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Matrix Lie Algebras

Zhengxin CHEN*, Liling GUO
School of Mathematics and Computer Science, Fujian Normal University,
Fugian 350007, P. R. China

Abstract Let F be a field, n > 3, N(n,F) the strictly upper triangular matrix Lie algebra
consisting of the n X n strictly upper triangular matrices and with the bracket operation
[z,y] = zy — yz. A linear map ¢ on N(n,F) is said to be a product zero derivation if
[p(z),y] + [z, ¢(y)] = 0 whenever [z,y] = 0,z,y € N(n,F). In this paper, we prove that
a linear map on N(n,F) is a product zero derivation if and only if ¢ is a sum of an inner
derivation, a diagonal derivation, an extremal product zero derivation, a central product zero
derivation and a scalar multiplication map on N(n, F).
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tions of Lie algebras.
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1. Introduction

A lot of attention has been paid to a linear preserver problem, which concerns the char-
acterization of linear maps on matrix spaces or algebras that leave certain functions, subsets,
relations, etc., invariant. Some of such linear maps generalize the usual automorphisms or deriva-
tions. The earliest paper on linear preserver problem dates back to 1897 (see [2]), and a great
deal of effort has been devoted to the study of this type of question since then. One may consult
the survey papers [3—6] for details. Let us mention particularly one type of classical example:
linear maps preserving commutativity. The importance of this type example lies in the fact that
the assumption of preserving commutativity of matrices can be considered as the assumption of
preserving Lie products at the commuting elements on the related linear Lie algebra. Such type
of linear preserver problem has been extensively studied on matrix algebras as well as on more
general rings and operator algebras. For example, the commutativity preserving linear maps on
triangular matrices were done in [7]; the commutativity preserving linear maps on strictly trian-
gular matrices were studied in [8]; the nonlinear commutativity preserving maps on the algebra
of full matrices were studied in [9] and [10]. For more references about commutativity preserving

maps on associated algebras one may consult the survey paper [11].
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For linear preserver problems concerning Lie algebras we just find several papers [12-14].
The author in [12] characterized the invertible linear maps on simple Lie algebras of linear types
preserving Lie products at the commuting elements. Recently, a few papers study nonlinear
maps on Lie algebras [15-19]. Radjavi and Semrl in [15] characterized the nonlinear maps on
the general linear Lie algebra and the special linear Lie algebra which preserve solvability in
both directions. The nonlinear bijective maps on triangular matrix Lie algebras (resp., simple
Lie algebras) preserving Lie products were determined in [16] (resp., [18]). The nonlinear Lie
derivations on upper triangular matrix Lie algebras (resp., parabolic subalgebras of simple Lie
algebras) were determined in [17] (resp., [19]).

In [13], the authors introduced a new concept: product zero derivations of Lie algebras.
Such maps behave Lie derivations only on pairs of commuting elements. In [13], it is shown
that any product zero derivation on parabolic subalgebras of simple Lie algebras is a sum of an
inner derivation and a scalar multiplication map. In this paper, we determine the product zero
derivations on strictly upper triangular matrix Lie algebras N(n,F), where F is a field and n > 3.
A linear map ¢ : N(n,F) — N(n,F) is a product zero derivation if [p(A), B] + [4, p(B)] = 0
whenever [A, B] =0, A, B € N(n,F). Obviously, ¢©(0) = 0. Since a Lie derivation ¢ on N(n,F)
is a linear map satisfying 0([4, B]) = [6(A), B] + [A, (B)] whether [A, B] is equal to zero or not
(in other words, ¢ is a linear map derivable at any pair (A4, B)), so any Lie derivation on N(n, F)
is a product zero derivation. From [20, Theorem 3.2], any derivation on N(n,F) is a sum of an
inner derivation, a diagonal derivation, an extremal derivation and a central derivation. In this
paper, we will prove that any product zero derivation on N(n,F) is a sum of an inner derivation,
a diagonal derivation, an extremal product zero derivation, a central product zero derivation and
a scalar multiplication map (see Theorem 3.7), which generalizes the results about derivation [20,
Theorem 3.2]. From our results we will see some difference between a product zero derivation
and a derivation on N(n,TF).

Here we specify some notations for later use in this paper. Let F be a field, gl(n,F) the
general linear Lie algebra consisting of all n x n matrices over F and with the bracket operation
[z,y] = xzy — yx. We denote by E;; the matrix in N(n,F) whose sole nonzero entry 1 is in the
(4, 7)-position, where 1 <14 < j <n. Let D be the set of all diagonal matrices in gl(n,F).

Clearly, the following sets Ny, = {X € N(n,F)[X =3, .o, @By}, k=1,2,...,n—1, are
the ideals of the F-algebra N(n,F), N; = N(n,F),N,,_1 =FE;,, N1 D N3 DO N3 D --- DN, _q,
and N,,_; is the center of N(n,F). We assume that Ny, = {0} for & > n. It is easy to check that
[N, N;] € Ny

Lemma 1.1 If§ is a product zero derivation on N(n,F), then §(E1,) = cE1, for some ¢ € F.

