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Abstract This paper consists of two parts. In the first part, we discuss the Hölder continuity

of Cauchy-type integral operator T of isotonic functions and the relationship between ‖T [f ]‖α

and ‖f‖α. In the second part, firstly, we introduce a modified Cauchy-type integral operator T ′

and demonstrate that the operator T ′ has a unique fixed point by the Contraction Mapping

Principle. Then we give the Mann iterative sequence and prove that the Mann iterative

sequence strongly converges to the fixed point of the modified Cauchy-type integral operator

T ′.
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1. Introduction

The isotonic functions are the functions defined in the even dimensional Euclidean space Rn

with values in the complex Clifford algebra C0,n and satisfy the isotonic system ∂x1f + if̃∂x2 = 0,

where ∂x1 =
∑m

j=1 ej∂xj , ∂x2 =
∑m

j=1 ej∂xm+j . Isotonic Clifford analysis is a new field in

Clifford analysis. It is a generalization of complex Clifford algebra. Recently, Blaya, Sommen

and some other experts [1–4] have studied isotonic functions, and obtained a series of results

such as the integral representation of the isotonic functions and cauchy integral formulas, etc. In

addition, they have found that the isotonic functions are closely related to hermitian monogenic

functions in Clifford analysis and they have done much research on hermitian monogenic functions

by applying isotonic functions. So to study the isotonic functions can generalize the further

applications of Clifford analysis to the field in mathematics and other subjects, and thus it is

valuable to study it both in theory and practice.

Fixed point problem of operators is an important branch in Clifford analysis. So it is

necessary to study the existence of the fixed point and the iterative approximation for the isotonic

operator. There are many iterative schemes to approximate the fixed point of an operator,

such as Picard iterative scheme, Mann iterative scheme, Ishikawa iterative scheme, Projection

Received July 30, 2012; Accepted June 4, 2013
Supported by the National Natural Science Foundation of China (Grant Nos. 10771049; 11171349) and the Science

Foundation of Hebei Province (Grant No.A2010000346).
*Corresponding author

E-mail address: wlpxjj@163.com (Liping WANG); xuzl@ruc.edu.cn (Zuoliang XU)



588 Liping Wang and Zuoliang Xu

iterative scheme, Hybrid iterative scheme, etc [5–9]. And different iterative schemes have different

approximation degrees and different complexity degrees in the process of approximation.

On the basis of [10], [5] and [12], this article studies some properties of the Cauchy-type

integral operator T of isotonic functions. Firstly, we discuss the Hölder continuity of the Cauchy-

type integral operator T and the relationship between ‖T [f ]‖α and ‖f‖α. Secondly, we introduce

a modified Cauchy-type integral operator T
′

and prove that the operator T ′ has a unique fixed

point by the contraction mapping principle. Finally, we give the Mann iterative sequence and

prove that this sequence strongly converges to the fixed point of the modified Cauchy-type

integral operator T ′. These results make the theory of Clifford analysis more perfect as well as

lay a theoretical foundation for the study of the properties of singularity integral operator in

Clifford analysis.

2. Preliminaries

Let e1, . . . , en be an orthogonal basis of the Euclidean space Rn and C0,n be the complex

Clifford algebra with basis {eA : eA = eα1 · · · eαh
}, where A = {α1, . . . , αh} ⊆ {1, . . . , n}, 1 ≤

α1 < α2 < · · · < αh ≤ n and eA = e0 = 1 for A = ∅.

The noncommutative multiplication of the basis in C0,n is governed by the rules:
{

e2
i = −1, i = 1, 2, . . . , n,

eiej = −ejei, 1 ≤ i, j ≤ n, i 6= j.

Any Clifford number a ∈ C0,n can be written as a =
∑

A CAeA, CA ∈ C. For any a ∈ C0,n, |a| =(∑
A |CA|2

) 1
2 , a =

∑
A CAeA and ã =

∑
A CAẽA, where ẽA = (−1)|A|eA, eA = (−1)

|A|(|A|+1)
2 eA.

For k = 0, 1, . . . , n, C0,n
(k) = {a ∈ C0,n : a =

∑
|A|=k CAeA} is the subspace of k-vectors. Thus

we can obtain that C0,n =
⊕n

k=0 C0,n
(k) and for any a ∈ C0,n, a =

∑n
k=0[a]k, where [·]k is the

projection operator on C
(k)
0,n.

