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Abstract Let F be a field, n ≥ 3, N(n, F) the strictly upper triangular matrix Lie algebra

consisting of the n × n strictly upper triangular matrices and with the bracket operation

[x, y] = xy − yx. A linear map ϕ on N(n, F) is said to be a product zero derivation if

[ϕ(x), y] + [x, ϕ(y)] = 0 whenever [x, y] = 0, x, y ∈ N(n, F). In this paper, we prove that

a linear map on N(n, F) is a product zero derivation if and only if ϕ is a sum of an inner

derivation, a diagonal derivation, an extremal product zero derivation, a central product zero

derivation and a scalar multiplication map on N(n, F).

Keywords product zero derivations; strictly upper triangular matrix Lie algebras; deriva-
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1. Introduction

A lot of attention has been paid to a linear preserver problem, which concerns the char-

acterization of linear maps on matrix spaces or algebras that leave certain functions, subsets,

relations, etc., invariant. Some of such linear maps generalize the usual automorphisms or deriva-

tions. The earliest paper on linear preserver problem dates back to 1897 (see [2]), and a great

deal of effort has been devoted to the study of this type of question since then. One may consult

the survey papers [3–6] for details. Let us mention particularly one type of classical example:

linear maps preserving commutativity. The importance of this type example lies in the fact that

the assumption of preserving commutativity of matrices can be considered as the assumption of

preserving Lie products at the commuting elements on the related linear Lie algebra. Such type

of linear preserver problem has been extensively studied on matrix algebras as well as on more

general rings and operator algebras. For example, the commutativity preserving linear maps on

triangular matrices were done in [7]; the commutativity preserving linear maps on strictly trian-

gular matrices were studied in [8]; the nonlinear commutativity preserving maps on the algebra

of full matrices were studied in [9] and [10]. For more references about commutativity preserving

maps on associated algebras one may consult the survey paper [11].
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For linear preserver problems concerning Lie algebras we just find several papers [12–14].

The author in [12] characterized the invertible linear maps on simple Lie algebras of linear types

preserving Lie products at the commuting elements. Recently, a few papers study nonlinear

maps on Lie algebras [15–19]. Radjavi and Šemrl in [15] characterized the nonlinear maps on

the general linear Lie algebra and the special linear Lie algebra which preserve solvability in

both directions. The nonlinear bijective maps on triangular matrix Lie algebras (resp., simple

Lie algebras) preserving Lie products were determined in [16] (resp., [18]). The nonlinear Lie

derivations on upper triangular matrix Lie algebras (resp., parabolic subalgebras of simple Lie

algebras) were determined in [17] (resp., [19]).

In [13], the authors introduced a new concept: product zero derivations of Lie algebras.

Such maps behave Lie derivations only on pairs of commuting elements. In [13], it is shown

that any product zero derivation on parabolic subalgebras of simple Lie algebras is a sum of an

inner derivation and a scalar multiplication map. In this paper, we determine the product zero

derivations on strictly upper triangular matrix Lie algebras N(n, F), where F is a field and n ≥ 3.

A linear map ϕ : N(n, F) → N(n, F) is a product zero derivation if [ϕ(A), B] + [A, ϕ(B)] = 0

whenever [A, B] = 0, A, B ∈ N(n, F). Obviously, ϕ(0) = 0. Since a Lie derivation δ on N(n, F)

is a linear map satisfying δ([A, B]) = [δ(A), B] + [A, δ(B)] whether [A, B] is equal to zero or not

(in other words, δ is a linear map derivable at any pair (A, B)), so any Lie derivation on N(n, F)

is a product zero derivation. From [20, Theorem 3.2], any derivation on N(n, F) is a sum of an

inner derivation, a diagonal derivation, an extremal derivation and a central derivation. In this

paper, we will prove that any product zero derivation on N(n, F) is a sum of an inner derivation,

a diagonal derivation, an extremal product zero derivation, a central product zero derivation and

a scalar multiplication map (see Theorem 3.7), which generalizes the results about derivation [20,

Theorem 3.2]. From our results we will see some difference between a product zero derivation

and a derivation on N(n, F).

Here we specify some notations for later use in this paper. Let F be a field, gl(n, F) the

general linear Lie algebra consisting of all n× n matrices over F and with the bracket operation

[x, y] = xy − yx. We denote by Eij the matrix in N(n, F) whose sole nonzero entry 1 is in the

(i, j)-position, where 1 ≤ i < j ≤ n. Let D be the set of all diagonal matrices in gl(n, F).

Clearly, the following sets Nk = {X ∈ N(n, F)|X =
∑

j−i≥k xijEij}, k = 1, 2, . . . , n− 1, are

the ideals of the F-algebra N(n, F), N1 = N(n, F), Nn−1 = FE1n, N1 ⊇ N2 ⊇ N3 ⊇ · · · ⊇ Nn−1,

and Nn−1 is the center of N(n, F). We assume that Nk = {0} for k > n. It is easy to check that

[Nk,Nl] ⊆ Nk+l.

Lemma 1.1 If δ is a product zero derivation on N(n, F), then δ(E1n) = cE1n for some c ∈ F.

Proof For any X ∈ N(n, F), we have [X, E1n] = 0. By definition, [δ(X), E1n]+ [X, δ(E1n)] = 0,

i.e.,

[X, δ(E1n)] = 0.

Thus δ(E1n) is in the center of N(n, F), and so the lemma holds.
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2. Certain product zero derivations on N(n, F)

In this section, we construct certain standard product zero derivations on N(n, F), n ≥ 3.

Such maps will be used to describe arbitrary product zero derivations on N(n, F).

