Journal of Mathematical Research with Applications Sept., 2013, Vol. 33, No. 5, pp. 607–615 DOI:10.3770/j.issn:2095-2651.2013.05.010 Http://jmre.dlut.edu.cn

On Pairwise Semi-Stratifiable Spaces

Kedian LI*, Fucai LIN

School of Mathematics and Statistics, Minnan Normal University, Fujian 363000, P. R. China

Abstract In this paper, some characterizations of pairwise semi-stratifiable spaces are given by means of pairwise g-functions and semi-continuous functions and the pairwise semi-stratifiability of topological ordered C-spaces with semi-stratifiable topology is discussed.

Keywords pairwise semi-stratifiable spaces; bitopological space; semi-continuous functions; topological ordered spaces; *C*-spaces.

MR(2010) Subject Classification 54E20; 54C10; 26A15

1. Introduction

It is one of the questions in general topology how to characterize the generalized metric spaces [2, 3]. Künzí and Mushaandja [9] obtained some characterizations of some topological ordered spaces and generalized metric spaces. It is well known that stratifiable spaces [1] form one of the more interesting class of generalized metric spaces. This notion has been generalized to bitopological spaces [4], and many properties have been extended. Marín and Romaguera [7] introduced the notion of monotonically normal bitopological spaces (or Pairwise monotonically normal spaces) which is a useful generalization of pairwise stratifiable spaces, and characterized pairwise monotonically normal spaces in terms of a mixed condition of insertion and extension of semi continuous functions. It is well known that a topological space is stratifiable if and only if it is monotonically normal and semi-stratifiable [8]. A bitopological space is pairwise stratifiable if and only if it is pairwise monotonically normal and pairwise semi-stratifiable [7]. In [11], Li gave some characterizations of pairwise stratifiable spaces by means of pairwise qfunctions and semi-continuous functions. We know that pairwise semi-stratifiable space is also a useful generalization of pairwise stratifiable spaces. It is a natural question how to characterize pairwise semi-stratifiable spaces in terms of a mixed condition of insertion and extension of semicontinuous functions. In this paper, we give some characterizations of pairwise semi-stratifiable spaces by means of pairwise g-functions and extension of semi-continuous functions. Finally, we also discuss the pairwise semi-stratifiability of topological ordered C-spaces with semi-stratifiable topology and obtain results which is a generalization of Theorem 1 in [9].

Received June 2, 2012; Accepted September 3, 2012

Supported by the National Natural Science Foundation of China (Grant Nos. 10971185; 10971186; 11201414), Fujian Province Support College Research Plan Project (Grant No. JK2011031) and the Natural Science Foundation of Fujian Province (Grant Nos. 2012J05013; 2013J01029).

E-mail address: likd56@126.com (Kedian LI); linfucai2008@yahoo.com.cn (Fucai LIN)

^{*} Corresponding author

For a bitopological space (X, τ_i, τ_j) , τ_i , τ_j are topologies on X $(i, j = 1, 2 \text{ and } i \neq j)$, and $\tau_i^c = \{X - O : O \in \tau_i\}$. We write $\operatorname{cl}_{\tau_i} A$ for the closure of A in the topological space (X, τ_i) . Similarly, we write $\operatorname{int}_{\tau_i} A$ for the interior of A in (X, τ_i) (i = 1, 2). The set of positive integers is denoted by N. We refer the readers to [10, 12] for undefined terms.

A real-valued function f defined on a topological space (X, τ_i) is τ_i -lower $(\tau_i$ -upper) semi-continuous if for each $x \in X$ and each real number r with f(x) > r (f(x) < r), there exists a τ_i -open set $U \subset X$, and $x \in X$ such that f(x') > r (f(x') < r) for every $x' \in U$. We write $LSC_{\tau_i}(X)$ ($USC_{\tau_i}(X)$) for the set of all real-valued τ_i -lower $(\tau_i$ -upper) semi-continuous functions on X into I = [0, 1]. Let f be a real-valued τ_i -lower $(\tau_i$ -upper) semi-continuous function defined on a topological space (X, τ_i) , then for any real number r, $\{x \in X : f(x) \leq r\} \in \tau_i^c$ ($\{x \in X : f(x) \geq r\} \in \tau_i^c$).