In this article, we assume that n = 2m and denote the real Clifford vector x =
∑n

j=1 ejxj by

x =
∑m

j=1(ejxj + em+jxm+j). And for any real Clifford vector x, y, we have |xy| ≤ M0|x||y|. In

addition, the corresponding Dirac operator can be written as ∂x =
∑m

j=1(ej∂xj + em+j∂xm+j).

Let ~n =
∑m

j=1(ejnj(y) + em+jnm+j(y)) be the unit normal vector. We introduce the following

Clifford vectors and their corresponding Dirac operators

x1 =

m∑

j=1

ejxj , x2 =

m∑

j=1

ejxm+j , n1 =

m∑

j=1

ejnj(y),

n2 =
m∑

j=1

ejnm+j(y), ∂x1 =
m∑

j=1

ej∂xj , ∂x2 =
m∑

j=1

ej∂xm+j .

In addition, let Ij = 1
2 (1 + iejem+j), j = 1, 2, . . . , m. Then the primitive idempotent is given

by I =
∏m

j=1. So we have the following conversion relations em+jI = iejI, and therefore

em+jaI = iãejI with a ∈ C0,m. Using the front conversion relations, we have that

(y − x)~nfI = [(y1 − x1)(n1f + if̃n2) + (fn2 − in1f̃)(y2 − x2)]I. (2.1)
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Let Hα
∂Ω be the set of Hölder continuous functions defined on ∂Ω with the index α. For

any ϕ ∈ Hα
∂Ω, we define ‖ϕ‖α = C(ϕ, ∂Ω) + H(ϕ, ∂Ω, α), where C(ϕ, ∂Ω) = maxt∈∂Ω |ϕ(t)|,

H(ϕ, ∂Ω, α) = supt1 6=t2,t1,t2∈∂Ω
|ϕ(t1)−ϕ(t2)|

|t1−t2|α
. Obviously, Hα

∂Ω is a Banach space. And for any

f, g ∈ Hα
∂Ω, we have

‖f + g‖α ≤ ‖f‖α + ‖g‖α, ‖fg‖α ≤ 2n‖f‖α‖g‖α.

Throughout this article, we suppose that Ω is a nonempty connected open subset of R2m

and Ω+, Ω− are denoted as the interior and the exterior of Ω, respectively. We assume that its

boundary ∂Ω is a differentiable, oriented and compact Liapunov surface.

Since ∂Ω is Liapunov surface, from the corresponding proof in [11], we have

|dσ(x)| = |ds(x)| =
∣∣∣

D(ξ1, . . . , ξ2m−1)

D(ρ0, ϕ1, . . . , ϕ2m−2)

∣∣∣|dρ0dϕ1dϕ2 · · · dϕ2m−2| ≤ M1ρ
2m−2
0 dρ0,

where M1 > 0 is a real constant number.

Definition 2.1 Let Ω, ∂Ω be the set as stated above. f ∈ Hα
∂Ω and 0 < α < 1. Then the

integral

(T [f ])(x) = −
1

ω2m

∫

∂Ω

(y1 − x1)(n1f + if̃n2) + (fn2 − in1f̃)(y2 − x2)

|y − x|2m
dSy

is called Cauchy-type integral operator of isotonic functions, where y1, y2, x1, x2, n1, n2 are

defined as above, f̃ =
∑

A fAẽA and dSy is the area difference.

Remark (1) (T [f ])(x) is an isotonic function.

(2) If f is isotonic function, then we have

(T [f ])(x) =

{
f(x), x ∈ Ω,

0, x ∈ R2m − Ω̄.

In addition, when x /∈ ∂Ω, it is clear that the integral is well defined. When x ∈ ∂Ω, it is a

singular integral. So, in the following, we give the definition of the Cauchy principal value.

Definition 2.2 Let Ω, ∂Ω be as stated above, x0 ∈ ∂Ω. Construct a sphere E with the center

at x0 and radiu δ > 0, where ∂Ω is divided into two parts by E, and the part of ∂Ω lying in the

interior of E is denoted by λδ. If limδ→0(T [f ])δ(x0) = I(x0), in which

(T [f ])δ(x0) = −
1

ω2m

∫

∂Ω−λδ

(y1 − x1)(n1f + if̃n2) + (fn2 − in1f̃)(y2 − x2)

|y − x|2m
dSy,

then I(x0) is called the Cauchy principal value of singular integral (T [f ])(x0) and denoted by

I(x0) = (T [f ])(x0).

