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Abstract The technique of contractions and the known results in the study of cycles in

3-connected cubic graphs are applied to obtain the following result. Let G be a 3-connected

cubic graph, X ⊆ V (G) with |X| = 16 and e ∈ E(G). Then either for every 8-subset A of X,

A ∪ {e} is cyclable or for some 14-subset A of X, A ∪ {e} is cyclable.
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1. Contractions and reductions

The study of cycles containing sets of elements in cubic graphs arises from two important

sources: the study of cycles in graphs [3, 5, 7] and classical graph colouring problems [6, 8]. The

concept of contraction is the main tool in the study of cycles containing sets of elements in

cubic graphs. We are interested in necessay and sufficient conditions for the existence of a cycle

containing an arbitrary set of vertices with a specified cardinality. Such conditions have been

obtained by means of contractions [3, 4]. The concept and techinque of contraction also play a

key role in the main result of this note. Here we consider cycles containing comparatively large

subsets of a given set of vertices and an edge in a cubic graph.

Let G = (V, E) be a graph. A contraction of G is a partition {V1, V2, . . . , Vs} of the vertex

set V such that for each i = 1, 2, . . . , s, the induced subgraph G|Vi
is connected. This partition

gives rise to a natural mapping from G to a graph H , the contraction (graph) obtained from G

under the contraction. The contraction (graph) H is the graph with

V (H) = {V1, V2, . . . , Vs}, E(H) = {ViVj : i 6= j, [Vi, Vj ] 6= ∅}.

If f : G → H denotes a contraction (mapping) of G onto H , then by the definition above,

G|f−1(u) is a connected subgraph of G for each u ∈ V (H). For a special and extreme example,

the graph K1 is a contraction of any connected graph G since {V } is a partition of V and

G = G|V is connected. Any automorphism of G is a contraction since it is a permutation of

the trivial partition of V into single vertices. Hence a graph G is a contraction of itself. As we

consider only cubic graphs, all contractions in this paper are cubic contractions.
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A contraction f : G → H is called edge-injective or faithful if e1, e2 ∈ E(G) and e1 6= e2

implies that f(e1) 6= f(e2). As we are working with simple cubic graphs, H has no loops even if

f is faithful.

Let G = (V, E) be a graph and A ⊆ V . A subgraph of G is said to be cyclic if it contains a

cycle. Let G be connected and S ⊆ E. If G − S is not connected and each component of G − S

is cyclic, then S is said to be a cyclic separating set of edges. The size of a cyclic separating

set of edges of G with the least number of edges is called the cyclic edge-connectivity of G. If

the cyclic edge-connectivity of G is at least k, then G is said to be a cyclically k-edge-connected

graph.

If G has a cycle containing A, then A is said to be cyclable in G. If every m-subset of V is

cyclable in G, then G is said to be an m-cyclable graph. The largest integer m for which G is

m-cyclable is called the cyclability of G.

Let G be a 3-connected cubic graph with a cyclic separating set S = {uivi : 1 ≤ i ≤ 3}.

Suppose that L and R are the two cyclic components of G − S and ui ∈ L, vi ∈ R (Note that

G − S has exactly two components). Also suppose u, v 6∈ V (G) and u 6= v. Then the cubic

graphs

H = G/R = L ∪ {u, uu1, uu2, uu3}, J = G/L = R ∪ {v, vv1, vv2, vv3}

are called the reductions of G across S, and u and v are the new vertices of H and J , respectively.

Since G is 3-connected, so are both H and J (see [6]). Clearly, |H |, |J | ≤ |G|−2 since |L|, |R| ≥ 3.

The Petersen graph, essential to the work of this note, is shown in Figure 1 where the labels

of vertices will be used throughout the paper.
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Figure 1 The Petersen graph P

In this notation, if G is a cubic graph and f : G → P is a faithful contraction, then

S = [f−1(0), G − f−1(0)] = {f−1(01), f−1(04), f−1(05)}

(the preimage of the three edges incident with the top vertex) is a separating set of edges which

separates P |f−1(0) from G − f−1(0). If G|f−1(0) contains a cycle (note that G is cubic graph

|f−1(0)| > 1 implies that G|f−1(0) contains a cycle), then S is a cyclic separating set of G with

|S| = 3.

