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Abstract In this paper, we introduce new subclasses Sglqu [A, B;~] and H:lqj/\l (v, B) of cer-

tain p-valent analytic functions defined by a generalized differential operator. Majorization
m,j,l

properties for functions belonging to the classes Sy [A, B;~] and H;nq]; (a, B) are investi-

gated. Also, we point out some new or known consequences of our main results.
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1. Introduction and definitions

Let f and g be two analytic functions in the open unit disk
A={zeC:|z| <1} (1.1)
We say that f is majorized by g in A (see [1]) and write
f(z) < g(z) (z€A), (1.2)
if there exists a function , analytic in A such that
lp(2)] <1 and f(z) = ¢(2)9(2) (2 € A). (1.3)

It may be noted here that (1.2) is closely related to the concept of quasi-subordination between
analytic functions.
For two functions f and g, analytic in A, we say that the function f is subordinate to g in

A, if there exists a Schwarz function w, which is analytic in A with
w(0)=0 and |w(z)] <1 (z€A),

such that
f(z) =g(w(z)) (z€A).
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We denote this subordination by f(z) < g(z). Furthermore, if the function ¢ is univalent in A,
then

f(z) = g(z) (z€A)« f(0)=g(0) and f(A) C g(A).

Let A, denote the class of functions of the form

() =2+ > ar® peN={12..}) (1.4)
k=p+1

that are analytic and p-valent in the open unit disk A. Also, let A; = A.
For a function f € A,, let f (@) denote gth-order ordinary differential operator by

FD(2) = ZP 7 Z Zka, (1.5)

(p w oty (

where p > ¢, p€e N, g€ No=NU{0} and z € A.
Next, we define the generalized differential operator I f (@ . : A, — A, by

LD (2) = f9(2);
LA f9(2) = (1= N9 (2) + A7 D ()5
and
LE O 2) = DA FO(2)), (1.6)

If f € A,, then from (1.5) and (1.6), we can easily see that

mi @)y - PLAAR+HI—g =D  §~ HI+AMk+l—g=D" .,
I3 19(2) = z +k§rl o= agz®"0 (1.7)

where m € Ng; A\l >0; p>gq; p€ N and g € Np.
We note that for suitable choices of p, ¢, A and [, we obtain the following operators studied

by various authors.
(i) L5 () = I(m, 1) f(2) (see Kumar et al. [2]);
)

(i) Iy O (z) = Imf( (see Cho and Srivastava [3] and Cho and Kim [4]);

(i) 175°f©(2) = Dy f(2) (see Al-Oboudi [5));

(iv) Im Of(q)(z) Dmf(‘Z)( ) (see Frasin [6] and Goswami and Aouf [19));

(v) I FO () = Dy f(z) (see Kamali and Orhan [7] and Aouf and Mostafa [8]);
(vi) Iinlof(o)( )=D"f(z) (see Salagean [9]).

Using the operator IZT /'\'l fl@ (z), we now define the following classes of p-valent analytic

functions.

Definition 1.1 A function f(z) € A, is said to be in the class S’;né]’A [A, B;~] of p-valent functions

of complex order v # 0 in A if and only if
il r(q)(,))(+1)
1. 2(1 z
T (R f9)D

1+%+Az
14+ Bz '’

—p—i—j—i—m)} < (1.8)
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where z € A; —1< B<A<L1; p>q; p€N; m,j,q € No; \,1 >0and~y e C*=C\{0} with
N+AXp+I-1)]>|MWA-B)+(1+AXp+l—-m—1))B|.

Clearly, we have the following relationships:

3 m,j,l . _ amyj,l X
(1) Spvq-?)\ [1’ _1’ 7] - Sp,q?)\ (7)7

. m,j,l m,l
i) Sy [1, =19 =80 (7);
m, 5,0 m
i) Sp,O‘,]l 1, -1;9] = Sp,j (v);
. m,0,0 m
1V) Sp,O,l [17 _1;7] = Sp (7)7

(
(
(
(v) Spdil,—19] = Sp;(7)
(
(
(

—

vi) SPOTIL =191 = S(9) (v € C¥);

vii) SYotlL =19l = K(y) (y€C);

vii) S707[1,—1;1—a] = S*(a) (0<a<1).

The classes 5" J’-l(v) and S, ; () were introduced by Goswami et al.[10] and Altintas and
Srivastava [11], respectively. The classes S(v) and K () are said to be the classes of starlike and
convex functions of complex order v # 0 in A which were considered by Nasr and Aouf [12] and

Wiatrowski [13], while S*(«) denotes the class of starlike functions of order « in A.