Lemma 2.3 ([10]) For any x1, y, x1,1, x1,2, y1, y2, x2, x2,1, x2,2, we have

∣∣∣
y1 − x2,1

|y − x2|2m
−

y1 − x1,1

|y − x1|2m

∣∣∣ ≤
C0|x2 − x1|

|y − x2|2m

(
1 +

2m−1∑

k=1

|y − x2|k

|y − x1|k

)
,
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∣∣∣
y2 − x2,2

|y − x2|2m
−

y2 − x1,2

|y − x1|2m

∣∣∣ ≤
C0|x2 − x1|

|y − x2|2m

(
1 +

2m−1∑

k=1

|y − x2|k

|y − x1|k

)
.

Lemma 2.4 ([1]) For any a, b ∈ C0,m, aI = bI if and only if a = b, where I =
∏m

j=1 Ij , Ij =
1
2 (1 + iejem+j).

Lemma 2.5 ([10]) Suppose f ∈ Hα
∂Ω and 0 < α < 1, x0 ∈ ∂Ω. Then we have

−
1

ω2m

∫

∂Ω

(y1 − x0,1)(n1f(x0) + if̃(x0)n2) + (f(x0)n2 − in1f̃(x0))(y2 − x0,2)

|y − x0|2m
dSy

=
1

2
f(x0).

Lemma 2.6 ([10]) Let f ∈ Hα
∂Ω, 0 < α < 1, x0 ∈ ∂Ω, (T [f ])+(x0) =limx→x0,x∈Ω+(T [f ])(x) and

(T [f ])−(x0) = limx→x0,x∈Ω−(T [f ])(x). Then we have





(T [f ])+(x0) =
1

2
f(x0) + (T [f ])(x0),

(T [f ])−(x0) = −
1

2
f(x0) + (T [f ])(x0).

Lemma 2.7 ([13]) (1) If ϕ ∈ Hα
∂Ω, 0 < β ≤ α < 1, then ϕ ∈ Hβ

∂Ω; (2) If f1(x), f2(x) ∈ Hα
∂Ω,

then f1(x) ± f2(x) ∈ Hα
∂Ω; (3) Let f(x) =

∑
A fA(x)eA. If fA(x) satisfies fA(x) ∈ Hα

∂Ω, then

f ∈ Hα
∂Ω, 0 < α < 1.

3. Some properties of the isotonic operator

Theorem 3.1 Let Ω, ∂Ω, Ω−, (T [f ])− be stated as above and f ∈ Hα
∂Ω (0 < α < 1). Then for

any x1, x2 ∈ ∂Ω, we can obtain

|(T [f ])−(x1) − (T [f ])−(x2)| ≤ JH(f, ∂Ω, α)|x1 − x2|
α,

where J is a positive constant independent of f .

Proof For any x1, x2 ∈ ∂Ω, let |x1 − x2| = δ. Then we construct a sphere E1 centered at x1

with radius 3δ. Then ∂Ω is divided into two parts by E1. The part of ∂Ω lying in the interior

of E1 is denoted by λ3δ and the other part ∂Ω lying in the outside of E1 is denoted by ∂Ω \λ3δ.

Assume that 6δ < d, where d is the same as the one in Liapunov surface definition. By Lemmas

2.5 and 2.6, we have

(T [f ])−(x1) − (T [f ])−(x2)|

= |[(T [f ])(x1) −
1

2
f(x1)] − [(T [f ])(x2) −

1

2
f(x2)]|

=
∣∣∣ −

1

ω2m

∫

∂Ω

{ (y1 − x1,1)[n1(f(y) − f(x1)) + i(f̃(y) − f̃(x1))n2]

|y − x1|2m
+

[(f(y) − f(x1))n2 − in1(f̃(y) − f̃(x1))](y2 − x1,2)

|y − x1|2m

}
dSy+

1

ω2m

∫

∂Ω

{(y1 − x2,1)[n1(f(y) − f(x2)) + i(f̃(y) − f̃(x2))n2]

|y − x2|2m
+
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[(f(y) − f(x2))n2 − in1(f̃(y) − f̃(x2))](y2 − x2,2)