Let (X, τ_i, τ_j) be a bitopological space and $A \subset X$. We write χ_A for the *characteristic* function on A, that is, a function $\chi_A : X \to [0, 1]$ defined by

$$\chi_A(x) = \begin{cases} 1, & \text{if } x \in A, \\ 0, & \text{if } x \notin A. \end{cases}$$

Then $\chi_A \in \mathrm{USC}_{\tau_i}(X)$ if $A \in \tau_i^c$, and $\chi_A \in \mathrm{LSC}_{\tau_i}(X)$ if $A \in \tau_i$.

Definition 1.1 ([4]) A bitopological space (X, τ_i, τ_j) is called pairwise stratifiable if for each $A \in \tau_i^c$, one can assign a sequence $\{D(n, A)\}_{n \in \mathbb{N}}$ of τ_j -open sets such that

- (1) $A \subset D(n, A)$ for each $n \in N$;
- (2) If $A \subset E$, then $D(n, A) \subset D(n, E)$ for each $n \in N$, where $\{D(n, E)\}_{n \in N}$ is the sequence assigned to the $E \in \tau_i^c$;
 - (3) $A = \bigcap_{n \in N} \operatorname{cl}_{\tau_i} D(n, A).$

A bitopological space (X, τ_i, τ_j) is called pairwise semi-stratifiable if D satisfies the condition (2) and

$$(1')$$
 $A = \bigcap_{n \in N} D(n, A).$

It immediately follows from the Definition 1.1 that a bitopological space (X, τ_i, τ_j) is pairwise semi-stratifiable if and only if there exists an operator $D: N \times \tau_i^c \to \tau_j$ such that $D(n, A) \in \tau_j$ for each $n \in N$ and each $A \in \tau_i^c$, and satisfies the conditions (1') and (2) in Definition 1.1.

We may assume that the operator D is monotonic with respect to n, that is, $D(n+1,A) \subset D(n,A)$ for each $n \in N$ and each $A \in \tau_i^c$.

The following lemma, included for convenience, is clearly just another way of stating the definition.

Lemma 1.2 A topological space (X, τ_i, τ_j) is pairwise semi-stratifiable if and only if for each $V \in \tau_i$, one can assign a sequence $\{F(n, V)\}_{n \in N}$ of τ_j -closed sets such that

- $(1) V = \bigcup_{n \in N} F(n, V);$
- (2) If $V \subset G$, then $F(n,V) \subset F(n,G)$ for each $n \in N$, where F(n,G) is the sequence of τ_i -closed sets assigned to the $G \in \tau_i$;
 - (3) $F(n,V) \subset F(n+1,V)$ for all $V \in \tau_i$ and $n \in N$.

Definition 1.3 ([7]) A bitopological space (X, τ_i, τ_j) is called pairwise monotonically normal if for each pair (H, K) of disjoint subsets of X such that $H \in \tau_i^c$ and $K \in \tau_j^c$, one can assign a $D(K, H) \in \tau_i$ and $D(H, K) \in \tau_j$ such that

- (i) $H \subset D(H,K) \subset \operatorname{cl}_{\tau_i} D(H,K) \subset X$ -K, $K \subset D(K,H) \subset \operatorname{cl}_{\tau_j} D(K,H) \subset X$ -H, and
- (ii) If the pair (H, K) and (H', K') satisfy $H \subset H'$ and $K' \subset K$, then $D(H, K) \subset D(H', K')$, and $D(K', H') \subset D(K, H)$.

The next result is useful in the proof of our main theorems.

Lemma 1.4 ([4]) A bitopological space (X, τ_i, τ_j) is pairwise stratifiable if and only if it is pairwise monotonically normal and pairwise semi-stratifiable.

2. Characterizations of pairwise semi-stratifiable spaces

We give a characterization of pairwise semi-stratifiable spaces by the pairwise g-functions. A pairwise g-function on a bitopological space X is a function $g_i: N \times X \to \tau_j$ such that for each $x \in X$ and each $n \in N$, $x \in g_i(n,x)$ and $g_i(n+1,x) \subset g_i(n,x)$ (i,j=1,2) and $i \neq j$. In this section, all topologies are T_1 .

