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Abstract In this paper, we present a new idea to study the stochastic current within the

canonical framework of white noise analysis. We define Wick-type stochastic current by using

Wick integral with respect to Brownian motion, firstly. Moreover, we prove that the Brownian

stochastic current is considered as a Hida distribution in terms of white noise approach and

S-transform.
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1. Introduction

The concept of current comes from geometric measure theory. The simplest is the functional

ϕ →
∫ T

0

〈ϕ(γ(t)), γ(t)′〉Rddt,

where ϕ : Rd → Rd and γ(t) is a rectifiable curve. A functional ξ(x) is defined by

ξ(x) =

∫ T

0

δ(x − γ(t))γ(t)′dt,

where δ(x) is a Dirac function. If we want to simulate this current, we need replace the deter-

ministic curve γ(t) with stochastic process Xt. At the same time, the stochastic integral must be

properly interpreted. Recently, attentions have been paid to the research on stochastic current.

In general, stochastic current is defined by

ϕ → I(ϕ) =

∫ T

0

〈ϕ(Xt), dXt〉,

where ϕ is a vector function on Rd belonging to some Banach spaces V, Xt is a stochastic process

and the integral is some version of a stochastic integral defined through regularization. Stochastic

current is a continuous version of the mapping, i.e., stochastic current is regarded as a stochastic

element of the dual space of V (see [1]).
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The problem of stochastic current is motivated by the study of fluidodynamical models.

In [2], in the study of the energy of a vortex filament naturally appear some stochastic double

integrals related to Wiener process∫
[0,T ]2

f(Xs − Xt)dXsdXt,

where f(x) = Kα(x) is the kernel of the pseudo-differential operator (1 − ∆)−α.

Some results about stochastic currents of Gaussian processes have been obtained in recent

years. One direction of research is the regularity for differential stochastic integral. For example,

Flandoli et. al have studied the existence and regularity of stochastic currents through Malliavin

calculus, where the integrals are defined as Skorohod integrals with respect to the Brownian

motion and fractional Brownian motion, respectively. In [3] authors have shown the Sobolev

regularity of the stochastic current, which is associated with the pathwise integral.

Because there exists non-adaptable stochastic integral, when we define Brownian stochastic

current, we have to look for some methods to deal with this integral easily and give a proper

explanation. It seems to be desirable to define the Wick-type Brownian stochastic current rather

than other stochastic current. For this purpose, motivated by [4-8], we define the Brownian

stochastic current via Wick integral and verify that it is a Hida distribution by using white noise

analysis and S-transform. Let us compare our results with the analogous ones from the case of

Brownian motion in [4]. Note that Flandoli et. al [4] considered the Skorohod-type stochastic

current as a distribution in the Sobolev spaces of negative order through Malliavin calculus.

The rest of paper is organized as follows. In Section 2, we provide some background mate-

rials in white noise analysis. In Section 3, we firstly define the Wick-type stochastic current of

Brownian motion. Lastly, we prove that Brownian stochastic current is a Hida distribution in

white noise analysis framework.

2. White noise analysis

In this section we briefly recall some notions and facts in white noise analysis, and refer to

[5, 7–9] for details.

The starting point of white noise analysis is the real Gelfand triple S(R) ⊂ L2(R, Rd) ⊂
S∗(R), where S(R) and S∗(R) are the Schwartz spaces of test functions and tempered distribu-

tions, respectively.

Let (L2) ≡ L2(S∗(R), dµ) be the Hilbert space of µ-square integrable functionals on S∗(R).

Then by the Wiener-Itô-Segal isomorphism theorem, for each Φ ∈ (L2) this implies the chaos

expansion Φ(ω) =
∑∞

n=0〈: ω⊗n :, Fn〉. Let Γ(A) be the second quantization of A, where A is

defined by

(Ag)i(t) = (− d2

dt2
+ t2 + 1)gi(t).

For each integer p, let (Sp) be the completion of DomΓ(A)p with respect to the Hilbert norm

‖ · ‖p=‖ Γ(A)p ‖0. Let (S) =
⋂

p≥0(Sp) be the projective limit of {(Sp) | p ≥ 0} and (S)∗ =⋃
p≥0(S−p) be the inductive limit of {(S−p) | p ≥ 0}, respectively.
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The second Gelfand triple is: (S) ⊂ (L2) ⊂ (S)∗. Elements of (S) (resp., (S)∗) are called

Hida testing (resp., generalized) functionals. For f ∈ S(R), S-transform is defined to be the

bilinear dual product on (S) × (S)∗ by SΦ(f) =≪ Φ, e−(1/2)‖ξ‖2

exp 〈., f〉 ≫.

Definition 2.1 ([5, 9]) A function G : S(R) → C is called a U-functional whenever

(i) For every f1, f2 ∈ S(R) the mapping G(λf1 + f2) has an entire extension to λ ∈ C;

(ii) There are constants C1, C2 > 0 such that

| G(zf) |≤ C1 exp{C2 | z |2| Ap
f |22}

with p > 0, ∀z ∈ C.

Lemma 2.2 ([5, 9]) Let {Gk}k∈N denote a sequence of U-functional with following properties:

(i) For all f ∈ S(R), {Gk(f)}k∈N is a Cauchy sequence;

(ii) There exist Ci, p such that | Gk(zf) |≤ C1 exp{C2 | z |2| Ap
f |22} uniformly in R. Then

there is a unique Φ ∈ (S)∗ such that S−1Gk converges strongly to Φ.