2. Cycles containing elements

The following results will be used:
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Theorem 2.1 ([7]) Let G be a 3-connected cubic graph. If A ⊂ V (G), |A| ≤ 5 and e ∈ E(G),

then G − e has a cycle containing A.

Theorem 2.2 ([7]) Every 3-connected cubic graph is 9-cyclable.

Let G be a 3-connected cubic graph and A ⊆ V (G). If there is a faithful contraction

f : G → P such that f(A) = V (P ), then A is not cyclable in G. Notice that this was the

motivation of [4]. The converse of this is also true for |A| = 12:

Theorem 2.3 ([4]) Let G be a 3-connected cubic graph, A ⊂ V (G) and |A| = 12. Then either

A is cyclable or there is a faithful contraction f : G → P such that f(A) = V (P ).

If G has a cycle containing A ⊆ V (G) that also contains e ∈ E(G), then A ∪ {e} is said to

be cyclable for brevity.

Theorem 2.4 ([3]) Let G be a 3-connected cubic graph, A ⊂ V (G), |A| = 8 and e ∈ E(G).

Then either A ∪ {e} is cyclable in G or there is a faithful contraction f : G → P such that

f(e) = 01 and f(A) = V (P ) − {0, 1} = {i : 2 ≤ i ≤ 9}.

This result is the motivation for the work of the present paper. Note that since the Petersen

graph is both vertex-transitive and edge-transitive, the labels of vertices are immaterial and aid

the discussion only. A useful corollary to this theorem can now be easily stated which is a weaker

form of the main result of [1]. An unavoidable edge given A ⊆ V (G) is an edge e such that if C

is any cycle containing A, then C contains e also.

Corollary 2.1 Let G be a 3-connected cubic graph, A ⊂ V (G), |A| ≤ 7 and e ∈ E(G). Then

G has a cycle containing A ∪ {e}.

3. Cycles containing subsets

The main theorem of this paper is

Theorem 3.1 Let G be a 3-connected cubic graph, X ⊂ V (G) with |X | = 16 and e ∈ E(G).

Then, either for every 8-subset A of X , A∪{e} is cyclable or for some 14-subset A of X , A∪{e}

is cyclable.

Let G and H be cubic graphs and let

f : G −→ H

be a faithful contraction. If for x ∈ V (H) both Lx = G|f−1(x) and Rx = G − Lx are cyclic

subgraphs, then denote Hx = G/Rx and Jx = G/Lx with ux the new vertex of Hx and vx that

of Jx. In particular, consider H = P . Then for i ∈ V (P ), fi : G → Hi is the faithful contraction

of G − f−1(i) to a new vertex ui and Ji = G/G|f−1(i) with the new vertex vi. If |f−1(i)| > 1,

then since G is 3-connected and the three edges between f−1(i) and G−f−1(i) form a separating

set, G|f−1(i) is a cyclic subgraph of G. Since P − i has many cycles, Ji − vi = G − f−1(i) is a

cyclic subgraph of G.

Proof Let G be a 3-connected cubic graph and X ⊆ V (G) be any subset with X = 16. By

Theorem 2.4, either for every A ⊆ X with |A| = 8, A ∪ {e} is cyclable or there exists a faithful
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contraction

f : G −→ P

such that f(e) = 01 and f(A) = V (P ) − {0, 1}. Suppose that for some A ⊆ X with |A| = 8, G

has no cycle containing A∪{e}. We shall show that there exists B ⊆ X with |B| = 14 such that

B ∪ {e} is cyclable in G.

For each i ∈ V (P ) let Xi = X ∩ f−1(i) and ni = |Xi| and call ni the index of vertex i.

Since |X | = 16 and f(A) = V (P ) − {0, 1}, the integers ni satisfy

9∑

i=0

ni = 16, (1)

ni ≥ 1, for 0 ≤ i ≤ 9. (2)

Let Tr = {i ∈ V (P ) : ni = r} and tr = |Tr|. Then clearly

0 ≤ t :=
∑

r≥5

tr ≤ 2. (3)

Consider the following cases.

