on the empirical likelihood method, Wang and Li [6] studied the estimation
of the parametric components in a partly linear model with right censored data, and Yang et al.
[7] considered the estimation for a partially linear single-index model with right censored data.
However, the literature on empirical likelihood based variable selection procedure is relativey
thin.

In this paper, we consider the variable selection for a varying coefficient partially linear
model with right censored data based on a penalized empirical likelihood method. Specifically, we
assume that the available data {(Y ∗

i , δi, Xi, Zi, Ui), i = 1, . . . , n}, are independent and identically
distributed, where Y ∗

i = min{Yi, Ci}, δi = I(Yi ≤ Ci) and Ci is a censoring variable. We also
assume that {Ci, i = 1, . . . , n} are i.i.d. variables with a distribution function G(·), and Yi is
conditionally independent of Ci for the given prognostic variables (Xi, Zi, Ui).

We propose an empirical likelihood based variable selection procedure for the parametric
components of model (1) with right censored data, and investigate the asymptotic properties
of the proposed variable selection method such as the consistence and sparsity. We also eval-
uate the performance of the proposed variable selection procedure by some simulation studies.
The simulation results show that the empirical likelihood based variable selection procedure is
workable.

Variable selection is an important topic in high-dimensional statistical modeling. Several
variable selection procedures have been developed in the literature, including the sequential ap-
proach, prediction-error approach, and information-theoretic approach. But all of these variable
selection methods are computationally expensive. Recently, a new method based on penalized
likelihood has been lauded for its computational efficiency and stability. In this approach, the
parametric likelihood is a crucial component, but in many situations a well-defined parametric
likelihood is not easy to construct. The empirical likelihood based variable selection procedure,
proposed in this paper, can overcome this problem, because it is constructed based on a set of
estimating equations.

2. Methodology and results

As in Yang el al. [7], we define a synthetic variable Y ∗
iG = Y ∗

i δi/(1 − G(Y ∗
i )). It can be

verified that E(Y ∗
iG|Xi, Zi, Ui) = E(Yi|Xi, Zi, Ui). This implies that

Y ∗
iG = XT

i θ(Ui) + ZT
i β + ε∗i , i = 1, . . . , n, (2)

where E(ε∗i |Xi, Zi, Ui). When G(·) is known as well, model (2) is a standard varying coefficient
partially linear model. For given β, using the same arguments as Fan and Huang [2], we can get
the weighted local least-squares estimator of θ(u) by minimizing

n∑

i=1

{
Y ∗

iG − ZT
i β −

p∑

k=1

[ak + bk(Ui − u)]Xik

}2

Kh(Ui − u), (3)

where Kh(·) = h−1K(·/h), K(·) is a kernel function, h is a bandwidth and Xik denotes the kth
component of Xi.
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Let Z = (Z1, . . . , Zn)T, Y ∗
G = (Y ∗

1G, . . . , Y ∗
nG)T, Ip be p × p identity matrix, 0p be p × p

zero matrix, and Ωu = diag(Kh(u− U1), . . . , Kh(u− Un)) be n× n diagonal matrix. Then, the
solution by minimizing (3) can be given by

θ̃(u) = (Ip, 0p)(DT
u ΩuDu)−1DT

u Ωu(Y ∗
G − Zβ), (4)

where Du =

(
X1 · · · Xn

h−1(U1 − u)X1 · · · h−1(Un − u)Xn

)T

.

Let (Ip, 0p)(DT
u ΩuDu)−1DT

u Ωu ≡ (S1(u), . . . , Sn(u)), µ̃(u) =
∑n

k=1 Sk(u)ZT
k , and g̃(u) =∑n

k=1 Sk(u)Y ∗
kG. Then we have θ̃(u) = g̃(u)− µ̃(u)β. Substituting this into (2), and by a simple

calculation we have

Y̆ ∗
iG = Z̆T

i β + εi, (5)

where Z̆i = Zi−µ̃(Ui)TXi, Y̆ ∗
iG = Y ∗

iG−g̃(Ui)TXi. To give the empirical likelihood based variable
selection procedure, we introduce the following penalized auxiliary random vector

η̆i(β) = Z̆i(Y̆ ∗
iG − Z̆T

i β)− bλ(β),

where bλ(β) = (p′λ(|β1|)sgn(β1), . . . , p′λ(|βq|)sgn(βq))T, sgn(w) means the sign function for w,
and p′λ(w) is the penalty function proposed by Fan and Li [8], which is defined as follows

p′λ(w) = λ{I(w ≤ λ) +
(aλ− w)+
(a− 1)λ

I(w > λ)},

for some a > 2, w > 0 and pλ(0) = 0.