|y − x2|2m

}
dSy

∣∣∣

≤ C1(L1 + L2 + L3),

where

L1 =
∣∣∣
∫

λ3δ

{(y1 − x1,1)[n1(f(y) − f(x1)) + i(f̃(y) − f̃(x1))n2]

|y − x1|2m
+

[(f(y) − f(x1))n2 − in1(f̃(y) − f̃(x1))](y2 − x1,2)

|y − x1|2m

}
dSy

∣∣∣

L2 =
∣∣∣
∫

λ3δ

{(y1 − x2,1)[n1(f(y) − f(x2)) + i(f̃(y) − f̃(x2))n2]

|y − x2|2m
+

[(f(y) − f(x2))n2 − in1(f̃(y) − f̃(x2))](y2 − x2,2)

|y − x2|2m

}
dSy

∣∣∣

L3 =
∣∣∣
∫

∂Ω\λ3δ

{ (y1 − x2,1)[n1(f(y) − f(x2)) + i(f̃(y) − f̃(x2))n2]

|y − x2|2m
+

[(f(y) − f(x2))n2 − in1(f̃(y) − f̃(x2))](y2 − x2,2)

|y − x2|2m

}
dSy−

∫

∂Ω\λ3δ

{(y1 − x1,1)[n1(f(y) − f(x1)) + i(f̃(y) − f̃(x1))n2]

|y − x1|2m
+

[(f(y) − f(x1))n2 − in1(f̃(y) − f̃(x1))](y2 − x1,2)

|y − x1|2m

}
dSy

∣∣∣.

From |y1 − x1,1| ≤ |y − x1|, |y2 − x1,2| ≤ |y − x1| and the local generalized sphere coordinates

transformation, we obtain

L1 ≤

∫

λ3δ

|y − x1|C2|f(y) − f(x1)| + C2|f(y) − f(x1)||y − x1|

|y − x1|2m
|dSy|

=

∫

λ3δ

2C2|f(y) − f(x1)|

|y − x1|2m−1
|dSy|

= 2C2

∫

λ3δ

|f(y) − f(x1)|

|y − x1|α
|y − x1|α

|y − x1|2m−1
|dSy|

≤ 2C2

∫

λ3δ

H(f, ∂Ω, α)

|y − x1|2m−1−α
|dSy|

≤ 2C2

∫ 3δ

0

H(f, ∂Ω, α)

ρ2m−1−α
0

M1ρ
2m−2
0 dρ0

≤ C3

∫ 3δ

0

H(f, ∂Ω, α)ρα−1
0 dρ0 = J1H(f, ∂Ω, α)|x1 − x2|

α.

Similarly, we have L2 ≤ J2H(f, ∂Ω, α)|x1 − x2|α. For L3, we have

L3 ≤
∣∣∣
∫

∂Ω\λ3δ

{( y1 − x2,1

|y − x2|2m
−

y1 − x1,1

|y − x1|2m

)
[n1(f(y) − f(x2)) + i(f̃(y) − f̃(x2))n2]+
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[(f(y) − f(x2))n2 − in1(f̃(y) − f̃(x2))]
( y2 − x2,2

|y − x2|2m
−

y2 − x1,2

|y − x1|2m

)}
dSy+

∫

∂Ω\λ3δ

{ y1 − x1,1

|y − x1|2m
[n1(f(y) − f(x2)) + i(f̃(y) − f̃(x2))n2]+

[(f(y) − f(x2))n2 − in1(f̃(y) − f̃(x2))]
y2 − x1,2

|y − x1|2m

}
dSy−

∫

∂Ω\λ3δ

{(y1 − x1,1)[n1(f(y) − f(x1)) + i(f̃(y) − f̃(x1))n2]

|y − x1|2m
+

[(f(y) − f(x1))n2 − in1(f̃(y) − f̃(x1))](y2 − x1,2)

|y − x1|2m

}
dSy

∣∣∣

≤
∣∣∣
∫

∂Ω\λ3δ

{( y1 − x2,1

|y − x2|2m
−

y1 − x1,1

|y − x1|2m

)
[n1(f(y) − f(x2)) + i(f̃(y) − f̃(x2))n2]+

[(f(y) − f(x2))n2 − in1(f̃(y) − f̃(x2))]
( y2 − x2,2

|y − x2|2m
−

y2 − x1,2

|y − x1|2m

)}
dSy

∣∣∣+

∣∣∣
∫

∂Ω\λ3δ

{(y1 − x1,1)[n1(f(x1) − f(x2)) + i(f̃(x1) − f̃(x2))n2]

|y − x1|2m
+

[(f(x1) − f(x2))n2 − in1(f̃(x1) − f̃(x2))](y2 − x1,2)

|y − x1|2m

}
dSy

∣∣∣

=O1 + O2.