Proof For any X € N(n,F), we have [X, E1,] = 0. By definition, [0(X), E1,]+[X,d(E1)] =0,

ie.,

[Xa 5(E1n)] =0.

Thus §(E1,) is in the center of N(n,F), and so the lemma holds.



530 Zhengzin CHEN and Liling GUO
2. Certain product zero derivations on N(n,F)

In this section, we construct certain standard product zero derivations on N(n,F), n > 3.
Such maps will be used to describe arbitrary product zero derivations on N(n, F).
(A) Inner derivations:

For any A = (aij)nxn € N(n,F), the map
ad A:N(n,F) - N(n,F), X — [4, X]

is a derivation of N(n,F), called an inner derivation on N(n,F). By [1, Section 1.3], any inner
derivation is a (usual) Lie derivation, and so a product zero derivation.

(B) Diagonal derivations:

Let d € D. Then the map

ng : N(n,F) - N(n,F), X — [d, X]

is a Lie derivation of N(n,TF), called a diagonal derivation [20, Section 2(B)].
(C) Extremal product zero derivations:
For any a € F, i =1,n— 1 and j = 1,2, we define four linear maps eflij):
(C-1) et N(n,F) — N(n,F) determined by

X = E i Eij — axia oy
1<i<j<n

(C-2) e N(n,F) — N(n,F) determined by

X = E Tij By v axn_1 0B pn_1;

1<i<j<n
(C-3) el N(n,F) — N(n,F) determined by

X = E 2ij By v ax12 3, + av13Fap;

1<i<j<n
(C-4) e N(n,F) — N(n,F) determined by

X = E Tij By = axpn_1nB1n—2 +atp_2nF1 n1.
1<i<j<n

It is easy to check that they are product zero derivations of N(n,F). In particular, for any
a€F, e and e{" 1Y are Lie derivations of N(n,F), called extremal derivations [20, Section
2(D)]. We call the above maps e,(lij ) and their sums extremal product zero derivations.

(D) Central product zero derivations:

Let f : N(n,F) — F be a linear function. Then there is a linear map 5 : N(n,F) — N(n,F)
given by

pr(X) = f(X)Em

for any X € N(n,F). It is easily verified that ¢y is a product zero derivation on N(n,F), called

a central product zero derivation.
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Moreover, if f(Ng) = 0, then ¢y is a derivation, which is called a central derivation [20,
Section 2(C)].
(E) Scalar multiplication maps:
For ¢ € F, define
e : N(n,F) - N(n,F), X — cX,

for all X € N(n,F). We call ¢, a scalar multiplication map on N(n,F).
It is easily verified that any scalar multiplication map is a product zero derivation on N(n,F).
Note that if the characteristic of F is not equal to 2, then . is not a Lie derivation unless c is

equal to 0.

3. Decomposition of product zero derivations

For any product zero derivation 6 on N(n,F), assume that
n—1
5(Ei,i+1) = Z ajiEj7j+1 mod N2 for i = 1, 2, B £ 1,
j=1
ie., 5(Ei,i+1) — Z;-l:_ll ajiEj)]q_l €Nsfori=1,2,...,n—1, where ;5 € F,i,5 € {1, 2,...,n— 1}

Then 0 determines a (n — 1) x (n — 1) matrix

ai1 a12 ot G1np—1
a21 a22 o A2.n—1

A((S) == 9
an—-1,1 Ap—12 - 0OGn—-1n-1

where the entries a;; are dependent on §. We call A(J) the matrix attached to the product zero

derivation 4.
Lemma 3.1 If¢ is a product zero derivation on N(n,F), n > 5, then A(J) is a diagonal matrix.

Proof We prove that a;; = 0 for any i # j, 4,j € {1,2,...,n — 1}. We prove it in the following

cases.

Casel i#1orn—1.
In this cases, i — 1,i+ 1€ {1,2,...,n—1}.

Case 1.1 7 < j.
Since [Eifl_’i, Ej7j+1] =0, [5(Ei71,i)7 Ej7j+1] + [Eifl,h 5(Ej7j+1)] = 0. Comparing the coef-
ficients of E;_; ;41 on the both sides of the above equality, we have a;; = 0.

Case 1.2 ¢ >j.
Since [Ej7j+1, Ei+171‘+2] =0, [5(Ej7j+1), Ei+1,i+2] =+ [Ej7j+1, 5(Ei+1,i+2)] =0. Comparing the

coefficients of E; ;12 on the both sides of the above equality, we have a;; = 0.

Case 2 1=1.
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Since i #j, j #1,1.e.,j>2.