(A) Inner derivations:

For any A = (aij)n×n ∈ N(n, F), the map

ad A : N(n, F) → N(n, F), X 7→ [A, X ]

is a derivation of N(n, F), called an inner derivation on N(n, F). By [1, Section 1.3], any inner

derivation is a (usual) Lie derivation, and so a product zero derivation.

(B) Diagonal derivations:

Let d ∈ D. Then the map

ηd : N(n, F) → N(n, F), X 7→ [d, X ]

is a Lie derivation of N(n, F), called a diagonal derivation [20, Section 2(B)].

(C) Extremal product zero derivations:

For any a ∈ F, i = 1, n − 1 and j = 1, 2, we define four linear maps e
(ij)
a :

(C-1) e
(11)
a : N(n, F) → N(n, F) determined by

X =
∑

1≤i<j≤n

xijEij 7→ ax12E2n;

(C-2) e
(n−1,1)
a : N(n, F) → N(n, F) determined by

X =
∑

1≤i<j≤n

xijEij 7→ axn−1,nE1,n−1;

(C-3) e
(12)
a : N(n, F) → N(n, F) determined by

X =
∑

1≤i<j≤n

xijEij 7→ ax12E3n + ax13E2n;

(C-4) e
(n−1,2)
a : N(n, F) → N(n, F) determined by

X =
∑

1≤i<j≤n

xijEij 7→ axn−1,nE1,n−2 + axn−2,nE1,n−1.

It is easy to check that they are product zero derivations of N(n, F). In particular, for any

a ∈ F, e
(11)
a and e

(n−1,1)
a are Lie derivations of N(n, F), called extremal derivations [20, Section

2(D)]. We call the above maps e
(ij)
a and their sums extremal product zero derivations.

(D) Central product zero derivations:

Let f : N(n, F) → F be a linear function. Then there is a linear map ϕf : N(n, F) → N(n, F)

given by

ϕf (X) = f(X)E1n

for any X ∈ N(n, F). It is easily verified that ϕf is a product zero derivation on N(n, F), called

a central product zero derivation.
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Moreover, if f(N2) = 0, then ϕf is a derivation, which is called a central derivation [20,

Section 2(C)].

(E) Scalar multiplication maps:

For c ∈ F, define

ϕc : N(n, F) → N(n, F), X 7→ cX,

for all X ∈ N(n, F). We call ϕc a scalar multiplication map on N(n, F).

It is easily verified that any scalar multiplication map is a product zero derivation on N(n, F).

Note that if the characteristic of F is not equal to 2, then ϕc is not a Lie derivation unless c is

equal to 0.

3. Decomposition of product zero derivations

For any product zero derivation δ on N(n, F), assume that

δ(Ei,i+1) ≡
n−1
∑

j=1

ajiEj,j+1 mod N2 for i = 1, 2, . . . , n − 1,

i.e., δ(Ei,i+1)−
∑n−1

j=1 ajiEj,j+1 ∈ N2 for i = 1, 2, . . . , n−1, where aij ∈ F, i, j ∈ {1, 2, . . . , n−1}.

Then δ determines a (n − 1) × (n − 1) matrix

A(δ) =















a11 a12 · · · a1,n−1

a21 a22 · · · a2,n−1

...
...

. . .
...

an−1,1 an−1,2 · · · an−1,n−1















,

where the entries aij are dependent on δ. We call A(δ) the matrix attached to the product zero

derivation δ.

Lemma 3.1 If δ is a product zero derivation on N(n, F), n ≥ 5, then A(δ) is a diagonal matrix.

Proof We prove that aij = 0 for any i 6= j, i, j ∈ {1, 2, . . . , n− 1}. We prove it in the following

cases.

Case 1 i 6= 1 or n − 1.

In this cases, i − 1, i + 1 ∈ {1, 2, . . . , n − 1}.

Case 1.1 i < j.

Since [Ei−1,i, Ej,j+1] = 0, [δ(Ei−1,i), Ej,j+1] + [Ei−1,i, δ(Ej,j+1)] = 0. Comparing the coef-

ficients of Ei−1,i+1 on the both sides of the above equality, we have aij = 0.

Case 1.2 i > j.

Since [Ej,j+1, Ei+1,i+2] = 0, [δ(Ej,j+1), Ei+1,i+2]+ [Ej,j+1, δ(Ei+1,i+2)] = 0. Comparing the

coefficients of Ei,i+2 on the both sides of the above equality, we have aij = 0.

Case 2 i = 1.
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Since i 6= j, j 6= 1, i.e., j ≥ 2.

Case 2.1 2 ≤ j < n − 1.

Since [Ej,j+1, E2n] = 0, [δ(Ej,j+1), E2n] + [Ej,j+1, δ(E2n)] = 0. Comparing the coefficients

of E1n on the both sides of the above equality, we have a1j = 0, i.e., aij = 0.

Case 2.2 j = n − 1.

Since [E23, En−1,n] = 0, [δ(E23), En−1,n] + [E23, δ(En−1,n)] = 0. Comparing the coefficients

of E13 on the both sides of the above equality, we have a1,n−1 = 0, i.e., aij = 0.

Case 3 i = n − 1.

Since i 6= j, j 6= n − 1, i.e., j ≤ n − 2.

Case 3.1 1 < j ≤ n − 2.

Since [E1,n−1, Ej,j+1] = 0, [δ(E1,n−1), Ej,j+1] + [E1,n−1, δ(Ej,j+1)] = 0. Comparing the

coefficients of E1n on the both sides of the above equality, we have an−1,j = 0, i.e., aij = 0.

Case 3.2 j = 1.

Since [E12, En−2,n−1] = 0, [δ(E12), En−2,n−1] + [E12, δ(En−2,n−1)] = 0. Comparing the

coefficients of En−2,n on the both sides of the above equality, we have an−1,1 = 0, i.e., aij = 0.