Theorem 2.1 For a bitopological space (X, τ_i, τ_j) , the following conditions are equivalent:

- (1) X is pairwise semi-stratifiable;
- (2) There exists a pairwise g-function $g_i: N \times \tau_i^c \to \tau_j \ (i, j = 1, 2 \ \text{and} \ i \neq j)$ which satisfies that:
 - (i) If $F \in \tau_i^c$, then $F = \bigcap_{n \in N} g_i(n, F)$;
- (ii) If $F, H \in \tau_i^c$ and $F \subset H$, then $g_i(n, F) \subset g_i(n, H)$ for each $n \in N$, where $\{g_i(n, H)\}_{n \in N}$ is the sequence assigned to the set H.
- (3) There exists a pairwise g-function $g_i: N \times X \to \tau_j$ such that if $x \in g_i(n, x_n)$, then $\{x_n\}_{\tau_i}$ -convergent to x.
- **Proof** (1) \Rightarrow (2). Let (X, τ_1, τ_2) be pairwise semi-stratifiable space and D an operator on X which satisfies the conditions (1) and (2) in Definition 1.1. For each $x \in X$, let $g_i(n, x) = \bigcap_{k \leq n} D(k, \{x\})$. Then $g_i : N \times X \to \tau_j$ is a g-function and $g_i(n, F) = \bigcup \{g_i(n, y) : y \in F\}$. The g_i satisfies the required conditions.
- $(2) \Rightarrow (1)$. Suppose (2) holds. For each $F \in \tau_i^c$ and each $n \in N$, define $D(n, F) = \bigcup \{g_i(n, t) : t \in F\}$, then $D(n, F) \in \tau_j$. The function D defined in this way is a pairwise semi-stratifiable operator in (X, τ_i, τ_j) .
 - $(1) \Rightarrow (3)$. Assume $g_i : N \times X \to \tau_j$ is defined as in $(1) \Rightarrow (2)$.

Let $x, x_n \in X$ and $x \in g_i(n, x_n)$ for each $n \in N$. If $\{x_n\}$ is not τ_i -convergent to x, then there exists a subsequence $\{x_{n_m}\}$ of $\{x_n\}$ such that $F = \{x_{n_m} : m \in N\}$ is a τ_i -closed subset of X and $x \notin F$. By Definition 1.1, $F = \bigcap_{n \in N} D(n, F)$ and

$$\bigcap_{n\in N}D(n,F)=\bigcap_{n\in N}\bigcup\{g_i(n,y):y\in F\}=\bigcap_{n\in N}g_i(n,F),$$

610 Kedian LI and Fucai LIN

and therefore, $x \notin \bigcup \{g_i(n_0, y) : y \in F\} = g(n_0, F)$ for each $n_0 \in N$. Thus $x \notin g_i(k, F)$ for each $k \geqslant n_0$. We can choose an $n_m \in N$ and $n_m \geqslant n_0$, $x \notin g_i(n_m, y)$ for each $y \in F$ and $x \notin g_i(n_m, x_{n_m})$, which is a contradiction.

 $(3) \Rightarrow (1)$. Suppose there exists pairwise g-function $g_i : N \times X \to \tau_j$ that satisfies the condition (3) in the theorem. Let $F \subset X$ be τ_i -closed, and define

$$D(n, F) = g_i(n, F) = \bigcup_{n \in N} \{g_i(n, t) : t \in F\}.$$

Then $D(n, F) \in \tau_j$ for each $n \in N$. Thus D is an operation on X which satisfies the conditions (1') and (2) in Definition 1.1. In fact, it is clear that (2) holds. For (1'), we need only prove that $\bigcap_{n \in N} D(n, F) \subset F$.

If $\bigcap_{n\in\mathbb{N}} D(n,F)$ - $F\neq\emptyset$, there exists $x\in X$ such that $x\notin F$ and $x\in g_i(n,x_n)$ for some $x_n\in F$ and each $n\in\mathbb{N}$. By the condition (3) in the theorem, we have the sequence $\{x_n\}$ is τ_i -convergent to x, and therefore $x\in\operatorname{cl}_{\tau_i}F=F$, which is a contradiction. \square

Theorem 2.2 A bitopological space (X, τ_i, τ_j) is pairwise semi-stratifiable if and only if for each partially ordered set $(\mathbb{H}, <)$ and a map $H : N \times \mathbb{H} \to \tau_i^c$ such that

- (1) $H(n+1,h) \subset H(n,h)$ for each $h \in \mathbb{H}$ and each $n \in N$;
- (2) For arbitrary $h_1, h_2 \in H$, if $h_1 \leqslant h_2$, then $H(n, h_2) \subset H(n, h_1)$ for each $n \in N$, there is a map $G: N \times \mathbb{H} \to \tau_j$, such that (1) and (2) hold for G, and there hold the following (a)-(b)
 - (a) $H(n,h) \subset G(n,h)$ for all $h \in \mathbb{H}$ and all $n \in N$;
 - (b) $\bigcap_{n \in \mathbb{N}} H(n,h) = \bigcap_{n \in \mathbb{N}} G(n,h)$ for all $h \in \mathbb{H}$.