When y ∈ ∂Ω \ λ3δ, |y − x2| ≥ |y − x1| − |x1 − x2| ≥ 3δ − δ = 2δ. Thus

1

2
≤ |

y − x2

y − x1
| ≤ 2.

Again by Lemma 2.3, we get

O1 ≤

∫

∂Ω\λ3δ

C0C4
|x2 − x1|

|y − x2|2m

(
1 +

2m−1∑

k=1

|y − x2|k

|y − x1|k

)
|f(y) − f(x2)||dSy |

≤C5

∫

∂Ω\λ3δ

|x2 − x1|

|y − x2|2m
|f(y) − f(x2)||dSy |

=C5

∫

∂Ω\λ3δ

|x2 − x1|

|y − x2|2m

|f(y) − f(x2)|

|y − x2|α
|y − x2|

α|dSy|

≤C5H(f, ∂Ω, α)

∫

∂Ω\λ3δ

1

|y − x2|2m−α
|dSy||x2 − x1|

≤C6H(f, ∂Ω, α)

∫ ∞

3δ

1

ρ2m−α
0

ρ2m−2
0 dρ0|x2 − x1|

=J3H(f, ∂Ω, α)|x1 − x2|
α.

By Lemma 2.4 and the formula (2.1), we have

O2 =
∣∣∣
∫

∂Ω\λ3δ

(y − x1)n[f(x1) − f(x2)]

|y − x1|2m
dSy

∣∣∣

=
∣∣∣
∫

∂Ω\λ3δ

(y − x1)

|y − x1|2m
dσy[f(x1) − f(x2)]

∣∣∣
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≤C7

∣∣∣
∫

∂Ω\λ3δ

y − x1

|y − x1|2m
dσ(y)

∣∣∣|f(x1) − f(x2)|.

Using the conclusion of regular functions, we get

lim
δ→0

[
−

1

ω2m

∫

∂Ω\λ3δ

y − x1

|y − x1|2m
dσ(y)

]
= −

1

ω2m

∫

∂Ω

y − x1

|y − x1|2m
dσ(y) =

1

2
.

Hence for any ε > 0, there exists a number δ1 > 0, such that when 0 < δ < δ1, the following

formula is right. ∣∣∣ −
1

ω2m

∫

∂Ω\λ3δ

y − x1

|y − x1|2m
dσ(y) −

1

2

∣∣∣ < ε.

Thus taking ε = 1
2 , we have

0 <
∣∣∣ −

1

ω2m

∫

∂Ω\λ3δ

y − x1

|y − x1|2m
dσ(y)

∣∣∣ < 1.

By f ∈ Hα
∂Ω, we get

O2 ≤ J4H(f, ∂Ω, α)|x1 − x2|
α.

Hence

|(T [f ])−(x1) − (T [f ])−(x2)| ≤ JH(f, ∂Ω, α)|x1 − x2|
α. (3.1)

In addition, when 6|x1 − x2| ≥ d, the above inequality can also be obtained. This completes the

proof. �

Remark (1) From Theorem 3.1, we obviously obtain that (T [f ])− is Hölder continuous operator

with the index α.

(2) It is easily obtained by applying Lemmas 2.6 and 2.7 that (T [f ])+, T [f ] are both Hölder

continuous operators with the index α.

Theorem 3.2 Let Ω, ∂Ω, Ω− and (T [f ])− be stated as above. Suppose f ∈ Hα
∂Ω(0 < α < 1) and

‖f‖α ≤ M, x0 ∈ ∂Ω. Then ‖(T [f ])−‖α ≤ K‖f‖α, where K is a positive constant independent

of f .

Proof By Theorem 3.1, we know

H((T [f ])−, ∂Ω, α) ≤ JH(f, ∂Ω, α). (3.2)

Again from Lemma 2.4 and − 1
ω2m

∫
∂Ω

y−x0

|y−x0|2m dσ(y) = 1
2 , we get

|(T [f ])−(x0)| =
∣∣∣ −

1

2
f(x0) + (T [f ])(x0)

∣∣∣

≤ J5

∣∣∣
1

ω2m

∫

∂Ω

y − x0

|y − x0|2m
dσ(y)

∣∣∣|f(x0) − f(y)|

≤ J5 ·
1

2
· 2 max

x0∈∂Ω
|f(x0)| = J5 max

x0∈∂Ω
|f(x0)|.