�

Lemma 3.2 If δ is a product zero derivation on N(n, F), n ≥ 5, A(δ) = diag{λ1, λ2, . . . , λn−1}

is the unique diagonal matrix attached to δ, then we can construct a diagonal matrix D =

diag{0, λ1, λ1 + λ2, . . . , λ1 + λ2 + · · · + λn−1} such that A(δ + ηD) = 0, i.e.,

(δ + ηD)(Ei,i+1) ∈ N2, ∀1 ≤ i ≤ n − 1.

Proof By easy computations. We omit the process of computations. �

Lemma 3.3 If δ is a product zero derivation on N(n, F) and A(δ) = 0, n ≥ 5, then there exists

a matrix M ′′ ∈ N(n, F) and elements a1, a2, a3, a4 ∈ F such that

(e(11)
a1

+ e(n−1,1)
a2

+ e(12)
a3

+ e(n−1,2)
a4

+ adM ′′ + δ)(Ei,i+1) ∈ Nn−1, ∀1 ≤ i ≤ n − 1.

Proof We prove this lemma by the following three steps.

Step 1. There exists a matrix M ∈ N(n, F) satisfying

(ad M + δ)(Ei,i+1) ∈ Nn−3, ∀1 ≤ i ≤ n − 1.

We use induction on k to prove that there exists Mk ∈ N(n, F), k = 1, 2, 3, . . . , n − 4,

satisfying that

(ad Mk + δ)(Ei,i+1) ∈ Nk+1, ∀1 ≤ i ≤ n − 1. (3.1)

Let M1 = 0. Then the equality (3.1) holds for k = 1 by conditions.

Assume that there exists a matrix Mk−1 ∈ N(n, F) with 2 ≤ k ≤ n − 4 such that (3.1) is
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true for k − 1, i.e., (adMk−1 + δ)(Ei,i+1) ∈ Nk, ∀1 ≤ i ≤ n − 1. Set

δ′ = adMk−1 + δ.

It is clear that A(δ′) is still a zero matrix. Assume that

δ′(Ei,i+1) ≡
n−k
∑

j=1

a
(k)
ji Ej,j+k mod Nk+1, 1 ≤ i ≤ n − 1. (3.2)

For (3.2), we first prove the following claim:

Claim a
(k)
si = 0 for s 6= i, i + 1 − k.

(A-1) s ≤ n−k−1 and s 6= i−k, i−k−1. Applying δ′ to [Ei,i+1, Es+k,s+k+1] = 0, we have

[δ′(Ei,i+1), Es+k,s+k+1]+ [Ei,i+1, δ
′(Es+k,s+k+1)] = 0. Comparing the coefficients of Es,s+k+1 on

the both sides of the above equality, we have a
(k)
si = 0.

(A-2) s ≥ 2 and s 6= i+1, i+2. Applying δ′ to [Es−1,s, Ei,i+1] = 0, we have [δ′(Es−1,s), Ei,i+1]+

[Es−1,s, δ
′(Ei,i+1)] = 0. Comparing the coefficients of Es−1,s+k on the both sides of the above

equality, we have a
(k)
si = 0.

Since s = i − k or i − k − 1 implies that s 6= i + 1, i + 2, it follows from (A-1) and (A-2)

that for 2 ≤ s ≤ n− k − 1 the claim is true and it remains to consider the following cases (B-1),

(B-2), (C-1) and (C-2).

(B-1) s = 1 and s = i − k.

In this case, i = k+1 ≤ n−3. Applying δ′ to [Ei,i+1, Ei,i+2] = 0, we have [δ′(Ei,i+1), Ei,i+2]+

[Ei,i+1, δ
′(Ei,i+2)] = 0. Comparing the coefficients of E1,i+2 on the both sides of the above

equality, we have a
(i−1)
1i = 0, i.e., a

(k)
si = 0.

(B-2) s = 1 and s = i − k − 1.

In this case, 3 ≤ i = k + 2 ≤ n − 2. Applying δ′ to [Ei,i+1, Ei−1,i+2] = 0, we have

[δ′(Ei,i+1), Ei−1,i+2] + [Ei,i+1, δ′(Ei−1,i+2)] = 0. Comparing the coefficients of E1,i+2 on the

both sides of the above equality, we have a
(i−2)
1i = 0, i.e., a

(k)
si = 0.

(C-1) s = n − k and s = i + 1.

In this case, since k ≤ n − 4, we have s ≥ 4. Applying δ′ to [Es−2,s, Es−1,s] = 0 gives

[δ′(Es−2,s), Es−1,s] + [Es−2,s, δ
′(Es−1,s)] = 0. Comparing the coefficients of Es−2,s+k on the

both sides of the above equality, we have a
(k)
s,s−1 = 0, i.e., a

(k)
si = 0.

(C-2) s = n − k and s = i + 2.

As in (C-1), s ≥ 4. Applying δ′ to [Es−3,s, Es−2,s−1] = 0, we have [δ′(Es−3,s), Es−2,s−1] +

[Es−3,s, δ
′(Es−2,s−1)] = 0. Comparing the coefficients of Es−3,s+k on the both sides of the above

equality, we have a
(k)
s,s−2 = 0, i.e., a

(k)
si = 0.