However, G(·) is usually unknown, and then η̆i(β) cannot be used directly to make inference
for β. To solve this problem, we replace G(·) in η̆i(β) by its estimator. In this paper, we employ
the Kaplan-Meier estimator

Gn(y) = 1−
n∏

i=1

(
N+(Y ∗

i )
1 + N+(Y ∗

i )
)I(Y ∗i ≤y,δi=0),

where N+(y) =
∑n

j=1 I(Y ∗
j > y). Hence, an estimator of η̆i(β) can be defined as

η̂i(β) = Z̆i(Y̆ ∗
iGn

− Z̆T
i β)− bλ(β), (6)

where Y̆ ∗
iGn

= Y ∗
iGn

− ĝ(Ui)TXi and ĝ(u) =
∑n

k=1 Sk(u)Y ∗
kGn

. Then, a penalized empirical
log-likelihood ratio function for β can be defined as

R̂(β) = −2max
{ n∑

i=1

log(npi)|pi ≥ 0,
n∑

i=1

pi = 1,
n∑

i=1

piη̂i(β) = 0
}

.

We can maximize {−R̂(β)} to obtain the maximum empirical likelihood estimator β̂n. The
following Theorem 1 shows that β̂n is

√
n-consistent and satisfies the sparsity. We first give some

notations. Let β0 be the true value of β with β0j 6= 0 for j ≤ d and β0j = 0 for j > d. The
following theorem states the main theoretical results, including the existence of a

√
n-consistent

solution and the sparsity of the solution β̂n.

Theorem 1 Suppose that conditions C1− C6 in the Appendix hold. Then
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(i) There exists a
√

n-consistent solution to R̂(β), that is, β̂n = β0 + Op(n−1/2).

(ii) limn→∞ P (β̂nj = 0) = 1, j = d + 1, . . . , q.

Remark 1 Theorem 1 indicates that, with probability tending to 1, some components of the
maximum empirical likelihood estimator β̂n are set to be zero. Then, the corresponding covariates
are removed from the final model. Hence, the penalized empirical likelihood procedure can be
used for variable selection.

Next, we show that the penalized empirical likelihood ratio function R̂(β) has oracle prop-
erty. That is, it works as well as the empirical likelihood ratio function that is constructed based
on the correct submodel. We give some notations as follows:

Ψ(u) = E(XXT|U = u), Φ(u) = E(XZT|U = u),

H(s) =
E{[Z − µ(U)TX]Y ∗

GI(s < Y ∗)}
(1−G(s))(1− F (s−))

,

µ(u) = Ψ(u)−1Φ(u), ΛG(u) =
∫ u

−∞

1
1−G(s−)

dG(s),

Σ0(β) = E{[Z − µ(U)TX][Z − µ(U)TX]T[Y ∗
G − ZTβ −XTθ(U)]2},

Σ1 =
∫ ∞

−∞
H(s)H(s)T(1− F (s−))(1−4ΛG(s))dG(s).

Furthermore, we let

β(1) = (β1, . . . , βd)T, β(2) = (βd+1, . . . , βq)T, and η̃i(β) = (η̂i1(β), . . . , η̂id(β))T.

Notice that β
(2)
0 = 0, then it is easy to show that η̃i(β0) = η̃i(β

(1)
0 ). Hence, we have

R̃(β0) = R̃(β(1)
0 ),

where R̃(β0) is the penalized empirical likelihood ratio function constructed by η̃i(β0), and
R̃(β(1)

0 ) is the penalized empirical likelihood ratio function constructed by η̃i(β
(1)
0 ). Let

Σ(1)
0 (β0) = (Id,0)Σ0(β0)(Id,0)T, and Σ(1)(β0) = (Id,0)[Σ0(β0)− Σ1](Id,0)T, (7)

where Id is the d×d identity matrix, and 0 is the d× (q−d) zero matrix. The following theorem
presents the oracle property of the penalized empirical likelihood ratio function.

Theorem 2 Suppose that conditions C1− C6 in the Appendix hold. Then

R̃(β(1)
0 ) L−→ w1χ

2
1,1 + w2χ

2
1,2 + · · ·+ wdχ

2
1,d ,

where {w1, . . . , wd} is the eigenvalues of (Σ(1)
0 (β0))−1Σ(1)(β0), and χ2

1,1, . . . , χ
2
1,d are independent

standard chi-square random variables with 1 degree of freedom.