Proof Necessity. Let (X, τ_i, τ_j) be a semi-pairwise stratifiable space and operator F be defined by Lemma 1.2. We show that the map $G: N \times \mathbb{H} \to \tau_j$ defined by

$$G(n,h) = X - F(n, X - H(n,h)),$$

satisfies the conditions of the theorem. By the properties of F and H, one can easily verify that the conditions (1) and (2) hold for G. Since $H(n,h) \in \tau_i^c$ for each $h \in \mathbb{H}$ and all $n \in N$, we have $X - H(n,h) \in \tau_i$. By the condition (1) in Lemma 1.2, the equality $\bigcup_{n \in N} F(n,V) = V$ holds for all $V \in \tau_i$, and therefore, we have $F(n,V) \subset V$ for each $n \in N$. Then $X - H(n,h) \supset F(n,X - H(n,h))$, and so $H(n,h) \subset G(n,h)$ for each $h \in \mathbb{H}$ and each $n \in N$.

So we need only to show that $\bigcap_{n\in N} H(n,h) \supset \bigcap_{n\in N} G(n,h)$ for each $h\in \mathbb{H}$. If $x\notin \bigcap_{n\in N} H(n,h)$, then $x\notin H(m_0,h)$ for some $m_0\in N$. Consequently, $x\in F(n_0,X-H(m_0,h))$ for some $n_0\in N$ by $X-H(m_0,h)=\bigcup_{n\in N} F(n,X-H(m_0,h))$. Let $m=\max\{n_0,m_0\}$. Then

$$x \in F(n_0, X - H(m_0, h)) \subset F(m, X - H(m_0, h)) \subset F(m, X - H(m, h)).$$

Thus $x \in F(m, X - H(m, h))$. But $F(m, X - H(m, h)) \cap G(m, h) = \emptyset$, hence $x \notin G(m, h)$, so $x \notin \bigcap_{n \in N} G(n, h)$, which proves the necessity.

Sufficiency. For each $U \in \tau_i$, we consider the map $H: N \times \tau_i \to \tau_i^c$ defined by H(n, U) = X - U. One can easily verify that H satisfies the conditions (1) and (2) above. So there is a map

 $G: N \times \tau_i \to \tau_j$ such that the conditions (1) and (2) hold for G. Moreover, $H(n,U) \subset G(n,U)$ for all $n \in N$ and all $U \in \tau_i$, and $\bigcap_{n \in N} H(n,U) = \bigcap_{n \in N} G(n,U)$. Let F(n,U) = X - G(n,U). Then the map $F: N \times \tau_i \to \tau_j^c$ satisfies the conditions in Lemma 1.2. In fact, it is clear that the condition (2) holds. Since $H(n,U) \subset G(n,U)$, we have

$$F(n,U) = X - G(n,U) \subset X - H(n,U) = U$$

for each $n \in N$ and

$$U = X - (X - U) = X - \bigcap_{n \in N} H(n, U) = X - \bigcap_{n \in N} G(n, U)$$
$$= \bigcup_{n \in N} (X - G(n, U)) = \bigcup_{n \in N} F(n, U).$$

Therefore the condition (1) holds. So X is a pairwise semi-stratfiable space. \square

Theorem 2.3 A bitopological space (X, τ_i, τ_j) is pairwise semi-stratifiable if and only if for each function $f \in LSC_{\tau_i}(X)$, one assigns a function $h(f) \in USC_{\tau_i}(X)$ such that

- (1) $0 \le h(f) \le f$ and 0 < h(f)(x) < f(x) whenever f(x) > 0.
- (2) $h(f) \leq h(f')$ whenever $f \leq f'$.

Proof Suppose that (X, τ_i, τ_j) is pairwise semi-stratifiable. For each $n \in N$ and $f \in LSC_{\tau_i}(X)$, let

$$H(n,f) = \{x \in X : f(x) \le 1/2^{n-1}\}.$$

Then $H(n,h) \in \tau_i^c(X)$. So the equality defines a map

$$H: N \times LSC_{\tau_i}(X) \to \tau_i^c$$

and it is easy to verify that H satisfies the conditions (1) and (2) in Theorem 2.2. Since (X, τ_i, τ_j) is a pairwise semi-stratifiable space, there exists a map

$$G: N \times LSC_{\tau_i}(X) \to \tau_i$$

such that conditions (1), (2), (a) and (b) hold in Theorem 2.2 for G. By the condition (b), we have

$$\bigcap_{n \in N} H(n, f) = \bigcap_{n \in N} G(n, f) = \{ x \in X : f(x) = 0 \}. \tag{*}$$