Case 2.1 2<j<n—1.
Since [Ej j+1, Fon] = 0, [0(Ej j+1), E2n] + [Ej j+1,0(Ea,)] = 0. Comparing the coefficients

of Eq, on the both sides of the above equality, we have a;; =0, i.e., a;; = 0.
Case 2.2 j=n—1.
Since [Fa3, En—1.n] =0, [0(E23), Fn_1n] + [E23,0(En—_1.,)] = 0. Comparing the coefficients

of Eq3 on the both sides of the above equality, we have a; ,—1 =0, i.e., a;; = 0.

Case 3 i=n—1.

Since i #j,j#n—1,1ie,j<n-—2.

Case 3.1 1<j<n—2.
Since [E17n_1,Ej7j+1] = O, [6(E1)n_1),Ej)j+1] + [E17n_1,6(Ej)j+1)] = 0. Comparing the

coefficients of Ey, on the both sides of the above equality, we have a,—1; =0, i.e., a;; = 0.

Case 3.2 j=1.

Since [ElQ,En_Q)n_l] = 0, [5(E12),En_27n_1] + [Elg,é(En_gm_l)] = 0. Comparing the
coefficients of E,,_2, on the both sides of the above equality, we have a,—1,; =0, i.e., a;; = 0.
O

Lemma 3.2 If§ is a product zero derivation on N(n,F), n > 5, A(§) = diag{A1, A2, ..., A\n_1}
is the unique diagonal matrix attached to §, then we can construct a diagonal matrix D =
diag{0, A1, \1 + Ao, ..., A1 + Ao + -+ + A\—1} such that A(§ +np) =0, ie.,

(5 + nD)(Ei,iJrl) (S NQ, V1 <i1<n-— 1.
Proof By easy computations. We omit the process of computations. [

Lemma 3.3 If§ is a product zero derivation on N(n,F) and A(§) = 0, n > 5, then there exists

a matrix M" € N(n,F) and elements a1, az,as, a4 € F such that
(e((llll) + eg’;_l’l) + 6((1132) + e((l’z_l’z) +adM" +6)(E;i+1) € Npoq, VI<i<n-—1.

Proof We prove this lemma by the following three steps.
Step 1. There exists a matrix M € N(n,F) satisfying

(adM + 5)(Ei71‘+1) S ang, Vi<i<n-—1.

We use induction on k to prove that there exists M) € N(n,F), k = 1,2,3,...,n — 4,
satisfying that

(ad My, + 5)(Ei,i+1) € Niy1, Vi<i<n-—1. (3.1)

Let My = 0. Then the equality (3.1) holds for £ = 1 by conditions.
Assume that there exists a matrix My_1 € N(n,F) with 2 < k < n — 4 such that (3.1) is
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true for k — 1, i.e., (ad My—_1 + 0)(E;i41) € Nj, V1 <i <n—1. Set
' =ad M1+ 6.

It is clear that A(d’) is still a zero matrix. Assume that

n—k
5/(Ei71'+1> = Z aéf)Ej1j+k mod Nk+1, 1 S ) S n—1. (32)

j=1

For (3.2), we first prove the following claim:

Claim ailf) =0fors#¢i+1—k.

(A-1) s<n—k—1land s #i—k,i—k—1. Applying 0’ to [E; i+1, Es+k,s+k+1] = 0, we have
[0'(Eiit1)s Pstk stht1] + [Fiit1,0 (Estk,s+k+1)] = 0. Comparing the coefficients of Es s4x41 on
the both sides of the above equality, we have agf) =0.

(A-2) s > 2and s # i+1,i+2. Applying ¢’ to [Es_1,s, Ei i+1] = 0, we have [6'(Es_1,5), Eii+1]+
[Es—1,5,0' (E;it+1)] = 0. Comparing the coefficients of Es_1 s+k on the both sides of the above
equality, we have aglz) = 0.

Since s =i — k or i — k — 1 implies that s # ¢ + 1,7 + 2, it follows from (A-1) and (A-2)
that for 2 < s <n —k — 1 the claim is true and it remains to consider the following cases (B-1),
(B-2), (C-1) and (C-2).

(B-1) s=1and s=1i— k.

In this case, i = k+1 < n—3. Applying &’ to [E; i+1, Ei i+2] = 0, we have [6'(E; j41), Eiivo]+
[Eiit1,0 (Eiit2)] = 0. Comparing the coefficients of Ej ;12 on the both sides of the above
equality, we have agii_l) =0, i.e., aglz) =

(B-2) s=land s=i—k—1.

In this case, 3 < i = k+2 < n— 2. Applying ¢’ to [Eii+1,Ei—1,i+2] = 0, we have
[0'(Eiit1), Fic1,i42] + [Biit1, 0'(Ei—1,i+2)] = 0. Comparing the coefficients of F4 ;12 on the
both sides of the above equality, we have agii_m =0, ie., aglz) =

(C-1) s=n—kands=1i+1.