Case 1 t = 2. That is, there are precisely two indices that are at least 5. Let ni, nj ≥ 5 for

i, j ∈ V (P ) − {0, 1} (note that n0 = 0 = n1). Then for k ∈ V (P ) − {0, 1, i, j}, nk = 1 and

ni + nj ≤ 10. Hence ni = nj = 5. Also, {i, j} ∩ {0, 1} = ∅, for otherwise, |X | ≥ 17.

Let Γ = Aut(P ) and denote by Γ01 the subgroup of Γ that fixes the edge 01. Then the orbit

of this subgroup on V (P ) is

Orb(Γ01) = {{0, 1}, {2, 4, 5, 6}, {3, 7, 8, 9}}. (4)

Hence the following pairwise inequivalent complete set of cases will be considered. In all these

cases, denote γi = fif
−1 for simplicity. Note that γi is a mapping since fi is a mapping. The

relation f−1 is not necessarily a mapping but f−1 will provide a subset of vertices of G which fi

maps to a single vertex of P . Hence γi is a mapping from G to Hi.

Case 1.1 i = 2, j = 3. Consider the faithful contractions

f2 : G → H2, f3 : G → H3.

By Corollary 2.1, H2 has a cycle D2 containing X2 ∪ {γ2(23)} and H3 has a cycle D3 containing

X3 ∪ {γ3(23)}.

If γ2(12) 6∈ D2 and γ3(34) 6∈ D3, then consider the cycle CP = 0168327940.

If |f−1(k)| = 1 for some k ∈ {4, 6, 7, 8, 9}, then the vertex f−1(k) and its two incident edges

on CP is a path of length 2 in G.

If f−1(k) has more than one vertex, say for k = 4, then consider H4. Since H4 − γ4(34)

is 2-connected, it has a cycle D4 containing X4 ∪ {u4} where |X4| = n4 = 1 and u4 is the new

vertex of H4. D4 − u4 is a path in H4 − u4 containing X4. Then the union of

(D4 − u4) ∪ {f−1(04), f−1(49)}

and suitable paths in G|f−1(0) and G|f−1(1) gives a path in G containing X4 and the edges

required by f−1(CP ). Paths in Hk required by a cycle in G are obtained similarly for each
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k ∈ {4, 6, 7, 8, 9}. Union of all these paths and {f−1(e) : e ∈ E(CP )} is a cycle of G containing

(X −X5) ∪ {e} and |X − X5| = 15. A cycle C in P lifts (via faithful contraction f) if there is a

cycle CG ⊆ G such that f(CG) = C. In all the following cases, we exhibit only the cycle needed

in P and say that it lifts.

All possible pairwise inequivalent cases are shown in the following table with cycles that lift

shown in the middle column.

Cases Cycles of P that lift |X − Xi|

γ2(12) 6∈ D2, γ3(34) 6∈ D3 0168327940 |X − X5| = 15

γ2(12) 6∈ D2, γ3(38) 6∈ D3 0169432750 |X − X8| = 15

γ2(27) 6∈ D2, γ3(34) 6∈ D3 0123869750 |X − X4| = 15

γ2(27) 6∈ D2, γ3(38) 6∈ D3 0123496850 |X − X7| = 15

Table 1 Case 1.1

Case 1.2 i = 2, j = 4. By Corollary 2.1, the faithful contraction H2 has a cycle D2 containing

X2 ∪ {γ2(27)} and H4 has a cycle D4 containing X4 ∪ {γ2(49)}. The complete cases are shown

in the table below.

Cases Cycles of P that lift |X − Xi|

γ2(12) 6∈ D2, γ4(04) 6∈ D4 0169432750 |X − X8| = 15

γ2(12) 6∈ D2, γ4(34) 6∈ D4 0168327940 |X − X5| = 15

γ2(23) 6∈ D2, γ4(34) 6∈ D4 0127586940 |X − X3| = 15

Table 2 Case 1.2

Case 1.3 i = 2, j = 8. The cases are similar to those considered in Cases 1.1–1.2. Here all

possible cycles of H2 that contain X2 ∪{u2} and all possible cycles of H8 that contain X8 ∪{u8}

are to be considered and the cycle in P is exhibited in each possible case.