Now let $\alpha(n, f) = \chi_{G(n, f)}$. Since $G(n, f) \in \tau_j$, we have $\alpha(n, f) \in LSC_{\tau_i}(X)$. Let

$$h(f)(x) = 1 - \sum_{n=1}^{\infty} \frac{1}{2^n} \alpha(n, f)(x), \text{ for all } x \in X.$$

By Theorem 2.4 in [14], we have $\sum_{n=1}^{\infty} \frac{1}{2^n} \alpha(n, f) \in LSC_{\tau_j}(X)$. So $h(f) \in USC_{\tau_j}(X)$.

We shall show that the map h defined above satisfies the necessary conditions (1) and (2) in the theorem. Suppose that $x \in X$. If f(x) = 0, then $x \in H(n, f) \subset G(n, f)$ and so $\alpha(n, f)(x) = 1$ for all $n \in N$ by (*). Therefore,

$$h(f)(x) = 1 - \sum_{n=1}^{\infty} \frac{1}{2^n} \alpha(n, f)(x) = 1 - \sum_{n=1}^{\infty} \frac{1}{2^n} = 0.$$

If f(x) > 0, then $x \notin \bigcap_{n \in N} G(n, f)$ by (*). Let $k = \min\{n : x \notin G(n, f)\}$. Then $x \in G(n, f)$ and so $\alpha(n, f)(x) = 0$ for all n < k. But $x \notin G(k, f)$, and so $x \notin H(n, f)$ by $H(n, f) \subset G(n, f)$. This implies that $f(x) > 1/2^{k-1}$. Hence, we have

$$\sum_{n=1}^{\infty} \frac{1}{2^n} \alpha(n, f)(x) = \sum_{n=1}^{k-1} \frac{1}{2^n} \alpha(n, f)(x) + \sum_{n=k}^{\infty} \frac{1}{2^n} \alpha(n, f)(x)$$
$$= 1 - \frac{1}{2^{k-1}} + \sum_{n=k}^{\infty} \frac{1}{2^n} \alpha(n, f)(x).$$

Consequently,

$$1 - \frac{1}{2^{k-1}} \leqslant \sum_{n=1}^{\infty} \frac{1}{2^n} \alpha(n, f)(x) < \sum_{n=1}^{\infty} \frac{1}{2^n} = 1.$$

By the definition of h, we have $0 < h(f)(x) \le \frac{1}{2^{k-1}} < f(x)$. Therefore, (1) holds.

It remains to show that $h(f_1) \leq h(f_2)$ whenever $f_1 \leq f_2$. Suppose that $f_1 \leq f_2$. Then $G(n, f_2) \subset G(n, f_1)$, and so $\chi_{\alpha(n, f_2)} \leq \chi_{\alpha(n, f_1)}$, and therefore, we have $\alpha(n, f_2) \leq \alpha(n, f_1)$ for each $n \in N$. By the definition of h, one easily sees that $h(f_1) \leq h(f_2)$. Therefore, (2) holds.

Conversely, suppose there is a map $h: LSC_{\tau_i}(X) \to USC_{\tau_j}(X)$ that satisfies the conditions (1) and (2) given in the theorem. For any fixed $V \in \tau_i$, we consider the function $f_V = \chi_V$. Then $f_V \in LSC_{\tau_i}(X)$ and so $h(f_V) \in USC_{\tau_i}(X)$. For each $n \in N$, let

$$F(n,V) = \{ x \in X : h(f_V)(x) \ge 1/2^n \}.$$

Then the equality above defines a map $F: N \times \tau_i \to \tau_j^c$. We shall show that the map F satisfies the conditions (1) through (3) in Lemma 1.2.

For each $n \in N$ and $x \in X$, if $x \notin V$, then $f_V(x) = 0$. Also $x \notin F(n, V)$ for all $n \in N$ by the condition $0 \leqslant h(f_V) \leqslant f_V$ in the theorem. Hence $F(n, V) \subset V$ for all $n \in N$ and so $\bigcup_{n \in N} F(n, V) \subset V$. Conversely, for each $x \in V$, we have $f_V(x) = \chi_V(x) = 1 > 0$, and so $h(f_V)(x) > 0$ by the condition (1) given in the theorem. Hence there is $m \in N$ such that $h(f_V)(x) \geqslant \frac{1}{2^n}$, which implies that $x \in F(m, V)$. Therefore, $V \subset \bigcup_{n \in N} F(n, V)$. Hence the condition (1) in Lemma 1.2 holds.