Therefore the claim holds and the equality (3.2) may be written as

δ′(Ei,i+1) ≡ a
(k)
i+1−k,iEi+1−k,i+1 + a

(k)
ii Ei,i+k mod Nk+1, 1 ≤ i ≤ n − 1. (3.3)

To complete the induction on k, we need again induction on l to prove that there exist

Sl ∈ N(n, F), l = 0, 1, . . . , n − 1, such that for 1 ≤ i ≤ l,

(ad Sl + δ′)(Ei,i+1) ≡ 0 mod Nk+1 (3.4)
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and for l + 1 ≤ i ≤ n − 1,

(ad Sl + δ′)(Ei,i+1) ≡ c
(l)
i+1−k,iEi+1−k,i+1 + c

(l)
ii Ei,i+k mod Nk+1. (3.5)

Let S0 = 0. Then it follows from (3.3) that (3.5) with c
(0)
i+1−k,i = a

(k)
i+1−k,i and c

(0)
ii = a

(k)
ii is

trivially true, and (3.4) does not occur. Assume that (3.4) and (3.5) hold for some Sl−1 ∈ N(n, F)

with 0 ≤ l − 1 ≤ n − 2. In particular,

(adSl−1 + δ′)(El,l+1) ≡ c
(l−1)
l+1−k,lEl+1−k,l+1 + c

(l−1)
ll El,l+k mod Nk+1.

Set Sl = Sl−1 − c
(l−1)
l+1−k,lEl+1−k,l + c

(l−1)
ll El+1,l+k. In fact, c

(l−1)
l+1−k,l = 0 if l 6= k. This is

clear for l < k. And for l > k applying ad Sl−1 + δ′ to [El−k,l−k+1, El,l+1] = 0, we have

c
(l−1)
l+1−k,lEl−k,l+1 ≡ 0 mod Nk+2. Hence, c

(l−1)
l+1−k,l = 0. It is easy to check that (3.4) and (3.5)

hold with

c
(l)
i+1−k,i = c

(l−1)
i+1−k,i + δl+k,ic

(l−1)
ll ,

where δji denotes the Kronecker delta, and c
(l)
ii = c

(l−1)
ii for Sl hold. Thus the induction on l is

completed. Set

Mk = Sn−1 + Mk−1.

Then (3.1) is true for k, and the induction on k is completed. Thus Step 1 holds.

Step 2. There exist a matrix M ′ ∈ N(n, F) and two elements a3, a4 ∈ F satisfying

(e(12)
a3

+ e(n−1,2)
a4

+ adM ′ + δ)(Ei,i+1) ∈ Nn−2, ∀1 ≤ i ≤ n − 1. (3.6)

By Step 1, assume that

(δ + adM)(Ei,i+1) ≡

3
∑

j=1

a
(n−3)
ji Ej,j+n−3 mod Nn−2 for 1 ≤ i ≤ n − 1. (3.7)

Repeating the arguments in (A-1), (A-2), (B-1) and (C-1) above with k = n− 3, we obtain that

in (3.7) a
(n−3)
si = 0 for s 6= i, i + 4− n except a

(n−3)
31 and a

(n−3)
1,n−1. Thus (3.7) may be rewritten as

(ad M + δ)(E12) ≡ a
(n−3)
11 E1,n−2 + a

(n−3)
31 E3n mod Nn−2,

(ad M + δ)(Ei,i+1) ≡ a
(n−3)
i+4−n,iEi+4−n,i+1 + a

(n−3)
ii Ei,i+n−3 mod Nn−2 for i = 2, 3, . . . , n − 2,

(ad M + δ)(En−1,n) ≡ a
(n−3)
1,n−1E1,n−2 + a

(n−3)
3,n−1E3n mod Nn−2.

In the same argument as in Step 1, we can use induction to prove that there exists an S ∈ N(n, F)

such that

(ad S + adM + δ)(E12) ≡ a
(n−3)
31 E3n mod Nn−2,

(ad S + adM + δ)(Ei,i+1) ≡ 0 mod Nn−2 for i = 2, 3, . . . , n − 2,

(ad S + adM + δ)(En−1,n) ≡ a
(n−3)
1,n−1E1,n−2 mod Nn−2.

Set

M ′ = S + M, a3 = −a
(n−3)
31 , a4 = −a

(n−3)
1,n−1.

It is easy to check that ad M ′, e
(12)
a3 and e

(n−1,2)
a4 satisfy (3.6).
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Step 3. There exist a matrix M ′′ ∈ N(n, F) and elements a1, a2 ∈ F such that

(e(11)
a1

+ e(n−1,1)
a2

+ e(12)
a3

+ e(n−1,2)
a4

+ adM ′′ + δ)(Ei,i+1) ∈ Nn−1, ∀1 ≤ i ≤ n − 1. (3.8)

By (3.6), for any 1 ≤ i ≤ n − 1, we may assume that

(e(12)
a3

+ e(n−1,2)
a4

+ adM ′ + δ)(Ei,i+1) ≡ a
(n−2)
1i E1,n−1 + a

(n−2)
2i E2n mod Nn−1. (3.9)

For convenience, we set

δ′′ = e(12)
a3

+ e(n−1,2)
a4

+ adM ′ + δ.

For (3.9), we first give the following observations (1)–(3).

(1) For any 2 ≤ i ≤ n−3, [Ei,i+1, En−1,n] = 0, then [δ′′(Ei,i+1), En−1,n]+[Ei,i+1, δ
′′(En−1,n)] =

0. Comparing the coefficients of E1n on the both sides of the above equality, we have a
(n−2)
1i = 0.

(2) For any 3 ≤ i ≤ n − 2, [E12, Ei,i+1] = 0, then [δ′′(E12), Ei,i+1] + [E12, δ
′′(Ei,i+1)] = 0.

Comparing the coefficients of E1n on the both sides of the above equality, we have a
(n−2)
2i = 0.

(3) Since [E12, En−1,n] = 0, we have [δ′′(E12), En−1,n] + [E12, δ
′′(En−1,n)] = 0. Comparing

the coefficients of E1n on the both sides of the above equality gives a
(n−2)
11 = −a

(n−2)
2,n−1.

We construct an inner derivation

σ = ad (a
(n−2)
11 E2,n−1) + ad (a

(n−2)
22 E3n) + ad (−a

(n−2)
1,n−2E1,n−2).