Remark 2 In fact, it is easy to show that R̃(·) is the the penalized empirical likelihood ratio
function for βj , j = 1, . . . , d. Hence, the confidence region of βj , j = 1, . . . , d, can be constructed
based on Theorem 2 if the unknown weights are estimated. We also can give an adjusted-
penalized empirical likelihood ratio function as in Yang et al. [7], which can avoid the estimation
for unknown weights.
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Notice that {−R̂(β)} is irregular at the origin, then the common method is not applicable.
Now, we develop an iterative algorithm based on local quadratic approximation of p′λ(|βk|) as in
Fan and Li [8]. More specifically, in a neighborhood of a given non-zero β0j , an approximate of the
penalty function at value β0j can be given by pλ(|βj |) ≈ pλ(|β0j |)+1/2{p′λ(|β0j |)/|β0j |}(β2

j−β2
0j),

j = 1, . . . , q. Hence, the derivative of the penalty function can be well approximated by

p′λ(|βj |)sgn(βj) ≈ {p′λ(|β0j |)/|β0j |}βj . (8)

Furthermore, with the similar arguments as in Xue [9], it can be shown that β̂n is the solution of
the estimating equation

∑n
i=1 η̂i(β) = 0. Let Σλ(β(0)) = diag{p′λ(|β01|)/|β01|, . . . , p′λ(|β0q|)/|β0q|}.

Then, from (6) and (8), we have that the solution to maximizing {−R̃(β)} can be given by
n∑

i=1

Z̆i(Y̆ ∗
iGn

− Z̆T
i β)− nΣλ(β(0))β = 0. (9)

Hence, for a given initial estimator β(0), we obtain the following iterative algorithm,
(S1) Initialize β(0).
(S2) Set β(0) = β(k), solve β(k+1) by penalty estimating equation (9).
(S3) Iterate step S2 until convergence of β, and denote the final estimator of β as β̂n.
In the initialization step, we can obtain an initial estimation of β by using the classic

empirical likelihood method without penalty. To implement this method, the tuning parameter
a and λ in the penalty function should be chosen. Fan and Li [8] showed that the choice of
a = 3.7 performs well in a variety of situations. Hence, we use their suggestion throughout this
paper. Furthermore, similarly to [8], we can estimate λ by minimizing the following generalized
cross-validation score

GCV(λ) =
RSS(λ)/n

(1− d(λ)/n)2
,

where RRS(λ) =
∑n

i=1 ‖Y̆ ∗
iGn

− Z̆T
i β̂λ‖2 is the residual sum of squares, and d(λ) = tr{Z̆[Z̆TZ̆ +

nΣλ(β̂λ)]−1Z̆T} is the effective number of parameters, where Z̆ = (Z̆1, . . . , Z̆n)T.

3. Simulation study

We evaluate the performance of the proposed variable selection procedure through the fol-
lowing model

Y = Xθ(U) + ZTβ + ε,

where U ∼ U(0, 1), X ∼ N(0, 1), and θ(u) = 0.8u(1− u). Furthermore, we take β = (1.2, 2.5,

0, 0, 0, 0, 0.5, 0, 0, 2)T, and Z is a 10-dimensional normal distribution with zero mean and identity
covariance matrix. Y is generated according to the model with ε ∼ N(0, 0.5). The censoring
variable C ∼ N(µ, 1), where µ = 20.5, 14 and 10.3, respectively, such that the corresponding
censoring rate (CR) is about 0.1, 0.3 and 0.45. In the simulation, we generated n = 50, 100
and 150 subjects, respectively. We use the Epanechnikov kernel function K(u) = 0.75(1− u2)+,
and the bandwidth h is given by n−1/5. The average number of zero coefficients, with 1000
simulation runs, is reported in Table 1, in which the column labeled “C” gives the average
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number of coefficients of the six true zeros correctly set to zero, and the column labeled “I” gives
the average number of the four true nonzeros incorrectly set to zero. Table 1 also presents the
average false selection rate (FSR), which is defined as FSR = IN/TN, where “IN” is the average
number of the six true zeros incorrectly set to nonzero, and “TN” is the average total number
set to nonzero. In fact, FSR represents the proportion of falsely selected unimportant variables
among the total variables selected in the variable selection procedure.