Definition 1.2 A function f(z) € A, is said to be in the class H;Zf/’\l(a, B), if and only if

(L5 f0 ()74
(L5 @ (=)
where z € A; p>¢q; p€ N; m, 5, € No; 1 >0; 0<a<]; -5 <fB<3.

Re{ew } > a.cos f3, (1.9)

It can be seen that, by specializing the parameters the class Hgf ‘f’;(a, B) reduces to many
known subclasses of analytic functions.

(i) HYox(, 8) = Spe); (ii) HYGy (0, 0) = S*(); (i) HY g3 (0,8) = S

The classes Sj(a) and S* () are said to be the classes of 3-spiral-like and starlike functions
of order o in A, which were studied by Libera [14] and Robertson [15], while S denotes the
class of (-spiral-like functions in A considered by Spacek [16].

A majorization problem for the class S* = S*(0) has been investigated by MacGregor [1].
Also, majorization problems for starlike functions of complex order v # 0 and (-spiral-like of
order a in A have recently been investigated by Altintas et al.[17], Goyal and Goswami [18],
Goswami et al.[10,19] and Abubaker et al. [20].

The main object of this paper is to investigate the problems of majorization of the classes
S™IA B 4] and H™%!(«, 3) defined by a generalized differential operator.

A D;q,A
In order to prove our main results, we need the following lemma.

Lemma 1.1 ([21]) Let ¢(z) be analytic in A satisfying |¢(z)| <1 for z € A. Then,

1 lo(e)

¢ (2) < == e (1.10)

2. Majorization problem for the class S;nqj/\l [A, B;~]
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We begin by proving the following result.
Theorem 2.1 Let the function f € A, and suppose that g € S;lqj)\l [A, B;~]. If (I;Tf/{lf(‘”(z))(j)
is majorized by (I;?)’\lg(‘” (2))9) in A for j € Ny, then
(IS D) D] < WD (=)D (J2] <), (2.1)
where 1 = r1(p, 7, A\, I,m, A, B) is the smallest positive root of the equation
IMA-B)+ 1+ Ap+1—m—1)Blr® — [L+ A(p+1— 1)+ 2X|B||r*—
[MA-B)+ 1+ XAXp+l—-m—-1)B|+2\r+ 1+ Xp+1-1)] =0, (2.2)
(-1<B<A<1;peN; me Ny, \,] >0; yeC*).

Proof Since g € S’;lq&l [A, B; ], we find from (1.8) that

[1 1 (z(Im’lg(Q) (2))+D) 1+ 2+ Aw(z)

~y (zi?)’\lg(q)(z))(j) _p+j+m)} T T 1+ Bw(z) (2:3)
where w(z) = c12 + 2% + -+, w € P, P denotes the well-known class of the bounded analytic
functions in A and satisfies the conditions (see, for details, Goodman [22])

w(0) =0 and |w(z)|] < z] (z € A). (2.4)
It follows from (2.3) that
AR )Y =+ (A= B) + Blp—j —m)l(2) 2.5)
(I;g’\lg(q)(z))(j) 1+ Bw(z) ' '
Now, using the following, easily verified from (1.7), identity

NI () = (I gD ()~ [ AG - DI E)D (26)

in (2.5) and making simple calculations, we get
(s Mg ()Y L+ Ap+1- 1]+ (A= B)+ (L +Ap+l—m— DB 50

( ];n)’\lg(Q) ())& 1+ Bw(z)
which, in view of (2.4), immediately yields the inequality
(15 g1 ()9
) 1+ 1B]le]
TN+ Ap+I-1)| = MA-B)+[1+AXp+1—m—1)]B|z|

Next, since (I;:‘)’\lf(q) (2))Y) is majorized by (I;?/{lg(‘”(z))(j) in A, we have from (1.3)

(I 9D (2)) ). (2.8)

(LR F D)D) = o)1) P (). (2.9)
Differentiating the equality (2.9) with respect to z and multiplying by z, we obtain
LSO = 20 ()15 gD () + 20(2) (159 (2)) VY. (2.10)

Also, by using (2.6) in (2.10), we get
(LN D)D) = Az () (I gD () D + o) (L5 g (). (2.11)
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Therefore, noting that ¢ € P satisfies the inequality (1.10) and using (2.8) in (2.11), we have