In this case, since k < n — 4, we have s > 4. Applying 0’ to [Es_2,s, Es—1,s] = 0 gives
[0'(Es—2,s), Es—1,s] + [Es—2,5,0 (Es—1,5)] = 0. Comparing the coefficients of Es_3 s+ on the
(k) k) _ 0.

both sides of the above equality, we have ag'; | = o

(C-2) s=n—kands=1i+2.

Asin (C-1), s > 4. Applying &’ to [Es_s.s, Es—2,s—1] = 0, we have [¢'(Es_3,s), Es—2,s-1] +
[Fs—3.5,0 (Fs—2.5-1)] = 0. Comparing the coefficients of Es_3 s+ on the both sides of the above
(k) _ k) _ .

s,5—2 st

0, ie., a

equality, we have a 0, ie., a

Therefore the claim holds and the equality (3.2) may be written as
6/(Ei7i+1) = az('i)lfk,iEH‘l—kxi‘f‘l + agf)Ei,i-i-k mod Ny41, 1<t <n—1. (3.3)

To complete the induction on k, we need again induction on [ to prove that there exist
S; € N(n,F),1=0,1,...,n — 1, such that for 1 <i <1,

(ad S; + &) (Eii+1) = 0 mod Ny (3.4)



534 Zhengzin CHEN and Liling GUO
and for [ +1<i<n-1,
(ad Sl + 5/)(Ei,i+l) = Cz('izl—k,iEiJFl*kviﬂLl + Cl(‘zl')Ei,iqu mod Nk+1. (35)

Let Sop = 0. Then it follows from (3.3) that (3.5) with C§+)1 fi = a§+)1 ki and c( ) = aEl) i

trivially true, and (3.4) does not occur. Assume that (3.4) and (3.5) hold for some S;_; € N(n,TF)
with 0 <1 —1 < n — 2. In particular,

(ad Si—1 + 8')(Ei41) = Cl(i__ll_)k)lElJrlfk,qul + Cl(ll_l)El,Hk mod Ngyq.

Set S; = S;_1 — cl(iL_lljk,lEl+1—k7l + cl(ll_l)ElJrlJJrk. In fact, cl(ir_lljk,l = 0if I # k. This is

clear for | < k. And for | > k applying ad S;_1 + ¢’ to [Ej—k,i—k+1, Eri+1] = 0, we have
cl(i_ill_)k)lEl,kﬁlH = 0 mod Ngyo. Hence, cl(rll_)m = 0. It is easy to check that (3.4) and (3.5)
hold with

l -1 -
cnglfk i §+1 )k i + 5l+7€ lc( )7

where 0;; denotes the Kronecker delta, and cgzl-) = cz(-ﬁ_l) for S; hold. Thus the induction on [ is
completed. Set
My = Sn—1+ Mp_;1.

Then (3.1) is true for &, and the induction on k is completed. Thus Step 1 holds.
Step 2. There exist a matrix M’ € N(n,F) and two elements a3, ay € F satisfying

(e 4+ =12 4 ad M + 6)(Bijis1) € Np_a, V1<i<n-—L (3.6)

By Step 1, assume that
3
(6 +adM)(Eiis1) =Y alt By jpn—s mod Ny_p for 1 <i<n—1. (3.7)
j=1

Repeating the arguments in (A-1), (A-2), (B-1) and (C-1) above with k = n — 3, we obtain that

n (3.7) a7 =0 for s #i,i+4—n except ali > and agn ®) Thus (3.7) may be rewritten as

ad M + 0)(E12) = a{V Y Ey s + a7 B3, mod N, _s,
31
(adM + 6)(Ei)i+1) = GEZ;EL@EZ'H—MH + aE?iB)Ei)i_kn_g mod N,,_s fori=2,3,...,n— 2,
(adM + 5)(En71,n) = ngn 3%E11n,2 + ag;_?’iEgn mod Nn,Q.

In the same argument as in Step 1, we can use induction to prove that there exists an S € N(n,F)
such that
(ad S + ad M + 6)(E12) = a{" % E3, mod N,,_s,

(adS+adM +6)(E;i+1) =0mod N,,_o fori =2,3,...,n—2,
(ad S + ad M + 8)(Ep1,0) = a\" ") E1 i—s mod N,,_s.

Set

=S+ M,a3 = —aé’f Y ay = agnn__?’i

(n 1,2)

It is easy to check that ad M’, e,(l3 ) and e satisfy (3.6).
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Step 3. There exist a matrix M” € N(n,F) and elements a1, a2 € F such that

(€D 4+ en=tD) 4 (12 4 =12 4 ad M" +6)(Ej 1) € Ny, V1<i<n—1.  (3.8)

By (3.6), for any 1 <14 <n — 1, we may assume that

(6((1132) —+ 6((17417172) + ad M/ + 5)(Ei71‘+1) = CLY; 2)E17n,1 + aé?_z)EQn mod anl- (39)
For convenience, we set
8" = e 4 (=1 4 ad M’ + .

For (3.9), we first give the following observations (1)—(3).