If $U, V \in \tau_i$, and $U \subset V$, then $f_U \subset f_V$. Also $h(f_U) \leq h(f_V)$ by the condition (2) given in the theorem. Thus $F(n, U) \subset F(n, V)$ for all $n \in N$. Therefore, the condition (2) holds in Lemma 1.2. Therefore, X is a pairwise semi-stratifiable space. \square

Corollary 2.4 A bitopological space (X, τ_i, τ_j) is pairwise semi-stratifiable if and only if for each pair (A, U) of subsets of X, $A \in \tau_j^c$, $U \in \tau_i$ and $A \subset U$, there is an $h_{A,U} \in LSC_{\tau_j}(X)$ such that $A = h_{A,U}^{-1}(0)$, $X - U = h_{A,U}^{-1}(1)$, and $h_{A,U} \geqslant h_{B,V}$ whenever $B \in \tau_i^c$, $A \subset B$ and $V \in \tau_j$, $U \subset V$.

Proof Necessity. Suppose that (X, τ_i, τ_j) is a pairwise semi-stratifiable space. Then, by Theorem 2.3, there is a map $\phi : LSC_{\tau_i}(X) \to USC_{\tau_j}(X)$ that satisfies the conditions (1) and (2) in Theorem 2.3. For each pair (A, U) of subsets of X, $A \in \tau_j^c$, $U \in \tau_i$ and $A \subset U$. Let $f_A = 1 - \chi_A$, $g_U = \phi(\chi_U)$. Since $A \in \tau_j^c$ and $U \in \tau_i$, we have $f_A \in LSC_{\tau_j}(X)$ and $\chi_U \in LSC_{\tau_i}(X)$. Therefore

 $f_A \in LSC_{\tau_j}(X)$ and $g_U \in USC_{\tau_j}(X)$. Define $h_{A,U} : X \to [0,1]$ by $h_{A,U} = \frac{f_A}{1 + h(g_U)}$ for all $x \in X$. Thus $h_{A,U} \in LSC_{\tau_j}(X)$ by Proposition 1.2 in [14]. It is easy to verify that $h_{A,U} \ge h_{B,V}$ whenever $A \subset B$ and $U \subset V$.

From the definition of $h_{A,U}$, one can see that $h_{A,U}(x) = 0$ if and only if $x \in A$, which implies that $A = h_{A,U}^{-1}(0)$. Similarly, we can verify that $X - U = f_{A,U}^{-1}(1)$.

Sufficiency. For each $U \in \tau_i$, let $f_U = 1 - h_{\emptyset,U}$ where \emptyset is the empty set. Then $f_U \in \mathrm{USC}_{\tau_j}(X)$, and $f_U \geqslant h_V$ when $U \subset V$. It is easy to verify that $f_U(x) = 0$ if and only if $x \notin U$. For each $n \in N$, let $F(n,U) = \{x \in X : f_U(x) \geqslant \frac{1}{2^n}\}$, and hence $F(n,U) \in \tau_j^c$ by $f_U \in \mathrm{USC}_{\tau_j}(X)$. To prove that (X, τ_1, τ_2) is pairwise semi-stratifiable, it suffices to show that F satisfies the conditions (1) through (3) in Lemma 1.2. It can be proved in the same manner as in proof of the sufficiency in Theorem 2.3. \square

Corollary 2.5 A bitopological space (X, τ_i, τ_j) is pairwise semi-stratifiable space if and only if for each $U \in \tau_i$, there is an $f_U : X \to [0,1]$ and $f_U \in \mathrm{USC}_{\tau_j}(X)$ such that $X - U = h_U^{-1}(0)$, and $f_U \geqslant h_V$ whenever $U \subset V$.

Proof Suppose that (X, τ_i, τ_j) is a pairwise semi-stratifiable space, and let $f_U = 1 - f_{\emptyset,U}$, where $f_{\emptyset,U}$ is the function given in Corollary 2.4. Then $f_U \in \mathrm{USC}_{\tau_j}(X)$, and $f_U \leqslant h_V$ when $U \subset V$. Since $X - U = f_{\emptyset,U}^{-1}(1)$ and $f_U = 1 - f_{\emptyset,U}$, it can be checked that $x \in X - U$ if and only if $x \in f_U^{-1}(0)$, which implies that $X - U = f_U^{-1}(0)$.