Cases Cycles of P that lift

γ2(12) 6∈ D2, γ8(38) 6∈ D8 0168572340

γ2(12) 6∈ D2, γ8(58) 6∈ D8 0168327940

γ2(12) 6∈ D2, γ8(68) 6∈ D8 0169723850

γ2(23) 6∈ D2, γ8(38) 6∈ D8 0127586940

γ2(23) 6∈ D2, γ8(58) 6∈ D8 0127968340

γ2(23) 6∈ D2, γ8(68) 6∈ D8 0127943850

γ2(27) 6∈ D2, γ8(38) 6∈ D8 0123496850

γ2(27) 6∈ D2, γ8(58) 6∈ D8 0123869750

γ2(27) 6∈ D2, γ8(68) 6∈ D8 0123857940

Table 3 Case 1.3

In all rows of this table, |X − Xi| = 15.
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Case 1.4 i = 3, j = 7. Here all possible cycles of H3 that contain X3 ∪ {u3} and all possible

cycles of H7 that contain X7 ∪ {u7} are to be considered and the cycle in P is exhibited in each

case.

Cases Cycles of P that lift |X − Xi|

γ3(23) 6∈ D3, γ7(27) 6∈ D7 0168349750 15

γ3(23) 6∈ D3, γ7(57) 6∈ D7 0127968340 15

γ3(23) 6∈ D3, γ7(79) 6∈ D7 012758340 14

γ3(34) 6∈ D3, γ7(27) 6∈ D7 0123857940 15

γ3(34) 6∈ D3, γ7(57) 6∈ D7 0168327940 15

γ3(34) 6∈ D3, γ7(79) 6∈ D7 016832750 14

γ3(38) 6∈ D3, γ7(27) 6∈ D7 0123496850 15

γ3(38) 6∈ D3, γ7(57) 6∈ D7 016972340 14

γ3(38) 6∈ D3, γ7(79) 6∈ D7 0168572340 15

Table 4 Case 1.4

Case 1.5 i = 3, j = 8. By Corollary 2.1, graph H3 has a cycle through X3 ∪ {γ3(38)} and H8

has a cycle containing X8 ∪ {γ8(38)}. By the symmetry of the graph under Γ01, two cases cover

all possibilities: the cycles 0168349750 and 0169758340 both lift.

Case 2 t = 1. That is, there is precisely one index ≥ 5. Let ni ≥ 5, and for j 6= i, nj ≤ 4. Then

5 ≤ ni ≤ 9.

Consider the following subcases.

Case 2.1 ni ∈ {5, 6, 7}.

Case 2.1.1 i = 0. By Corollary 2.1, the faithful contraction H0 has a cycle D0 that contains

X0 ∪{γ0(01)}. Since n0 ≥ 5, t1 ≥ 3. Let nj = 1. If j ∈ {2, 4, 5, 6}, then let j = 2. Then consider

the cycle 0168349750 and apply Theorem 2.1 to Hk for k 6= 0, 2. This gives a cycle in G through

a 15-subset of X and e. If j ∈ {3, 7, 8, 9}, then consider the cycle 0127586940 that lifts.

Case 2.1.2 i = 2. Again there is an index nj = 1. If j = 3, then 0127586940 lifts. If j = 4,

then 0169723850 lifts. If j = 6, then 0127943850 lifts. If j = 8, then 0169432750 lifts.

Case 2.1.3 i = 3. Let nj = 1 and consider j. If j = 2, then 0168349750 lifts. If j = 5, then

0168327940 lifts. If j = 7, then 0123496850 lifts. If j = 8, then 0169432750 lifts.

Case 2.2 ni = 8.