(1) FOI‘ any 2 S ) S 7’1,—3, [Ei,iJrlv Enfl,n] - 0; then [5”(Ei,i+l); Enfl,n]‘F[Ez z+17 ( n—1 n)]

0. Comparing the coefficients of E7,, on the both sides of the above equality, we have agl 2)

(2) For any 3 < ) < n — 2 [Elg, Ei i+1] = O then [6”(E12) El i+1] [Elg, 6”(El 1+1)]
Comparing the coefficients of E7,, on the both sides of the above equality, we have a(" 2 = .
(3) Since [E12, Enflﬁn] = 0, we have [(S”(E12), Enflyn] [E12, 5”( nflyn)] =0. Comparing

the coefficients of Fy, on the both sides of the above equality gives agrfd) = —aé’}f{.

0.
0.

We construct an inner derivation
o =ad (agq )Eg)n_l) + ad (agg 2)E3n) +ad(— agnn Q%El)n_z).
Then
(0 +6")(E12) = agfd)Egn mod N,,_1;
(0+0")(Eiit1) =0mod N,,_q, 2<i<n-—2
(0 +0")(En_1n) = ag o iEl n—1 mod N, _1.

Let a; = —aé’f 2), as = agnn 2). Then (e((llll) + e((l’; W st 8")(Eii+1) = 0 mod N,,_1,
1<i<n-—-1,ie,

(elDelr=1D 4 (12 4 (=12 L ag M’ 4 ad (a} > By 1)+

ad (53 V) Es,) + ad (—al" 2} By y_s) + 0)(Eiip1) € Npy_ 1.
Set
M" =M + 0\ P Espy + aby P Esy — a2 B o,

Thus the lemma holds. [J

Lemma 3.4 If¢ is a product zero derivation on N(n,F), n > 4, and §(E; ;4+1) € Np—1,1 <i <
n — 1, then there exist elements bs, b, € F, 2 < s < n, 1 <t < n— 1, satisfying the following
conditions.

(1) 0(E1s) =bsE1smodN,,_1,2 <s<mn;

(2) §(Etn) =bE modN,_1,1<t<n-—1.

Proof (1) Set bo = 0 and b, = 0. Then (1) holds for s = 2 by the condition, and for s = n by

Lemma 1.1. For 3 < s <n—1, we set

d(Ei) = Y. byYEumodN, i, 3<s<n—1. (3.10)
1<l—k<n—2
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For (3.10), we first prove that blgs) =0 for any (k,1) # (1,s) or (s+1,n), where 1 <I1—k <n—2.

We prove it in the following three cases.

Case 1 [+# sorn.
Since [Ej+1, E1s] = 0, by conditions, [Ej;+1,0(E1s)] = 0. Comparing the coefficients of

E 1+1 on the both sides of the above equality, we have blgs) =0.

Case 2 [ =s,k # 1.
Since k—1 < 1—1 <l =s, we have [Ej_1., E15] = 0, then by conditions, [Fx_1%,0(E1s)] =

0. Comparing the coefficients of Ej_1,; on the both sides of the above equality, we have blgs) =0.

Case 3 [=n,k#s+1.

Since  — k <n —2 and | = n, we have k # 1. Applying J to the equality [Ex_1k, E1s] =0
yields [Ex_1.x,0(E1s)] = 0 by conditions. Comparing the coefficients of Ej_1; on the both sides
of the above equality, we have b,(is) =0.

Thus

0(Ers) = bng)Els + bgf{,nEerl,n mod N, _1, 3<s<n-—2;

5(E17n,1) = bg%;lni_ll)Elynfl mod anl-
For 3 < s <n — 2, since [E1s, E1,s+1] = 0, we have

[0(Evs), Ersi1] + [Ers, 6(Bros1)] = 0. (3.11)

Comparing the coeflicients of E1,, on the both sides of the above equality (3.11), we have bifin =

0 for any 3 < s <n—2. Set by = bglss) for 1 < s <n—1, and then the condition (1) holds.
The proof of (2) is dual to that of (1). O

Lemma 3.5 If¢ is a product zero derivation on N(n,F), n > 4, and §(E; ;4+1) € Np_1,1 <i <
n—1, then for any 1 <u <n—2,1<i<n—wu, we have §(E; j1v) = By E; ity mod N,,_1, where
61=0,0,€F,u=2,3,...,n—2.
Proof For u =1, the lemma holds by conditions with §; = 0. Let 2 <u <n — 2. Set
M(Biiw) = » by By mod Ny,
1<l—k<n—2
First we prove that b,(fl’H“) =0 for any (k,l) # (i,i+u) and 1 <] —k < n—2. We prove it

in the following cases.

Case 1 k#1orq.

Since [Ej itu, F1x] = 0, we have [0(E; i+u), E1k] + [Fiitu,0(F1x)] = 0. By Lemma 3.4,
assume that 0(E1;) = AE1, + pEr,, where A\, € F. Then [E; iyu,0(E1k)] = [Eiitu, \E1k +
wE1,] = 0, and so [0(E; i+u), E1x] = 0. Comparing the coefficients of Ey; on the both sides of
the above equality, we have b,(jl’iJru) = 0.