The sufficiency can be proved in the same manner as the proof of the sufficiency in Corollary 2.4. \square

3. Topological ordered C-spaces and pairwise semi-stratifiable spaces

A topological ordered space (X, τ, \leqslant) is a set X endowed with a topology τ and a partial order \leqslant . A subset A of X is said to be an upper set of X if $x \leqslant y$ and $x \in A$ imply that $y \in A$. Similarly, we say that a subset A of X is a lower set of X if $y \leqslant x$ and $x \in A$ imply that $y \in A$. We let τ^{\flat} denote the collection of τ -open lower sets of X and τ^{\sharp} denote the collection of τ -open upper sets of X. It can be easily verified that the τ^{\flat} and τ^{\sharp} are topologies on X, and that $(X, \tau^{\flat}, \tau^{\sharp})$ is a bitopological space (in the following often more briefly called bispace [5]). For any subset A of X, i(A) (resp., d(A)) will denote the intersection of all upper (lower) sets of X containing A. If A = i(A) (resp., d(A) = A), we say A is an upper (a lower) set. Following Priestley [6], we shall call a topological ordered space (X, τ, \leqslant) a C-space if d(F) and i(F) are closed whenever F is a closed subset of X. Similarly, a topological ordered space (X, τ, \leqslant) is called an I-space if d(G) and i(G) are open whenever G is an open subset of X.

Theorem 3.1 Let (X, τ, \leq) be a topological ordered C-space with a semi-stratifiable topology τ . Then $(X, \tau^{\flat}, \tau^{\natural})$ is pairwise semi-stratifiable.

Proof Since (X, τ) is semi-stratifiable, for each closed set F of X there is a sequence $(F_n)_{n \in N}$ of open sets such that:

614 Kedian LI and Fucai LIN

- (i) $\bigcap_{n \in N} F_n = F$ and
- (ii) For all pairs H, F of closed sets such that $H \subset F$, we have $H_n \subset F_n$ whenever $n \in N$, where $\{H_n\}_{n \in N}$ is the sequence of open sets assigned to the H.

Let F be a closed lower set of X. Put $D_{\tau^{\flat}}(n,F) = X - d(X - F_n)$. Note that $D_{\tau^{\flat}}(n,F) \in \tau^{\natural}$ for each $n \in N$. Furthermore $F \subset D_{\tau^{\flat}}(n,F) \subset F_n$ for each $n \in N$. Therefore $F \subset \bigcap_{n \in N} D_{\tau^{\flat}}(n,F) \subset \bigcap_{n \in N} F_n = F$. Thus $F = \bigcap_{n \in N} D_{\tau^{\flat}}(n,F)$. Moreover if F and H are closed lower sets such that $F \subset H$, then $D_{\tau^{\flat}}(n,F) \subset D_{\tau^{\flat}}(n,H)$ for every $n \in N$. Indeed, given $n \in N$, we have $F_n \subset H_n$, thus $X - H_n \subset X - F_n$ and $d(X - H_n) \subset d(X - F_n)$. Consequently, $D_{\tau^{\flat}}(n,F) = X - d(X - F_n) \subset X - d(X - H_n) = D_{\tau^{\flat}}(n,H)$ for each $n \in N$.

In the same way, let F be a closed upper set of X, we define $D_{\tau^{\natural}}(n,F) = X - i(X - F_n)$. By Definition 1.1, we conclude that the bitopological space $(X, \tau^{\flat}, \tau^{\natural})$ is pairwise semi-stratifiable. \square

Theorem 3.2 Let (X, τ, \leq) be a topological ordered C-space with a monotonically normal topology τ . Then $(X, \tau^{\flat}, \tau^{\natural})$ is pairwise monotonically normal.

Proof Since (X, τ) is monotonically normal, for each pair (H, K) of disjoint closed subset of X, there exists open set $D_1(H, K)$ of X such that (i) $H \subset D_1(H, K) \subset \operatorname{cl}_{\tau} D_1(H, K) \subset X - K$ and (ii) if the pair (H, K) and (H', K') satisfy $H \subset H'$ and $K' \subset K$, then $D_1(H, K) \subset D_1(H', K')$.