Then

(σ + δ′′)(E12) ≡ a
(n−2)
21 E2n mod Nn−1;

(σ + δ′′)(Ei,i+1) ≡ 0 mod Nn−1, 2 ≤ i ≤ n − 2;

(σ + δ′′)(En−1,n) ≡ a
(n−2)
1,n−1E1,n−1 mod Nn−1.

Let a1 = −a
(n−2)
21 , a2 = −a

(n−2)
1,n−1. Then (e

(11)
a1 + e

(n−1,1)
a2 + σ + δ′′)(Ei,i+1) ≡ 0 mod Nn−1,

1 ≤ i ≤ n − 1, i.e.,

(e(11)
a1

+e(n−1,1)
a2

+ e(12)
a3

+ e(n−1,2)
a4

+ adM ′ + ad (a
(n−2)
11 E2,n−1)+

ad (a
(n−2)
22 E3n) + ad (−a

(n−2)
1,n−2E1,n−2) + δ)(Ei,i+1) ∈ Nn−1.

Set

M ′′ = M ′ + a
(n−2)
11 E2,n−1 + a

(n−2)
22 E3n − a

(n−2)
1,n−2E1,n−2.

Thus the lemma holds. �

Lemma 3.4 If δ is a product zero derivation on N(n, F), n ≥ 4, and δ(Ei,i+1) ∈ Nn−1, 1 ≤ i ≤

n − 1, then there exist elements bs, b
′
t ∈ F, 2 ≤ s ≤ n, 1 ≤ t ≤ n − 1, satisfying the following

conditions.

(1) δ(E1s) ≡ bsE1s modNn−1, 2 ≤ s ≤ n;

(2) δ(Etn) ≡ b′tEtn modNn−1, 1 ≤ t ≤ n − 1.

Proof (1) Set b2 = 0 and bn = 0. Then (1) holds for s = 2 by the condition, and for s = n by

Lemma 1.1. For 3 ≤ s ≤ n − 1, we set

δ(E1s) ≡
∑

1≤l−k≤n−2

b
(1s)
kl Ekl mod Nn−1, 3 ≤ s ≤ n − 1. (3.10)
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For (3.10), we first prove that b
(1s)
kl = 0 for any (k, l) 6= (1, s) or (s+1, n), where 1 ≤ l−k ≤ n−2.

We prove it in the following three cases.

Case 1 l 6= s or n.

Since [El,l+1, E1s] = 0, by conditions, [El,l+1, δ(E1s)] = 0. Comparing the coefficients of

Ek,l+1 on the both sides of the above equality, we have b
(1s)
kl = 0.

Case 2 l = s, k 6= 1.

Since k−1 < l−1 < l = s, we have [Ek−1,k, E1s] = 0, then by conditions, [Ek−1,k, δ(E1s)] =

0. Comparing the coefficients of Ek−1,l on the both sides of the above equality, we have b
(1s)
kl = 0.

Case 3 l = n, k 6= s + 1.

Since l − k ≤ n − 2 and l = n, we have k 6= 1. Applying δ to the equality [Ek−1,k, E1s] = 0

yields [Ek−1,k, δ(E1s)] = 0 by conditions. Comparing the coefficients of Ek−1,l on the both sides

of the above equality, we have b
(1s)
kl = 0.

Thus

δ(E1s) ≡ b
(1s)
1s E1s + b

(1s)
s+1,nEs+1,n mod Nn−1, 3 ≤ s ≤ n − 2;

δ(E1,n−1) ≡ b
(1,n−1)
1,n−1 E1,n−1 mod Nn−1.

For 3 ≤ s ≤ n − 2, since [E1s, E1,s+1] = 0, we have

[δ(E1s), E1,s+1] + [E1s, δ(E1,s+1)] = 0. (3.11)

Comparing the coefficients of E1n on the both sides of the above equality (3.11), we have b
(1s)
s+1,n =

0 for any 3 ≤ s ≤ n − 2. Set bs = b
(1s)
1s for 1 ≤ s ≤ n − 1, and then the condition (1) holds.

The proof of (2) is dual to that of (1). �

Lemma 3.5 If δ is a product zero derivation on N(n, F), n ≥ 4, and δ(Ei,i+1) ∈ Nn−1, 1 ≤ i ≤

n− 1, then for any 1 ≤ u ≤ n− 2, 1 ≤ i ≤ n−u, we have δ(Ei,i+u) ≡ βuEi,i+u modNn−1, where

β1 = 0, βu ∈ F, u = 2, 3, . . . , n − 2.

Proof For u = 1, the lemma holds by conditions with β1 = 0. Let 2 ≤ u ≤ n − 2. Set

δ(Ei,i+u) ≡
∑

1≤l−k≤n−2

b
(i,i+u)
kl Ekl mod Nn−1.

First we prove that b
(i,i+u)
kl = 0 for any (k, l) 6= (i, i + u) and 1 ≤ l− k ≤ n− 2. We prove it

in the following cases.

Case 1 k 6= 1 or i.

Since [Ei,i+u, E1k] = 0, we have [δ(Ei,i+u), E1k] + [Ei,i+u, δ(E1k)] = 0. By Lemma 3.4,

assume that δ(E1k) = λE1k + µE1n, where λ, µ ∈ F. Then [Ei,i+u, δ(E1k)] = [Ei,i+u, λE1k +

µE1n] = 0, and so [δ(Ei,i+u), E1k] = 0. Comparing the coefficients of E1l on the both sides of

the above equality, we have b
(i,i+u)
kl = 0.

Case 2 k = 1.
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In this case, since l − k ≤ n − 2, we have l 6= n.

Case 2.1 l 6= i + u.