Case 2 k=1.
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In this case, since | — k < n — 2, we have [ # n.

Case 2.1 | #i+u.
Since [Ejitu, Ein] = 0, by Lemma 3.4, [6(E; i+v), Ein] = 0. Comparing the coefficients of

E1,, on the both sides of the above equality, we have bgj’“ru) =0,i.e., b,(:l’H") =0.

Case 2.2 [ =i+ u.
Since [E; i+u+Fi it1, Eitun—FEit1,n] = 0, by conditions and by Lemma 3.4, [6(E; i+vu), Eitun
—FE;t1.,) = 0. Comparing the coefficients of E1,, on the both sides of the above equality, we have

bgzlfs) - bgz;’iflu) = 0. By the above Case 2.1, bgf;iflu) =0, and so bgzlﬁf) =0,i.e., b,(jl’”“) =0.

Case 3 k =i.
In this case, since (k,1) # (i,¢ + u) and k =4, we have [ # i + u.

Case 3.1 [ <n.

Since [Ej i+, Er1+1] = 0, by conditions, [0(E; i+v), Ei,i+1] = 0. Comparing the coefficients
of E; ;11 on the both sides of the above equality, we have bz(.li’Hu) =0, ie., b;ﬂé’”u) =0.
Case 3.2 [ =n.

Since [E1; + E1itu—1, Eiitu — Fitu—1,i+u] = 0, by conditions and Lemma 3.4, [Ey; +
E1itu—1,0(Eii+y)] = 0. Comparing the coefficients of Fj,, on the both sides of the above
equality, we have bEZHU) - b&i:r_ul)n = 0. By the above Case 1, bz(:-zj_—ul)n =0, and so bEZHU) =0,
ie., 5 =0,

Thus

0(Fiitu) = b(i’i+u)Ei7i+u mod N,,_1, 1<i<n-—u.

1,04u
For 1 < i < n — u, applying 0 to [Ei ity + Eit1,i+14u, Fiit1 + Eituit14u] = 0, we
obtain that [§(Ei ) + 6(Eip1it14u) Brivt + Eipuisisu] = 0 by conditions, so (b7, —

1,74u

i+1,i+ut1 . . . i,i4 i+1,i+u+1
bl('fkl,iiuﬁl ))Ei,i+u+1 = 0, which implies that bgzziuu) = b§117i1u111 ). For any 2 <u<n-—2,set
_ 3 (L,14w)
Bu=bi 14y -

Then the proof is completed. [

Lemma 3.6 If¢ is a product zero derivation on N(n,F), n > 4, and §(E; ;4+1) € Np_1,1 <i <
n — 1, then there exist a diagonal matrix D' € D and a scalar ¢ € F such that for 1 < k <1 < n,

(5 +adD + gac)(Ekl) € N,,_1. (3.12)

Proof By Lemma 3.5, we may assume that §(E; ;1) = BuEi ity mod N,,_1, where 51 =0, 5, €
Fu=23,....n—2,1<i<mn—u. Set

D = d1ag {dl,dg, .. .,dnfl,dn} S MH(F>

with dy = By, 1 <u<n—2,d,_1 =ds+dp_2,d, =ds +dy_1. Recall that d; = 5, = 0. We
first show that

dy +dy=dy,+dy for 1<k,l.,pg<nandk+l=p+qg<n+l. (3.13)
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If k = p, then (3.13) is clear. Assume that k # p. First consider the case of k+1=p+q¢ <n—1.
Applying ¢ to [Ev 14k + Ev14ps ik i4k+1 — E14pi4pt+q) = 0, then by Lemma 3.4, we have
B+ B = By + By, i-e., dp +d; = dp + d,;. Next we consider the case of k41 =p+ ¢ =n. In this

case, since d; = 0, it is enough to prove that
dyp +dy=dp_1 for1<k,l<nmn—1and k+1=n. (3.14)

When k = 1,2, (3.14) is clear. Assume that for k£ with 2 < k < § — 1, (3.14) is true. Then
diy1+dpn—g—1 = (dk+1 —|—d1)+dn,k,1 =dp+dotd,_ 1= dk—F(dnfk—Fdl) =dp+dp_r=dnp_1.
Thus (3.14) is true for k +1 = p+ ¢ = n. Similarly, (3.14) holds for k+!l=p+¢g=n+ 1. So
(3.13) holds.