(I (2)) )
1— lp(2)]? Alz|(L + |BJ[=)

< (le(2)] + PR '|1+A(p+l_1)|_|M(A_B)+[1+A(p+z—m_1)]B||z|)'
|(I;?;r1»lg(q)(z))(j)|,

which, upon setting
lz2[ =7 and |p(z)[=p (0<p<1)

leads us to the inequality
(L 0 (2) 9]
< @(p) .
T A=)+ Ap+I-D|—-|MA-B)+[1+Ap+1—m—1)]B|r]
(I g @ (2) W), (2.12)

where
D(p) =— M1+ [Blr)p> + (1 —r)[L+Ap+1-1)]— |A\(A - B)+
(1+Xp+1—m—1)B|rlp+ (1l + |B]r) (2.13)
takes its maximum value at p = 1 with vy = r1(p, vy, \, [, m, A, B), where r; = r1(p,v,\,l,m, A, B)

is the smallest positive root of the equation (2.2). Furthermore, if 0 < § < r1(p,~v, A, l,m, A, B),
then the function ¥(p) defined by

U(p)=—A0(1+|B|6)p* + (1 = *)[[1+ Ap+1—1)] — [M(A— B)+
I+ AXp+1—m—1))B|d]lp+ Xd(1 + |B|J) (2.14)
is an increasing function on the interval 0 < p <1, so that
U(p) <U(1) =1 =)L +Ap+1-1)] = [M(A=B)+ 1+ Ap+1—m-—1)B|d]
0<p=<1;0<6<rip,y,\l,m,A B)).

Hence upon setting p = 1 in (2.14), we conclude that (2.1) of Theorem 2.1 holds true for
|z| < ri(p,v, A I, m, A, B), which completes the proof of Theorem 2.1. O
As a special case of Theorem 2.1, when A =1 and B = —1, we have
Corollary 2.1 Let the function f € A, and suppose that g € S;anAl(ﬂy) If (I;lilf(q) (2)9) is
majorized by (I;?ilg(q) (2))Y) in A for j € Ny, then
(I D@D < (I gD ()] (2] < 1), (2.15)

where

= —41+AXp+I-D|1=A2y+m—p—1+1)]
2= A2y+m—p—1+1)]

M=22+1+AXp+!I-D]+1=-A2y+m—-p—14+1)]; \,1>0; pe N; m e Ny; veC).

r2 =12(p, Y, A l,m) = (2.16)
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Setting A =1 and [ = 0 in Corollary 2.1, we get

Corollary 2.2 Let the function f € A, and suppose that g € S;’?é‘?io(y). If (D™ f@(2))0) s
majorized by (D™g(9(2))) in A for j € Ny, then

(D@D ND| < (D™ g@D () D (|2] < rs),

where

m — /n? — 4p[2y —p+m|
212y —p+m)|

r3 = rg(p,'y,m) =

(m=2+p+2y—p+m|; p€ N; m € Ny; v€C").

Further putting m = ¢ = j = 0 and p = 1 in Corollary 2.2, we obtain the result of Altintas
et al. [17].

Corollary 2.3 Let the function f € A be analytic and univalent in the open unit disk A and
suppose that g € S(v). If f(z) is majorized by g(z) in A, then

1@< 1g'(2)] (I2] < ra),

where

342y =1 =9+ 22y — 1]+ 2y — 1]?

37— 1| (v € C™).

ra =ra(7)
Also, for v = 1, Corollary 2.3 reduces to the result of MacGregor [1].
Corollary 2.4 Let the function f € A be analytic and univalent in the open unit disk A and
suppose that g € S*(0) = S*. If f(z) is majorized by g(z) in A, then
IF() < 1g' ()] (2] <2 - V3).

Remark 2.1 (i) Taking A = 1 and ¢ = 0 in Theorem 2.1 and Corollary 2.1, we obtain the
results of Goswami et al.[10, Theorem 2.1 and Corollary 2.1, respectively];

(ii) Taking ¢ = 0 in Corollary 2.2, we get the result of Goswami et al.[10, Corollary 2.2].

3. Majorization problem for the class H;?q’{/’\l(a,ﬁ)

Next, we state and prove
Theorem 3.1 Let the fun§tjon f € A, and suppose that g € Hg&{;\l(a,ﬁ). If (I;’:‘)V\lf(q) (2)9) is
majorized by (IZ&ZQ(Q) (2))9) in A for j € Ny, then

(IR FOEND < GO @)D (] <), (3.