n = 50 n = 100 n = 150

CR I C FSR I C FSR I C FSR

0.1 0.003 5.578 0.095 0 5.879 0.030 0 5.975 0.006

0.3 0.012 5.519 0.107 0.008 5.854 0.035 0.007 5.953 0.011

0.45 0.030 4.991 0.192 0.016 5.811 0.045 0.008 5.947 0.013

Table 1 Simulation results for variable selection procedure by penalized empirical likelihood method

From Table 1, we can see that, under moderate sample size and censoring rate, the penalized
empirical likelihood method has a smaller false selection rate and significantly reduces the model
complexity. We also can see that the average false selection rate decreases as the the sample size
increases. In addition, for given n, the results of variable selection for all cases of CR are similar.
This implies that our adjustment scheme is workable. In general, the proposed variable selection
method works well.

Appendix. Proof of Theorems

For convenience and simplicity, let C denote a positive constant which may be different
value at each appearance throughout this paper. Before we prove the main theorems, we list
some regularity conditions which are used in this paper.

(C1) The bandwidth h = Cn−1/5, for some constant C > 0. The kernel K(·) is a symmetric
probability density function, and

∫
u4K(u)du < ∞.

(C2) θ(u), σ2(u), Φ(u) and Ψ(u) are twice continuously differentiable on (0, 1), where
σ2(u) = E(ε2|U = u).

(C3) The density function of U , says f(u), is bounded away from 0 and infinity on [0, 1],
and is continuously differentiable on (0, 1).

(C4) For s ≤ τQ = inf{y : Q(y) = 1}, G(s) and F (s) have no common jumps, where
Q(y) = P (Y ∗ ≤ y). Moreover, we assume that

∫ τQ

0

‖H(Y )‖2(1− ΛG(s))dG(s) < ∞, E{ ‖Z − µ(U)‖|Y |
[(1−G(Y ))(1− F (Y ))]1/2

} < ∞.

(C5) For given u, Ψ(u) is positive definite matrix, and E{[Z − µ(U)TX][Z − µ(U)TX]T}
is nonsingular.

(C6) The penalty function pλ(·) satisfies that
(i) lim

n→∞
λ = 0, and lim

n→∞
√

nλ = ∞.
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(ii) For non-zero fixed w, lim
n→∞

√
np′λ(|w|) = 0, and lim

n→∞
p′′λ(|w|) = 0.

(iii) lim
n→∞

sup
|w|≤Cn−1/2

p′′λ(|w|) = 0, and lim
n→∞

λ−1 inf
|w|≤Cn−1/2

p′λ(|w|) > 0, for any C > 0.

The proofs of theorems rely on the following lemmas.

Lemma 1 Let (X1, Y1), . . . , (Xn, Yn) be i.i.d. random vectors, where Yi is scalar random

variables. Assume that supx

∫ |y|sf(x, y)dy < ∞ and E|Y1|s < ∞, where f(·, ·) denotes the joint

density of (X, Y ). Let K(·) be a bounded positive function with a bounded support, satisfying

a Lipschitz condition. Then

sup
x

∣∣∣ 1
n

n∑

i=1

{Kh(Xi − x)Yi − E[Kh(Xi − x)Yi]}
∣∣∣ = Op

(
{ log(1/h)

nh
}1/2

)
,

provided that n2δ−1h −→∞, for some δ < 1− s−1.

Proof This follows immediately from the result that was obtained by Mack and Silverman [10].
¤

Lemma 2 Suppose that conditions C1− C5 hold. Then

sup
0<u<1

‖µ̃(u)− µ(u)‖ = Op(Cn), sup
0<u<1

‖θ̃(u)− θ(u)‖ = Op(Cn),

where Cn = { log(1/h)
nh

}1/2 + h2.

Proof Let Snl =
∑n

i=1 XiX
T
i (Ui−u

h )lKh(Ui − u), l = 0, 1, 2. A simple calculation yields

E(Snl) = nf(u)Ψ(u)
∫ 1

0

slK(s)ds + o(1), l = 0, 1, 2.