Since [Ei,i+u, Eln] = 0, by Lemma 3.4, [δ(Ei,i+u), Eln] = 0. Comparing the coefficients of

E1n on the both sides of the above equality, we have b
(i,i+u)
1l = 0, i.e., b

(i,i+u)
kl = 0.

Case 2.2 l = i + u.

Since [Ei,i+u+Ei,i+1, Ei+u,n−Ei+1,n] = 0, by conditions and by Lemma 3.4, [δ(Ei,i+u), Ei+u,n

−Ei+1,n] = 0. Comparing the coefficients of E1n on the both sides of the above equality, we have

b
(i,i+u)
1,i+u − b

(i,i+u)
1,i+1 = 0. By the above Case 2.1, b

(i,i+u)
1,i+1 = 0, and so b

(i,i+u)
1,i+u = 0, i.e., b

(i,i+u)
kl = 0.

Case 3 k = i.

In this case, since (k, l) 6= (i, i + u) and k = i, we have l 6= i + u.

Case 3.1 l < n.

Since [Ei,i+u, El,l+1] = 0, by conditions, [δ(Ei,i+u), El,l+1] = 0. Comparing the coefficients

of Ei,l+1 on the both sides of the above equality, we have b
(i,i+u)
il = 0, i.e., b

(i,i+u)
kl = 0.

Case 3.2 l = n.

Since [E1i + E1,i+u−1, Ei,i+u − Ei+u−1,i+u] = 0, by conditions and Lemma 3.4, [E1i +

E1,i+u−1, δ(Ei,i+u)] = 0. Comparing the coefficients of E1n on the both sides of the above

equality, we have b
(i,i+u)
in − b

(i,i+u)
i+u−1,n = 0. By the above Case 1, b

(i,i+u)
i+u−1,n = 0, and so b

(i,i+u)
in = 0,

i.e., b
(i,i+u)
kl = 0.

Thus

δ(Ei,i+u) ≡ b
(i,i+u)
i,i+u Ei,i+u mod Nn−1, 1 ≤ i ≤ n − u.

For 1 ≤ i ≤ n − u, applying δ to [Ei,i+u + Ei+1,i+1+u, Ei,i+1 + Ei+u,i+1+u] = 0, we

obtain that [δ(Ei,i+u) + δ(Ei+1,i+1+u), Ei,i+1 + Ei+u,i+1+u] = 0 by conditions, so (b
(i,i+u)
i,i+u −

b
(i+1,i+u+1)
i+1,i+u+1 )Ei,i+u+1 = 0, which implies that b

(i,i+u)
i,i+u = b

(i+1,i+u+1)
i+1,i+u+1 . For any 2 ≤ u ≤ n − 2, set

βu = b
(1,1+u)
1,1+u .

Then the proof is completed. �

Lemma 3.6 If δ is a product zero derivation on N(n, F), n ≥ 4, and δ(Ei,i+1) ∈ Nn−1, 1 ≤ i ≤

n− 1, then there exist a diagonal matrix D′ ∈ D and a scalar c ∈ F such that for 1 ≤ k < l ≤ n,

(δ + adD′ + ϕc)(Ekl) ∈ Nn−1. (3.12)

Proof By Lemma 3.5, we may assume that δ(Ei,i+u) ≡ βuEi,i+u mod Nn−1, where β1 = 0, βu ∈

F, u = 2, 3, . . . , n − 2, 1 ≤ i ≤ n − u. Set

D′ = diag {d1, d2, . . . , dn−1, dn} ∈ Mn(F)

with du = βu, 1 ≤ u ≤ n − 2, dn−1 = d2 + dn−2, dn = d2 + dn−1. Recall that d1 = β1 = 0. We

first show that

dk + dl = dp + dq for 1 ≤ k, l, p, q ≤ n and k + l = p + q ≤ n + 1. (3.13)
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If k = p, then (3.13) is clear. Assume that k 6= p. First consider the case of k+ l = p+ q ≤ n−1.

Applying δ to [E1,1+k + E1,1+p, E1+k,1+k+l − E1+p,1+p+q ] = 0, then by Lemma 3.4, we have

βk + βl = βq + βq, i.e., dk + dl = dp + dq. Next we consider the case of k + l = p + q = n. In this

case, since d1 = 0, it is enough to prove that

dk + dl = dn−1 for 1 ≤ k, l ≤ n − 1 and k + l = n. (3.14)

When k = 1, 2, (3.14) is clear. Assume that for k with 2 ≤ k ≤ n
2 − 1, (3.14) is true. Then

dk+1+dn−k−1 = (dk+1+d1)+dn−k−1 = dk +d2+dn−k−1 = dk+(dn−k +d1) = dk +dn−k = dn−1.

Thus (3.14) is true for k + l = p + q = n. Similarly, (3.14) holds for k + l = p + q = n + 1. So

(3.13) holds.

By (3.13), we have d2 + dk + di = d2 + (dk+i−1 + d1) = d2 + dk+i−1 = d1 + dk+i = dk+i,

which implies that

dk + di − di+k = −d2 for 1 ≤ k ≤ n and 1 ≤ i ≤ n + 1 − k. (3.15)

Then by (3.15), we have

(ad D′ + δ)(Ei,i+u) ≡ (βu + βi − βi+u)(Ei,i+u) mod Nn−1 ≡ −d2Ei,i+u mod Nn−1,

i.e., (adD′ + δ)(Ekl) ≡ −d2Ekl mod Nn−1 for any 1 ≤ k < l ≤ n. Set c = d2, then (3.12) holds.