Let (H, K) be a pair of disjoint subsets of X such that H is a closed lower set and K is a closed upper set. Put

$$D(H, K) = X - i(X - D_1(H, K)), D(K, H) = X - d(X - D_1(K, H)).$$

Then D(H,K) is an open upper set and D(K,H) is an open lower set. Since $H \subset D_1(H,K)$, we have $X - H \supset X - D_1(H,K)$ and X - H is an open upper set. Furthermore $X - H = i(X - H) \supset i(X - D_1(H,K))$ and $H \subset X - i(X - D_1(H,K)) = D(H,K)$ by the fact that X is a C-space. Therefore, we have $d(\operatorname{cl}_{\tau}D(H,K)) \subset X - K$ and so $\operatorname{cl}_{\tau^{\flat}}D_1(H,K) \subset X - K$. We conclude that

$$H \subset D(H,K) \subset \operatorname{cl}_{\tau^{\flat}} D(H,K) = \operatorname{cl}_{\tau^{\flat}} (X - D_1(H,K)) \subset X - K.$$

By symmetry of the situation we conclude that

$$K \subset D(K, H) \subset \operatorname{cl}_{\tau^{\natural}} D(K, H) \subset X - H.$$

Moreover if the pairs (H, K) and (H', K') satisfy $H \subset H'$ and $K' \subset K$, then $D_1(H, K) \subset D_1(H', K')$ and $D_1(K', H') \subset D_1(K, H)$. We have

$$i(X - D_1(H, K)) \supset i(X - D_1(H', K'))$$

and

$$d(X - D_1(K', H')) \supset d(X - D_1(H, K)).$$

Consequently,

$$D(H,K) = X - i(X - D_1(H,K)) \subset X - i(X - D_1(H',K')) = D(H',K')$$

and

$$D(K', H') = X - d(X - D_1(K', H')) \subset X - i(X - D_1(K, H)) = D(K, H).$$

Therefore, the bitopological space $(X, \tau^{\flat}, \tau^{\natural})$ is pairwise monotonically normal. \square

Corollary 3.3 ([9]) Let (X, τ, \leq) be a topological ordered C-space with a stratifiable topology τ . Then $(X, \tau^{\flat}, \tau^{\natural})$ is pairwise stratifiable.

Proof Since a space is stratifiable if and only if it is a monotonically normal and semi-stratifiable space [8], X is a monotonically normal and semi-stratifiable space. From Proposition 1 in [7], Theorems 3.1 and 3.2, we conclude that $(X, \tau^{\flat}, \tau^{\natural})$ is pairwise stratifiable. \square

Acknowledgements We would like to thank the anonymous reviewers for their valuable suggestions, which have helped to improve the quality of the paper.

References

- [1] C. R. BORGES. On stratifiable Spaces. Pacific J. Math., 1966, 17: 1-16.
- [2] P. GARTSIDE. Generalized Metric Spaces (I). Encyclopedia of General Topology. Elsevier Science Publishers, 2004.
- [3] G. GRUENHANGE. Generalized Metric Spaces. Handbook of Set-theoretic Topology. Elsevier Science Publishers, 1984.
- [4] A. GUTIÉRREZ, S. ROMAGUERA. On pairwise stratifiable space. Rev. Roumaine Math. Pures Appl., 1986, 31(2): 141–150. (in Spanish)
- [5] J. C. KELLY. Bitopological spaces. Proc. London Math. Soc., 1963, 13(3): 71-89.
- [6] H. A. PRIESTLEY. Ordered topological spaces and the representation of distributive lattices. Proc. London Math. Soc., 1972, 24(3): 507–530.
- [7] J. MARÍN, S. ROMAGUERA. Pairwise monotonically normal spaces. Comment. Math. Univ. Carolin., 1991, 32(3): 567-579.
- [8] R. W. HEATH, D. J. LUTZER, P. L. ZENOR. Monotonically normal spaces. Trans. Amer. Math. Soc., 1973, 178: 481–493.
- [9] H. -P. A. KÜNZÍ, Z. MUSHAANDJA. Topological ordered C-(resp.I-)spaces and generalized metric spaces. Topology Appl., 2009, 52: 2914–2922.
- $[10]\,$ R. ENGELKING. $General\ Topology.$ Heldermann Verlag, Berlin, 1989.
- [11] Kedian LI. Characterizations of pairwise stratifiable spaces. Acta Math. Sci. Ser. A Chin. Ed., 2010, 30(3): 649–655. (in Chinese)
- [12] Shou LIN. Generalized Metric Spaces and Mappings (Second Edition). China Science Publishers, Beijing, 2007. (in Chinese)
- [13] L. A. STEEN, J. A. SEEBACH. Counterexamples in Topology. Holt, Rinehart and Winston, Inc., New York-Montreal, Que.-London, 1970.
- [14] Erguang YANG, Pengfei YAN. Function characterizations of semi-stratifiable spaces. J. Math. Res. Exposition, 2006, 26(2): 213–218.