Notice that DT
u ΩuDu =

(
Sn0 Sn1

Snl Sn2

)
, by Lemma 1, we obtain

DT
u ΩuDu = nf(u)Ψ(u)⊗




1 0

0
∫ 1

0

u2K(u)du


 {1 + Op(Cn)}, (10)

uniformly for u ∈ (0, 1), where ⊗ is the Kronecker product. Using the same argument, we have

DT
u ΩuZ = nf(u)Φ(u)⊗ (1, 0)T{1 + Op(Cn)}, (11)

uniformly for u ∈ (0, 1). Combining (10) and (11), we have that

µ̃(u) = (Ip, 0p)(DT
u ΩuDu)−1DT

u ΩuZ = µ(u){1 + Op(Cn)},
uniformly for u ∈ (0, 1).

Invoking E(Y ∗
iG|Xi, Zi, Ui) = E(Yi|Xi, Zi, Ui), and with the similar argument, we can prove

sup0<u<1 ‖θ̃(u)− θ(u)‖ = Op(Cn). This completes the proof of Lemma 2. ¤

Lemma 3 Suppose that conditions C1− C5 hold. If β0 is the true parameter, then

1√
n

n∑

i=1

Z̆i(Y̆ ∗
iGn

− Z̆T
i β0)

L−→ N(0,Σ(β0)),
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where Σ(β0) = Σ0(β0)− Σ1.

Proof Notice that

Z̆i(Y̆ ∗
iGn

− Z̆T
i β0) = Z̆i(Y̆ ∗

iG − Z̆T
i β0) + Z̆i(Y̆ ∗

iGn
− Y̆ ∗

iG) ≡ J1i(β0) + J2i(β0). (12)

A simple calculation yields

1√
n

n∑

i=1

J1i(β0) =
1√
n

n∑

i=1

[Zi − µ(Ui)TXi][Y ∗
iG −XT

i θ(Ui)− ZT
i β0]+

1√
n

n∑

i=1

[Zi − µ(Ui)TXi]XT
i [θ̃(Ui)− θ(Ui)]+

1√
n

n∑

i=1

[µ(Ui)− µ̃(Ui)]TXi[Y ∗
iG −XT

i θ(Ui)− ZT
i β0]+

1√
n

n∑

i=1

[µ(Ui)− µ̃(Ui)]TXiX
T
i [θ̃(Ui)− θ(Ui)]

≡A1 + A2 + A3 + A4.

By the Central Limits Theorem, it is easy to prove A1
L−→ N(0,Σ0(β0)). Next, we prove

Aν = op(1), ν = 2, 3, 4. Using Abel inequality, and invoking E{(Zi − µ(Ui)TXi)XT
i } = 0 and

Lemma 2, we can prove that

‖A2‖ ≤ C√
n

sup
1≤i≤n

∥∥θ̃(Ui)− θ(Ui)
∥∥ max

1≤k≤n

∥∥∥
k∑

i=1

[Zi − µ(Ui)TXi]XT
i

∥∥∥

=
C√
n

Op(Cn)Op(
√

n log n).

That is A2 = op(1). Invoking E(Y ∗
iG|Xi, Zi, Ui) = E(Yi|Xi, Zi, Ui), and with a similar argument,

we can prove A3 = op(1). In addition, by Lemma 2, we have ‖A4‖ ≤ Op(
√

nC2
n) = op(1). Hence,

we get that
1√
n

n∑

i=1

J1i(β0)
L−→ N(0,Σ0(β0)). (13)

By Yang et al. [7], we have

1√
n

n∑

i=1

J2i(β0) =
1√
n

n∑

i=1

[Zi − µ(Ui)TXi]Y ∗
i δi

1−G(Y ∗
i )

Gn(Y ∗
i )−G(Y ∗

i )
1−G(Y ∗

i )
+ op(1).

Then, using the similar argument to Wang and Li [6], we can prove that

1√
n

n∑

i=1

J2i(β0)
L−→ N(0,Σ1),

and
1
n

n∑

i=1

E{J1iJ
T
2i} P−→ −Σ1.

Gathering these together with (13), we complete the proof of Lemma 3. ¤
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Proof of Theorem 1 With the similar arguments as in [9], we have that the solution to
maximizing {−R̂(β)} can be given by the following penalty estimating equation

n∑

i=1

Z̆i(Y̆ ∗
iGn

− Z̆T
i β)− nbλ(β) = 0.