�

Theorem 3.7 Let n ≥ 3. A linear map δ on N(n, F) is a product zero derivation if and only

if δ is a sum of an inner derivation, a diagonal derivation, an extremal product zero derivation,

a central product zero derivation and a scalar multiplication map on N(n, F), i.e., there exist a

matrix N ∈ N(n, F), a scalar a ∈ F, a linear function f on N(n, F), a diagonal matrix d ∈ D and

elements b1, b2, b3, b4 ∈ F such that

δ = ϕf + ϕa + ad N + ηd + e
(11)
b1

+ e
(n−1,1)
b2

+ e
(12)
b3

+ e
(n−1,2)
b4

.

Proof It is easy to verify that a sum of several product zero derivations on N(n, F) is still a

product zero derivation. Thus the sufficient direction of the theorem is obvious. Now we prove

the essential direction of the theorem in the following cases n ≥ 5, n = 4 and n = 3. Let δ be a

product zero derivation on N(n, F), and A(δ) be the matrix attached to δ.

Case 1 n ≥ 5.

By Lemma 3.1, A(δ) is a diagonal matrix. Assume that

A(δ) = diag {a11, a22, . . . , an−1,n−1}.

By Lemma 3.2, there is a diagonal matrix

D = diag {0, a11, a11 + a22, . . . , a11 + a22 + · · · + an−1,n−1} ∈ D,

such that A(δ+ηD) = 0. Since δ+ηD is still a product zero derivation, by Lemma 3.3, there exist

a matrix M ∈ N(n, F) and elements a1, a2, a3, a4 ∈ F such that (e
(11)
a1 +e

(n−1,1)
a2 +e

(12)
a3 +e

(n−1,2)
a4 +

adM +ηD +δ)(Ei,i+1) ∈ Nn−1, 1 ≤ i ≤ n−1. By Lemma 3.6, there exist a matrix D′ ∈ D and a
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scalar c ∈ F such that (ηD′ +ϕc +e
(11)
a1 +e

(n−1,1)
a2 +e

(12)
a3 +e

(n−1,2)
a4 +adM +ηD + δ)(Ekl) ∈ Nn−1

for any 1 ≤ k < l ≤ n. We may assume that

(ηD′ + ϕc + e(11)
a1

+ e(n−1,1)
a2

+ e(12)
a3

+ e(n−1,2)
a4

+ adM + ηD + δ)(Ekl) = rklE1n,

where rkl ∈ F. Let f : N(n, F) → F is a linear function on N(n, F) determined by f(Ekl) = rkl,

1 ≤ k < l ≤ n. Then ηD′ + ϕc + e
(11)
a1 + e

(n−1,1)
a2 + e

(12)
a3 + e

(n−1,2)
a4 + adM + ηD + δ is a linear

functional ϕf on N(n, F). So

δ = − e(11)
a1

− e(n−1,1)
a2

− e(12)
a3

− e(n−1,2)
a4

− ad M − ηD − ηD′ − ϕc + ϕf

=e
(11)
−a1

+ e
(n−1,1)
−a2

+ e
(12)
−a3

+ e
(n−1,2)
−a4

+ ad(−M) + η−D−D′ + ϕ−c + ϕf .

We set

N = −M, d = −D − D′, a = −c, b1 = −a1, b2 = −a2, b3 = −a3, b4 = −a4.

Then the lemma holds for n ≥ 5.

Case 2 n = 4.

Since [E12, E34] = 0, we have

[δ(E12), E34] + [E12, δ(E34)] = 0. (3.16)

Comparing the coefficients of E24 (resp., E13) on the both sides of the above equality (3.16), we

have a21 = 0 (resp. a23 = 0). Since [E23, E24] = 0, we have

[δ(E23), E24] + [E23, δ(E24)] = 0. (3.17)

Comparing the coefficients of E14 on the above equality (3.17), we have a12 = 0. Since [E13, E23] =

0, we have

[δ(E13), E23] + [E13, δ(E23)] = 0. (3.18)

Comparing the coefficients of E14 on the above equality (3.18), we have a32 = 0.

Then

δ(E12) ≡ a11E12 + a31E34 mod N2;

δ(E23) ≡ a22E23 mod N2;

δ(E34) ≡ a13E12 + a33E34 mod N2.

Thus

(e
(12)
−a31

+ e
(32)
−a13

+ δ)(Ei,i+1) ≡ aiiEi,i+1 mod N2, 1 ≤ i ≤ 3.

Let

D = diag{0, a11, a11 + a22, a11 + a22 + a33}.

Then (e
(12)
−a31

+ e
(32)
−a13

+ ηD + δ)(Ei,i+1) ∈ N2. Assume that

(e
(12)
−a31

+ e
(32)
−a13

+ ηD + δ)(Ei,i+1) ≡ c
(2)
1i E13 + c

(2)
2i E24 mod N3, 1 ≤ i ≤ 3.
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Applying e
(12)
−a31

+ e
(32)
−a13

+ ηD + δ to the equality [E12, E34] = 0, we have

[(e
(12)
−a31

+ e
(32)
−a13

+ ηD + δ)(E12), E34] + [E12, (e
(12)
−a31

+ e
(32)
−a13

+ ηD + δ)(E34)] = 0.

Comparing the coefficients of E14 on the both sides of the above equality, we have c
(2)
11 = −c

(2)
23 .

Let

σ = ad(c
(2)
11 E23 + c

(2)
22 E34 − c

(2)
12 E12).

Then

(σ + e
(12)
−a31

+ e
(32)
−a13

+ ηD + δ)(E12) ≡ c
(2)
21 E24 mod N3;

(σ + e
(12)
−a31

+ e
(32)
−a13

+ ηD + δ)(E23) ≡ 0 mod N3;

(σ + e
(12)
−a31

+ e
(32)
−a13

+ ηD + δ)(E34) ≡ c
(2)
13 E13 mod N3.

So

(σ + e
(11)

−c
(2)
21

+ e
(31)

−c
(2)
13

+ e
(12)
−a31

+ e
(32)
−a13

+ ηD + δ)(Ei,i+1) ≡ 0 mod N3.