By (3.13), we have dy + di, + di = do + (dgti—1 + d1) = do + diti—1 = di + diti = ditis

which implies that
dp +d; —dipgp = —doy for1<k<n and 1<i<n+1-—k. (3.15)
Then by (3.15), we have
(ad D" +0)(Eiitu) = (Bu + Bi — Bitu) (Eiitw) mod Ny_1 = —doFj iy, mod Ny,

ie, (ad D’ + 6)(Ex) = —daEj; mod N, for any 1 < k <1 < n. Set ¢ = da, then (3.12) holds.
O

Theorem 3.7 Let n > 3. A linear map 6 on N(n,F) is a product zero derivation if and only
if 6 is a sum of an inner derivation, a diagonal derivation, an extremal product zero derivation,
a central product zero derivation and a scalar multiplication map on N(n,F), i.e., there exist a
matrix N € N(n,F), a scalar a € F, a linear function f on N(n,F), a diagonal matrix d € D and
elements by, ba, b3, by € F such that

0=@f+ @ +ad N +mnq+ el(il) + el(;z—m) " ez(;?) n 6227172)'

Proof It is easy to verify that a sum of several product zero derivations on N(n,F) is still a
product zero derivation. Thus the sufficient direction of the theorem is obvious. Now we prove
the essential direction of the theorem in the following cases n > 5, n =4 and n = 3. Let 0 be a
product zero derivation on N(n,F), and A(d) be the matrix attached to 0.

Case 1l n>5.
By Lemma 3.1, A(d) is a diagonal matrix. Assume that

A(&) = diag {all, a2, ..., an_lm_l}.
By Lemma 3.2, there is a diagonal matrix
D = diag {0,a11,a11 + a22,...,a11 + a2+ -+ apn_1n-1} €D,

such that A(6+np) = 0. Since §+np is still a product zero derivation, by Lemma 3.3, there exist

amatrix M € N(n,F) and elements a1, as, a3, as € F such that (ez(llll) —I—e((g_l’l) —l—e((llf) —|—e¢(ﬁ_1’2) +

adM+np+0)(E;i+1) € Np—1,1 <i<n-—1. By Lemma 3.6, there exist a matrix D’ € D and a
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scalar ¢ € F such that (np/ —i—cpc—l—e((lll) —l—e(" LD + 832) +e (" 12) +adM +np+96)(Ek) € Nya
for any 1 < k <l <n. We may assume that

(77D/ + e + 61(1111) + el(lle*lvl) + 6&132) + 62271’2) +ad M +np + 5)(Ekl) = rFin,

where ry; € F. Let f: N(n,F) — F is a linear function on N(n,F) determined by f(Ek) = i,
1 <k<l<n. Then nD/—i—cpc—l—e,(h)—i—e(" 11) (12)+ (" 12)+adM+77D+6isalinear
functional ¢y on N(n,F). So

5= 11) g; 1L,1) _ 6(12) _ 6,(1271’2) —adM —np —np — pe + @5
11 n—1,1 12 n—1,2
Saf +el B eIy Y Lad(— M)+ pop oo + o

We set
N = —]\47 d=-D — D/, a = —¢C, bl = —ai, b2 = —aa, b3 = —as, b4 = —a4.
Then the lemma holds for n > 5.

Case 2 n =4.

Since [E12, E34] = 0, we have
[0(F12), E34] + [E12,(E34)] = 0. (3.16)

Comparing the coefficients of Fa4 (resp., E13) on the both sides of the above equality (3.16), we
have ag; = 0 (resp. a3z = 0). Since [Ea3, Fay] = 0, we have

[6(E23), Eaa] + [E23,0(E24)] = 0. (3.17)

Comparing the coefficients of E14 on the above equality (3.17), we have a12 = 0. Since [E13, Fa3] =

0, we have
[6(E13), Eas] + [Ers, 0(E23)] = 0. (3.18)

Comparing the coefficients of E14 on the above equality (3.18), we have ags = 0.

Then
§(E12) = a11 E12 + a3 E34 mod No;
0(Fa3) = a2 Ea3 mod Na;
0(F34) = a13F12 + a3z E34 mod Na.
Thus

(( 2) +€(32) +5)( zz+1)5aiiEi,i+l mod Ng, 1§Z§3

—a3s1 —ais
Let
D = diag{(), ail, @11 + ag2,a11 + a2 + a33}.

Then (e> (12) ,+ e®d 4np+ 0)(Eii+1) € Na. Assume that

—ai13

( (2) + 6( 2) +1np + 5)( 114_1) = C&?Elg, + Cgf-)E24 mod N3, 1<i<3.

—asi —ais
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Applying 6(13) + 82

—asi —ais

+ np + 6 to the equality [E12, F34] = 0, we have

[(6(12) +eB2 4 np + 60)(E12), Es4] + [E12, (6(12) +eB2 4 np + 0)(Es4)] = 0.

—as1 —ais —as1 —ais
Comparing the coefficients of E14 on the both sides of the above equality, we have 0521) = —c(?
Let

o= ad(cﬁ) Fos + Cézz)E34 — Cgé)Elg).