Let U(β) =
∑n

i=1 Z̆i(Y̆ ∗
iGn

− Z̆T
i β), UP (β) = U(β)−nbλ(β) and β = β0 + n−1/2γ. We want

to show that for any given ε > 0, there exists a large constant C such that ‖γ‖ = C and

P{ min
‖β0−β‖=Cn−1/2

(β0 − β)TΓTUP (β) > 0} > 1− ε, (14)

where Γ = E{[Z−µ(U)TX][Z−µ(U)TX]T}. Since Γ is nonsingular, (14) implies, with probability
at least 1−ε, that there exists a local solution to UP (β) = 0 in the ball {β0 +n−1/2γ : ‖γ‖ ≤ C}.
That is, there exists a local solution β̂n of UP (β) = 0 with β̂n = β0 + Op(n−1/2).

Invoking Lemma 3, and by the law of large numbers, we can derive that n−1
∑n

i=1 Z̆iZ̆
T
i

P−→
Γ. Hence,

1√
n

UP (β) =
1√
n

n∑

i=1

Z̆i(Y̆ ∗
iGn

− Z̆T
i β0) +

1√
n

n∑

i=1

Z̆iZ̆
T
i (β0 − β)−√nbλ(β)

=
1√
n

U(β0) +
√

nΓ(β0 − β)−√nbλ(β) + op(1). (15)

Notice that p′λ(0)sgn(0) = 0, then condition C6(ii) implies that
√

nbλ(β0) → 0. Hence, it is easy
to show that

1√
n

UP (β) =
1√
n

U(β0) +
√

nΓ(β0 − β) +
√

n{bλ(β0)− bλ(β)}+ op(1).

If β0j 6= 0, then sgn(β0j) = sgn(βj). Hence,

p′λ(|β0j |)sgn(β0j)− p′λ(|βj |)sgn(βj) = {p′λ(|β0j |)− p′λ(|βj |)}sgn(βj).

If β0j = 0, the above equation holds naturally. Then, a simple calculation yields

1√
n

UP (β) =
1√
n

U(β0) +
√

nΓ(β0 − β) +
√

nΛλ(β∗)(β0 − β) + op(1),

where Λλ(β∗) = diag{p′′λ(|β∗1 |)sgn(β1), . . . , p′′λ(|β∗q |)sgn(βq)}, and β∗j lies between βj and β0j .
From Lemma 3, we have n−1/2U(β0) = Op(1). Hence, we get that

1√
n

(β0 − β)TΓTUP (β) =Op(‖β0 − β‖) +
√

n(β0 − β)TΓTΓ(β0 − β)+
√

n(β0 − β)TΓTΛλ(β∗)(β0 − β).

Notice that Γ is nonsingular, the second term on the right-hand side is larger than a0C
2n−1/2,

where a0 is the smallest eigenvalue of ΓTΓ. The first term is of order Op(n−1/2). By condition
C6(iii), we have maxj p′′λ(|β∗j |) → 0, so the third term is dominated by the second term. There-
fore, for any ε > 0, if we choose C large enough so that, for large n, the probability that the
absolute value of the first term is larger than the second term is less than ε, then (14) holds.
This completes the proof of part (i).
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For part (ii), it suffices to show that for any ε > 0, when n is large enough, P (Cnj) < ε,
where Cnj = {β̂nj 6= 0}, j = d + 1, . . . , q. Since β̂nj = Op(n−1/2), when n is large enough, there
exists some C such that

P (Cnj) < ε/2 + P{β̂nj 6= 0, |β̂nj | < Cn−1/2}. (16)

Using the jth component of (15), we can obtain that
√

np′λn
(|β̂nj |)sgn(β̂nj) =

1√
n

Uj(β0) +
√

nΓj(β̂n − β0) + Op(1).

The first two terms on the right-hand side are of order Op(1). Hence, for large n, there exists
some C such that

P (
√

np′λ(|β̂nj |) > C) < ε/2. (17)

By condition C6, we have that

inf
|βnj |≤Cn−1/2

√
np′λ(|βnj |) =

√
nλ inf

|βnj |≤Cn−1/2
λ−1p′λ(|βnj |) →∞.

That is, β̂nj 6= 0 and |β̂nj | < Cn−1/2 imply that
√

np′λ(|β̂nj |) > C for large n. Then, invoking
(16) and (17), we have that

P (Cnj) < ε/2 + P (
√

np′λ(|β̂nj |) > C) < ε.

This completes the proof of this theorem. ¤

Proof of Theorem 2 Note that bλ(β0) = o(n−1/2), then from the proof of Lemma 3, it is easy
to show that

max
1≤i≤n

‖η̂i(β0)‖ = op(n1/2).