By Lemma 3.6, there exist a diagonal matrix D′ ∈ D and a scalar c ∈ F such that (σ +

e
(11)

−c
(2)
21

+e
(31)

−c
(2)
13

+e
(12)
−a31

+e
(32)
−a13

+ηD + δ +ηD′ +ϕc)(Ekl) ∈ N3, where 1 ≤ k < l ≤ 4. Assume that

(σ+e
(11)

−c
(2)
21

+e
(31)

−c
(2)
13

+e
(12)
−a31

+e
(32)
−a13

+ηD+δ+ηD′ +ϕc)(Ekl) = rklE14, where rkl ∈ F, 1 ≤ k < l ≤ 4.

Let f : N(4, F) → F be a linear function determined by f(Ekl) = rkl, 1 ≤ k < l ≤ 4. Then

σ + e
(11)

−c
(2)
21

+ e
(31)

−c
(2)
13

+ e
(12)
−a31

+ e
(32)
−a13

+ ηD + δ + ηD′ + ϕc is the central product zero derivation ϕf

attached to f . Thus δ = ad(−c
(2)
11 E23−c

(2)
22 E34 +c

(2)
12 E12)+e

(11)

c
(2)
21

+e
(31)

c
(2)
13

+e
(12)
a31 +e

(32)
a13 +η−D−D′ +

ϕ−c + ϕf . Set

N = −c
(2)
11 E23 − c

(2)
22 E34 + c

(2)
12 E12, b1 = c

(2)
21 , b2 = c

(2)
13 ,

b3 = a31, b4 = a13, d = −D − D′, a = −c.

Then the lemma holds for n = 4.

Case 3 n = 3.

Let e
(11)
−a21

and e
(21)
−a12

be the extremal product zero derivations defined in Section 2(C). Then

(e
(11)
−a21

+ e
(21)
−a12

+ δ)(E12) ≡ a11E12 mod N2;

(e
(11)
−a21

+ e
(21)
−a12

+ δ)(E23) ≡ a22E23 mod N2.

Let ηD be the diagonal derivation defined in Section 2(B), where

D = diag{0, a11, a11 + a22}.

Then (ηD + e
(11)
−a21

+ e
(21)
−a12

+ δ)(Ei,i+1) ≡ 0 mod N2, i = 1, 2.

Assume that (ηD +e
(11)
−a21

+e
(21)
−a12

+δ)(Ekl) = rklE13, where 1 ≤ k < l ≤ 3. Let f : N(3, F) →

F be a linear function determined by f(Ekl) = rkl. Thus ηD + e
(11)
−a21

+ e
(21)
−a12

+ δ is the central

product zero derivation ϕf attached to f . Thus δ = e
(11)
a21 + e

(21)
a12 + η−D + ϕf . Then the lemma

holds for n = 3. �
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Remark If n = 2, N(n, F) = FE12 is a one-dimensional linear space, and any linear map on

N(n, F) is a product zero derivation. We leave this case in the above theorem.

By Theorem 3.7, we can obtain the following results about derivations of N(n, F), which

appeared in [20, Theorem 3.2].

Corollary 3.8 Let n ≥ 3, Char F 6= 2. A linear map δ on N(n, F) is a Lie derivation if and only

if δ is a sum of an inner derivation, a diagonal derivation, an extremal derivation and a central

derivation, i.e., there exist a matrix N ∈ N(n, F), a diagonal matrix d ∈ D, elements b1, b2 ∈ F

and a linear function f with f(N2) = 0 on N(n, F) such that

δ = ϕf + adN + ηd + e
(11)
b1

+ e
(n−1,1)
b2

.

Proof It is clear that a map on N(n, F) of the form above is a Lie derivation. Conversely,

assume that δ is any Lie derivation on N(n, F). Then δ is a product zero derivation. By Theorem

3.7, we may assume that δ = ϕf +ϕa +adN + ηd + e
(11)
b1

+ e
(n−1,1)
b2

+ e
(12)
b3

+ e
(n−1,2)
b4

. Since adN ,

ηd, e
(11)
b1

, e
(n−1,1)
b2

are derivations on N(n, F), ϕf + ϕa + e
(12)
b3

+ e
(n−1,2)
b4

is also a Lie derivation.

Since En−2,n = [En−2,n−1, En−1,n], we have

(ϕf+ϕa + e
(12)
b3

+ e
(n−1,2)
b4

)(En−2,n) = [(ϕf + ϕa + e
(12)
b3

+ e
(n−1,2)
b4

)(En−2,n−1), En−1,n]+

[En−2,n−1, (ϕf + ϕa + e
(12)
b3

+ e
(n−1,2)
b4

)(En−1,n)]. (3.19)

By computation, the coefficients of En−2,n (resp., E1,n−1) on the left-hand side is a (resp.,

b4), and the coefficients of En−2,n on the right-hand side is 2a (resp., −b4), then a = 2a (resp.,

b4 = −b4), and so a = 0 (resp., b4 = 0). Similarly, applying ϕf +ϕa+e
(12)
b3

+e
(n−1,2)
b4

to the equality

[E12, E23] = E13, we have b3 = 0. Thus ϕa = 0, and e
(12)
b3

= e
(n−1,2)
b4

= 0. For any X, Y ∈ N(n, F),

ϕf ([X, Y ]) = [ϕf (X), Y ] + [X, ϕf (Y )], i.e., f([X, Y ])E1n = [f(X)E1n, Y ] + [X, f(Y )E1n] = 0.

Thus f([X, Y ]) = 0 for any X, Y ∈ N(n, F), i.e., f(N2) = 0. Thus ϕf is a central derivation,

and the corollary holds. �
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