Case 2.2.1 i = 0. Then t1 = 8. If H0 has a cycle through X0 ∪ {γ0(01)}, then the proof is the

same as that of Case 2.1.1. Hence assume that H0 does not have a cycle through X0 ∪ {γ0(01)}.

By Theorem 2.4, there is a faithful contraction f ′ : H0 → P ′ such that f ′(γ0(01)) = 0′1′ ∈ E(P ′)

and f ′(X0) = V (P ′) − {0′, 1′} = {i′ : 2 ≤ i ≤ 9} where P ′ is another copy of P with vertices
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labelled with i′ for i = 0, 1, . . . , 9. Let

Q = (P − 0)
⋃

{11′, 44′, 55′}
⋃

(P ′ − 0′).

(Note that the other alternative gives an isomorphic copy of Q). Then there is a faithful con-

traction

φ : G → Q

such that φ(X) = {i : 2 ≤ i ≤ 9} ∪ {i′ : 2 ≤ i ≤ 9} and φ(e) = 11′. Now the cycle

DQ = 169723855′8′3′2′7′9′6′1′1

lifts via φ−1 to give rise to a cycle in G that contains a 14-subset of X as well as e by applying

Theorem 2.1 to the faithful contractions corresponding to φ−1(x), x ∈ V (Q).

Case 2.2.2 i = 2. Then t1 ≥ 6 and if j 6= i, then nj ≤ 2. By Theorem 2.2, H2 has a cycle D2

containing X2 ∪ {u2}. If γ2(12) 6∈ D2, then 0169723850 lifts. If γ2(23) 6∈ D2, then 0127943850

lifts. If γ2(27) 6∈ D2, then 0123496850 lifts.

Case 2.2.3 i = 3. Then again t1 ≥ 6 and if j 6= i, then nj ≤ 2. By Theorem 2.2, H3 has a

cycle D3 containing X3 ∪ {u3}. This is the same as Case 2.1.3.

Case 2.3 ni = 9. Then i 6∈ {0, 1}, t1 = 7 and for j 6= 0, 1, i, we have nj = 1. If Hi has a cycle

Di through Xi∪{ui}, then a cycle in P lifts. If there is no such cycle Di in Hi, then by Theorem

2.3 there is a faithful contraction fi : Hi → P ′ such that fi(Xi ∪ {ui}) = V (P ′).

Case 2.3.1 i = 2. Let

Q = (P − 2)
⋃

{11′, 33′, 77′}
⋃

(P ′ − 2′).

Then there is a faithful contraction φ2 : G → Q such that φ2(X) = V (Q)−{0, 1} and φ2(e) = 01.

Now the cycle

DQ = 011′6′8′5′0′4′9′7′7586940

lifts via φ−1
2 to give a desired cycle through X − φ−1

2 (3) − φ−1
2 (3′) and e in G.

Case 2.3.2 i = 3. Let

Q = (P − 3)
⋃

{22′, 44′, 88′}
⋃

(P ′ − 3′).

Then there is a faithful contraction φ3 : G → Q such that φ3(X) = V (Q)−{0, 1} and φ3(e) = 01.

Now the cycle

DQ = 0169722′7′9′6′1′0′5′8′8′5′0

lifts.

Case 3 t = 0. That is, for 0 ≤ i ≤ 9, ni ≤ 4. There is i ∈ {2, . . . , 9} such that ni ≤ 2. Consider

the two distinct subcases for such i.

1) If i = 2, then the cycle 0168349750 lifts.

2) If i = 3, then the cycle 0127586940 lifts.

This completes the proof. �
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Let G be a 3-connected cubic graph, X ⊆ V (G) with |X | = p and e ∈ E(G). If either for

each A ⊂ X with |A| = r, A∪{e} is cyclable or for some A ⊂ X with |A| = q, A∪{e} is cyclable,

then denote G ∈ C(r; 1)(p,q).

There ought to be a result on C(8; 1)(18,16). But sets of 6 vertices and two edges that are

cyclable in these graphs must first be determined.

It should not be too difficult to determine C(9; 1)(16,14) and C(9; 1)(18,16), but the proofs will

be tedious under the present method.
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