Furthermore, by β
(2)
0 = 0, it is easy to show that

η̃i(β
(1)
0 ) = η̃i(β0) = (Id,0)η̂i(β0), (18)

where Id is the d× d identity matrix, and 0 is the d× (q − d) zero matrix. Then we have

max
1≤i≤n

‖η̃i(β
(1)
0 )‖ = max

1≤i≤n
‖(Id,0)η̂i(β0)‖ = op(n1/2). (19)

By the Lagrange multiplier method, R̃(β(1)
0 ) can be represented as

R̃(β(1)
0 ) = 2

n∑

i=1

log{1 + δTη̃i(β
(1)
0 )}, (20)

where δ is a d× 1 vector given as the solution of
n∑

i=1

η̃i(β
(1)
0 )

1 + δTη̃i(β
(1)
0 )

= 0. (21)

Invoking (19), and using the arguments similar to Owen [11], we can obtain ‖δ‖ = Op(n−1/2).
Taking this together with (19) and applying the Taylor expansion to (20), we get that

R̃(β(1)
0 ) = 2

n∑

i=1

{δTη̃i(β
(1)
0 )− [δTη̃i(β

(1)
0 )]2/2}+ op(1). (22)
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By (21), it follows that

0 =
n∑

i=1

η̃i(β
(1)
0 )

1 + δTη̃i(β
(1)
0 )

=
n∑

i=1

η̃i(β
(1)
0 )−

n∑

i=1

η̃i(β
(1)
0 )η̃T

i (β(1)
0 )δ +

n∑

i=1

η̃i(β
(1)
0 )[δTη̃i(β

(1)
0 )]2

1 + δTη̃i(β
(1)
0 )

. (23)

Then, it is easy to show that
n∑

i=1

[δTη̃i(β
(1)
0 )]2 =

n∑

i=1

δTη̃i(β
(1)
0 ) + op(1), (24)

δ =
{ n∑

i=1

η̃i(β
(1)
0 )η̃T

i (β(1)
0 )

}−1 n∑

i=1

η̃i(β
(1)
0 ) + op(n−1/2). (25)

Invoking (22)–(25), by some algebra calculations, we have

R̃(β(1)
0 ) =

{ 1√
n

n∑

i=1

η̃i(β
(1)
0 )

}T

(Σ̂(1)
0 (β(1)

0 ))−1
{ 1√

n

n∑

i=1

η̃i(β
(1)
0 )

}
,

where Σ̂(1)
0 (β(1)

0 ) = n−1
∑n

i=1 η̃i(β
(1)
0 )η̃T

i (β(1)
0 ). Invoking (18) and the proof of Lemma 3, we can

obtain that Σ̂(1)
0 (β(1)

0 ) P−→ Σ(1)
0 (β0), where Σ(1)

0 (β0) is defined by (7). Hence, we get

R̃(β(1)
0 ) =

(
[Σ(1)(β0)]−

1
2

1√
n

n∑

i=1

η̃i(β
(1)
0 )

)T

Γ(β0)
(
[Σ(1)(β0)]−

1
2

1√
n

n∑

i=1

η̃i(β0)
)

+ op(1),

where Γ(β0) = [Σ(1)(β0)]
1
2 (Σ(1)

0 (β0))−1[Σ(1)(β0)]
1
2 . Let D = diag(w1, . . . , wd), where w1, . . . , wq

are the eigenvalues of (Σ(1)
0 (β0))−1Σ(1)(β0). Notice that (Σ(1)

0 (β0))−1Σ(1)(β0) has the same eigen-
values as Γ(β0). Hence, there exists orthogonal matrix Q such that QTDQ = Γ(β0). Then, with
a simple calculation we get that

R̃(β(1)
0 ) =

(
Q[Σ(1)(β0)]−

1
2

1√
n

n∑

i=1

η̃i(β
(1)
0 )

)T

D
(
Q[Σ(1)(β0)]−

1
2

1√
n

n∑

i=1

η̃i(β
(1)
0 )

)
+ op(1). (26)

Furthermore, invoking bλ(β0) = o(n−1/2), η̃i(β
(1)
0 ) = (Id,0)η̂i(β0), and Lemma 3, we can prove

that
1√
n

n∑

i=1

η̃i(β
(1)
0 ) L−→ N(0,Σ(1)(β0)).

Then, notice that Q is an orthogonal matrix, and by (26), the proof of Theorem 2 is completed.
¤
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