Thus

max
x0∈∂Ω

|(T [f ])−(x0)| ≤ J5 max
x0∈∂Ω

|f(x0)|.
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Therefore

C((T [f ])−, ∂Ω) ≤ J5C(f, ∂Ω). (3.3)

So, by (3.2) and (3.3), we obtain

‖(T [f ])−‖α = C((T [f ])−, ∂Ω) + H((T [f ])−, ∂Ω, α) ≤ K‖f‖α, (3.4)

where K is a positive constant independent of f . �

Theorem 3.3 Let Ω, ∂Ω, Ω+, (T [f ])+ be stated as above, f ∈ Hα
∂Ω(0 < α < 1) and ‖f‖α ≤

M, x0 ∈ ∂Ω. Then ‖(T [f ])+‖α ≤ L‖f‖α, where L is a positive constant independent of f .

Proof By Lemma 2.6 we get

|(T [f ])+(x0)| ≤ |(T [f ])−(x0)| + |f(x0)|.

Hence,

max
x0∈∂Ω

|(T [f ])+(x0)| ≤ max
x0∈∂Ω

|(T [f ])−(x0)| + max
x0∈∂Ω

|f(x0)|.

Namely

C((T [f ])+, ∂Ω) ≤ C((T [f ])−, ∂Ω) + C(f, ∂Ω).

Again from

|(T [f ])+(x1) − (T [f ])+(x2)| ≤ |(T [f ])−(x1) − (T [f ])−(x2)| + |f(x1) − f(x2)|,

we have

sup
x1,x2∈∂Ω

|(T [f ])+(x1) − (T [f ])+(x2)|

|x1 − x2|α

≤ sup
x1,x2∈∂Ω

|(T [f ])−(x1) − (T [f ])−(x2)|

|x1 − x2|α
+ sup

x1,x2∈∂Ω

|f(x1) − f(x2)|

|x1 − x2|α
.

Namely

H((T [f ])+, ∂Ω, α) ≤ H((T [f ])−, ∂Ω, α) + H(f, ∂Ω, α). (3.6)

Thus by (3.4), (3.5) and (3.6), we have

‖(T [f ])+‖α ≤ ‖(T [f ])−‖α + ‖f‖α ≤ L‖f‖α,

where L is a positive constant independent of f . �

Theorem 3.4 Let Ω, ∂Ω, Ω+, (T [f ])+, (T [f ])− be stated as above, f ∈ Hα
∂Ω(0 < α < 1) and

‖f‖α ≤ M . Then ‖T [f ]‖α ≤ A‖f‖α, where A is a positive constant independent of f .

Proof By Lemma 2.6, we have

(T [f ])(x) =
(T [f ])+(x) + (T [f ])−(x)

2
, x ∈ ∂Ω.

Hence

sup
x1,x2∈∂Ω

|(T [f ])(x1) − (T [f ])(x2)|

|x1 − x2|α
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≤
1

2

[
sup

x1,x2∈∂Ω

|(T [f ])+(x1) − (T [f ])+(x2)|

|x1 − x2|α
+

sup
x1,x2∈∂Ω

|(T [f ])−(x1) − (T [f ])−(x2)|

|x1 − x2|α

]
.

Namely

H(T [f ], ∂Ω, α) ≤
1

2
[H((T [f ])+, ∂Ω, α) + H((T [f ])−, ∂Ω, α)].

In addition

max
x∈∂Ω

|(T [f ])(x)| ≤
1

2
[max
x∈∂Ω

|(T [f ])+(x)| + max
x∈∂Ω

|(T [f ])−(x)|].

Namely

C(T [f ], ∂Ω) ≤
1

2
[C((T [f ])+, ∂Ω) + C((T [f ])−, ∂Ω)].