DA =

where

B ) _77—\/772—4|1+/\(j—|—l)||2/\(1—oz)cosﬁ—[1+)\(j+l)]ei5|
r =g e ) = 22A(1— @) cos B — [L+ A(j +1)]e”] (32)
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with g = 2\ + [1+ A(j + )] + [2A(1 — @) cos B — [1 + A(j + D)]e*| and [1 + A(j +1)] > [2A(1 —
a)cos B —[1L+ (5 +1)]e”,

(€ No; M\i>0; 0<a<l; —g<ﬁ<g).

Proof Since g € H;Zf/’\l(oz, 3), we find from (1.9) that
2RI PE) Y 14 (1 - 20)w(z)
(Igjilg@) ()@ 1—w(z)
where w(z) is defined as (2.4).
From (3.3), we get

cos 3+ isin 3, (3.3)

2(LRg' D ()Y e 1 [2(1 — a) cos B — ePluw(2)

= . 3.4
(I;?S\lg(Q) (2))@) eBl — w(z)] (3.4)

Now, using the identity (2.6) in (3.4) and making simple calculations, we obtain
(LS9 D)9 (14 AG + D) + [20(1 — a) cos B — (L + A +1)ePlw(z) 35)

(I;?S\lg(Q) (2))@) eB1l —w(z)]
which, in view of (2.4), immediately yields the following inequality

1+ |z
1+ XG+D]—[2M1 — @) cos B — [1 + A5 + 1)]e?B]|z]

(17 g'9(2)) 9| < (I @ ()@,

DA
(3.6)
Next, making use of (1.10) and (3.6) in (2.11), and just as the proof of Theorem 2.1, we have

(I O () D)

Alz|(1 = lp(2)[*) .
= ((1 — DT+ AG + )| =221 — @) cos B — (1 + A(j + 1))ei?||z]] + |‘P(Z)|)

(I g @ () D), (3.7)

which upon setting |z| = r and |¢(z)] = p (0 < p < 1) leads us to the inequality

(I 9 () )

®1(p) m+1(q) (L))
S AT B - ajess A rmeny] B 69 @7L 38)

where the function ®1(p) defined by
Di(p) = —Nrp® + (L =r)[[1+AG+ D] — 201 — ) cos B — (1 +A(G +1)e|r]p+ M (3.9)

takes its maximum value at p = 1 with r; = r1(\, [, J, «, 8) given by (3.2). Moreover, if 0 < o <
r1(\, 1, j, o, B), then the function

Ui(p)=-Aop? + (1 =)L+ AG+ )| — 220 —a)cos B — (1 +A(G +1)eP|o]p + Ao (3.10)
increases on the interval 0 < p <1, so that ¥y (p) does not exceed

(1) =1 =a)[[14+AG+D|—2XA —a)cos B — (1 + G +1))eP|o] (0<o <ri(\Lj a,p)).
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Therefore, from this fact, (3.8) gives the inequality (3.1). This completes the proof of Theorem
3.1.0

Taking A =1 and [ = 0 in Theorem 3.1, we immediately obtain the following result.

Corollary 3.1 Let the function f € A, and suppose that g € H;:‘(fio(a, B). If (D™ f(D (2))0) is
majorized by (D™g@(2))9) in A for j € Ny, then

(D™ FO(2) D] < (D gD ) D] (2] < ), (3.11)

where

o _m— Vg — 41451201 — a)cos B — (1 + j)e’”|
r2 =7r2(j, 0, f) = 22— a)cos = (1 )7 (3.12)

withm =2+ |1+ j| +]2(1 — a)cos B — (1 + j)e?®| and |1+ j| > |2(1 — a)cos B — (1 + j)e'|,

(JENp; 0<a<; —g<ﬁ<g).

Further, putting m = ¢ = j = 0 and p = 1 in Corollary 3.1, we also obtain the result of
Altintas et al. [17].

Corollary 3.2 Let the function f € A and suppose that g € S*((a — 1)e’’) = S}(«), where
0<a<land -5 << 7%. If f(z) is majorized by g(z) in A, then

1@< 1g'(2)] (I2] < s),

where

R V02 —4)2(1 — a) cos B — |
2|2(1 — a) cos 3 — €iA|

3 =7“3(CY75)

(2 =34+ 21 —a)cosf—eP|; 0< a<1; —g<ﬁ<g),

which contains the well-known result of MacGregor [1] for o = = 0.
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