Then
(o + 69321 + 6(3323 +1p + 8)(Bi2) = ¢} Eay mod N3;
(0 +e"2 4B 4 np 4 6)(Ess) = 0 mod Ni;
(o + e(_lggl + ‘5(—3533 +1p + 8)(B34) = ¢3) E1s mod N,
So

(0 4+ + Bl el 1 B2

(2) (2) —a3z —ais
—Ca1 —Ci13

+np +6)(Eiit1) = 0 mod Ns.

By Lemma 3.6, there exist a diagonal matrix D’ € D and a scalar ¢ € F such that (o +

6(71221) +e(ilé) 4—6(,121 +e(,3333 +1p+0+np +¢e)(Exi) € N3, where 1 < k <1 < 4. Assume that
‘ (32)
—as1 —ais

(o0 +eC, 402 +eB2) np+3+np+oe) (Bu) = riBia, wherery € F,1 <k <1< 4.
21 13

Let f: N(4,F) — F be a linear function determined by f(Fx) = ri, 1 < k <1 < 4. Then
o+ 6(11()2) + e(31) (12) + e(32)

(2 + e—1131 —a13
13

+1p + 0 +np’ + . is the central product zero derivation ¢y

attached to f. Thus § = ad(—cﬁ) Eo3 — cg) B34+ cg)Eu) + e(%zl)) + e(?gl)) + e,(llﬁ) + e,(l?ﬁ) +nN-p—p+
€21 €13

Y_c+@y. Set

N = —c{VEas — ) Byy + {3 Bra, b1 = &), by = ¢,
b3 = asi, b4 = ai3, d= —D—D/, a = —CcC.
Then the lemma holds for n = 4.

Case 3 n=3.

Let e(ll) and 6(213

—a21 —a

, be the extremal product zero derivations defined in Section 2(C). Then

(6(11) I 6(21) +0)(E12) = a1 E12 mod No;

—a21 —ai2

(eCas, + €ty + 0)(F23) = az Py mod No.

—a21 —ai2

Let np be the diagonal derivation defined in Section 2(B), where
D= diag{O, ail, a1l + azg}.

Then (’I]D + 6(11) + 6(21) + 5)(Ei71‘+1) =0 mod NQ, 7= 1, 2.

—a21 —ai2

Assume that (77D+€(,1igl +€(,2i32 +6)(Ex) = riiErs, where 1 < k <1<3. Let f : N(3,F) —
(—121 + 6(_222 + ¢ is the central

+7-p + ¢y. Then the lemma

F be a linear function determined by f(Ex;) = rg. Thus np + e

product zero derivation ¢ attached to f. Thus § = e((ll;) + e((lzli)

holds for n = 3. O
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Remark If n =2, N(n,F) = FEq2 is a one-dimensional linear space, and any linear map on
N(n,F) is a product zero derivation. We leave this case in the above theorem.
By Theorem 3.7, we can obtain the following results about derivations of N(n,F), which

appeared in [20, Theorem 3.2].

Corollary 3.8 Let n > 3, Char F # 2. A linear map § on N(n,TF) is a Lie derivation if and only
if 6 is a sum of an inner derivation, a diagonal derivation, an extremal derivation and a central
derivation, i.e., there exist a matrix N € N(n,F), a diagonal matrix d € D, elements b1,by € F
and a linear function f with f(N3) = 0 on N(n,F) such that

§=¢s+adN+ig+el) +ef Y.

Proof It is clear that a map on N(n,F) of the form above is a Lie derivation. Conversely,

assume that § is any Lie derivation on N(n,F). Then ¢ is a product zero derivation. By Theorem

3.7, we may assume that § = o5+, +ad N + 14+ el()il) + el(:;_l’l) + 61()22) + 61(32_172)- Since ad N,
Nd, el(il), 61(7:_1’1) are derivations on N(n,F), ¢ + @q + el(klf) + 622_1’2) is also a Lie derivation.
Since Ep—_2.n = [En—2.n-1, En—1,], we have
12 n—1,2 12 n—1,2
(Pr+pa+ ey +ep ") (Eaan) = [(pr +0a e, +epr ) (Enan1), Ba1nl+
12 n—1,2
[En-2n-1, (05 +¢a+eg.” + e D) (Bnoin)l. (3.19)

By computation, the coefficients of E,_2, (resp., E1,_1) on the left-hand side is a (resp.,

bs), and the coeflicients of E,_3 ., on the right-hand side is 2a (resp., —b4), then a = 2a (resp.,
by = —by), and so a = 0 (resp., by = 0). Similarly, applying cpf+g0a+el(7i2)+el(§71’2) to the equality
[E12, B3] = Eh3, we have by = 0. Thus ¢, = 0, and egiz) = elngl’z) = 0. Forany X,Y € N(n,F),
(X, Y]) = [pr(X), Y] + [X, 05 (V)], e F(X, YD Ern = [f(X)Er, Y] + [X, (V) Ep] = 0.
Thus f([X,Y]) = 0 for any X,Y € N(n,F), i.e., f(N2) = 0. Thus ¢y is a central derivation,
and the corollary holds. [J
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