So by Theorems 3.2 and 3.3, we can obtain that

‖T [f ]‖α ≤
1

2
[‖(T [f ])+‖α + ‖(T [f ])−‖α] ≤

1

2
(K + L)‖f‖α = A‖f‖α, (3.7)

where A is a positive constant independent of f . �

4. The fixed point and Mann iteration of the operator T
′

Definition 4.1 Let Ω be defined as above. Then the integral operator T ′

(T ′[f ])(x) = λ(T [f ])(x) =
−λ

ω2m

∫

∂Ω

(y1 − x1)(n1f + if̃n2) + (fn2 − in1f̃)(y2 − x2)

|y − x|2m
dSy

is called a modified Cauchy-type integral operator of isotonic functions, where λ ∈ R, 0 < |λ| <
β
A

(0 < β < 1), A is the same in Theorem 3.4 and others are defined as in Definition 2.1.

Definition 4.2 ([5]) Let X be a linear space, B ⊂ X , T : B → B, and {βn} be a sequence

contained in [0, 1]. Then for a given x1 ∈ B, the sequence

xn+1 = (1 − βn)xn + βnTxn, n ≥ 1

is called Mann iterative sequence of T .

Lemma 4.3 ([12]) Let {an}, {bn} and {cn} be nonnegative real sequences satisfying

an+1 ≤ (1 − tn)an + bn + cn, n ≥ 1,

where tn ∈ [0, 1],
∑∞

n=1 tn = ∞, bn = o(tn) and
∑∞

n=1 cn < ∞. Then limn→∞ an = 0.

Theorem 4.4 Let Ω, ∂Ω be defined as above and B = {f |f ∈ Hα
∂Ω, ‖f‖α ≤ M, 0 < α < 1}.

Then T ′ has a unique fixed point in B.

Proof We prove the theorem in three steps.

(1) B is a Bananch space because B ⊂ Hα
∂Ω and B is a closed subspace.

(2) By the remark of Theorem 3.1, we know T [f ] ∈ Hα
∂Ω. Hence T ′[f ] ∈ Hα

∂Ω.

Again from (3.7), we can obtain

‖T [f ]‖α ≤ A‖f‖α.



596 Liping Wang and Zuoliang Xu

Hence

‖T ′[f ]‖α = ‖λT [f ]‖α < β‖f‖α ≤ M.

So T ′ : B → B.

(3) By (3.7), we can get

‖T [f ]‖α ≤ A‖f‖α.

So for any f1, f2 ∈ B, we have

‖T ′[f1] − T ′[f2]‖α = |λ|‖T [f1] − T [f2]‖α ≤ |λ|A‖f1 − f2‖α

< β‖f1 − f2‖α.

Namely, T ′ is a contraction mapping on B. Therefore, we can obtain that T ′ has a unique fixed

point on B by the contract mapping principle. �

Remark Let Ω, ∂Ω be defined as above and B = {f |f ∈ Hα
∂Ω, ‖f‖α ≤ M, 0 < α < 1}. Then

there exists a unique f ∈ B satisfying T [f ] = 1
λ
f .

Theorem 4.5 Let {βn} be a sequence contained in [0, 1],
∑∞

n=1 βn = ∞ and limn→∞ βn = 0.

Then for any given f1 ∈ B, we can define an iterative sequence {fn} as follows

fn+1 = (1 − βn)fn + βnT ′[fn], n ≥ 1.

Then {fn} strongly converges to the unique fixed point of T ′.

Proof From Theorem 4.4, we know T ′ has a unique fixed point f , namely T ′[f ] = f . Thus we

can obtain

‖fn+1 − f‖α = ‖(1 − βn)fn + βnT ′[fn] − f‖α

= ‖(1 − βn)(fn − f) + βn(T ′[fn] − f)‖α

= ‖(1 − βn)(fn − f) + βn(T ′[fn] − T
′

[f ])‖α

≤ (1 − βn)‖fn − f‖α + βnβ‖fn − f‖α

= [1 − βn(1 − β)]‖fn − f‖α.

Let tn = βn(1− β), bn = 0 and cn = 0. Then we know tn ∈ [0, 1],
∑∞

n=1 tn = ∞, bn = o(tn)

and
∑∞

n=1 cn < ∞. So by Lemma 4.3, we can get that {fn} strongly converges to the unique

fixed point of T ′. �

Remark Let {βn} be a sequence contained in [0, 1],
∑∞

n=1 βn = ∞ and limn→∞ βn = 0. For any

given f1 ∈ B, define the same sequence as in Theorem 4.5. Then the sequence { 1
λ
fn} strongly

converges to the solution of the equation T [f ] = 1
λ
f .
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