Lemma 2.3 ([5, 9]) Let (Ω, F, µ) be a measure space, and Φλ be a mapping defined on Ω with

values in (S)∗. We assume S-transform of Φλ:

(i) is a µ-measurable function of λ for f ∈ S(R);

(ii) obeys a U-functional estimate

| SΦλ(zf) |≤ C1(λ) exp{C2(λ) | z |2| Ap
f |22}

for some fixed p and for C1 ∈ L1(µ), C2 ∈ L∞(µ). Then Φλ is Bochner-integrable in the Hilbert

spaces (S)−q for q large enough and∫
Ω

Φλdµ(λ) ∈ (S)∗, S(

∫
Ω

Φλdµ(λ))(f) =

∫
Ω

(SΦλ)(f)dµ(λ).

3. Stochastic current of Brownian motion

In this section, we define Wick-type Brownian stochastic current, firstly. Next we use

developed white noise analysis and the S-transform to deal with the problems of existence of

stochastic currents. Under some conditions, we show that Wick-type Brownian stochastic current

is a Hida distribution.

Definition 3.1 Let ϕ : Rd → Rd be defined on the set of all smooth compact support vector

fields. Then ϕ → I(ϕ) ≡
∫ T

0
〈ϕ(Bt), ⋄dBt〉 is a functional in space of those vector fields. Wick-

type Brownian stochastic current is given by

ξ(x) =

∫ T

0

δ(x − Bt) ⋄ Wtdt, (1)

where Wt = dBt

dt and ⋄ denotes Wick integral.

The Wick-type stochastic current given in Definiton 3.1 is restricted to Brownian motion,

which is a case of the stochastic current in our introduction. The stochastic current in our paper

is defined as Wick integral with respect to Brownian motion.
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Theorem 3.2 For every positive integer d and ε > 0 Brownian stochastic current

ξε(x) =

∫ T

0

pε(x − Bt) ⋄ Wtdt,

where pε(x) = 1√
2πε

exp{−x2

2ε }, is a Hida distribution. Moreover, for each f ∈ S(R), S-transform

of ξε(x) is given by

S(ξε(x))(f) =

∫ T

0

(
1

2π(ε + t)
)

d

2 exp{ (x −
∫ t

0
f(s)ds)2

2(ε + t)
}f(t)dt. (2)

Proof Put

Φε(w) ≡ (
1

2πε
)

d

2 exp{− (x − Bt)
2

2ε
}.

For arbitrary f ∈ S(R), we need to verify that the S-transform of the integrand

S(Φε(w) ⋄ Wt)(f) = S(Φε(w))(f)S(Wt)(f)

=

d∏
i=1

(
1

2π(ε + t)
)

1

2 exp{− (x −
∫ t

0
fi(s)ds)2

2(ε + t)
}fi(t)

obeys the conditions of Lemma 2.3 with regard to Lebesgue measure dλ on Rd. Measurability

is evident. Next we will prove that the bound condition is also satisfied.

For all complex z ∈ C, we have

| S(Φε(w) ⋄ Wt)(zf) |

≤ (
1

2π(ε + t)
)

d

2 exp{x2+ |
∫ t

0
zf(s)ds |2

ε + t
} | zf(t) |

≤ (
1

2π(ε + t)
)

d

2 exp{x2+ | z |2 t2
∑d

i=1 supx∈R | fi(x) |2
ε + t

} | z |
d∑

i=1

sup
x∈R

| fi(x) |,

where exponential part in the last inequality is integrable, and t2

t+ε is bounded on [0, T ]. Thus,

according to Lemma 2.3 the result is obtained. �

Theorem 3.3 Set t > 0. Then Bochner integral

δ(x − B(t)) ≡ (
1

2π
)d

∫
Rd

exp{iλ(x − Bt)}dλ (3)

and

ξ(x) =

∫ T

0

δ(x − Bt) ⋄ Wtdt (4)

are both Hida distributions. Moreover, when ε tends to 0, ξε(x) converges to ξ(x) in (S)∗.

Proof Recalling some facts in [5], we can show that

δ(x − B(t)) ≡ (
1

2π
)d

∫
Rd

exp{iλ(x − Bt)}dλ (5)

is a Hida distribution.

In fact, let us introduce the following notation

Φ(w) ≡ exp{iλ(x − Bt)}.
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We will check that the S-transform of Φ(w) satisfies the condition of its applicability with respect

to Lebesgue on Rd. From the definition of S-transform, we now calculate

S(Φ(w))(f) = S(eiλ(x−Bt))(f) = exp{iλx}E(exp{−iλ〈w + f, I[0,t]〉})

= exp{iλx − 1

2
λ2t − iλ

∫ t

0

f(s)ds}. (6)

The measurability is obvious and the boundedness condition can be verified as follows

| S(δ(x − Bt)(zf) |

= (
1

2π
)d |

∫
Rd

exp{−1

2
λ2t + iλ(x − z

∫ t

0

f(s)ds)}dλ |

≤ (
1

2π
)d |

∫
Rd

exp{−1

4
| λ |2 t} exp{−1

4
| λ |2 t+ | λ || x− | z |

∫ t

0

f(s)ds |}dλ |

≤ (
1

2π
)d |

∫
Rd

exp{−1

4
| λ |2 t} exp{−(

| λ |
√

t

2
− 1√

t
| x− | z |

∫ t

0

f(s)ds |)2}·

exp{1

t
| x− | z |

∫ t

0

f(s)ds |2}dλ |

≤ (
1

2π
)d |

∫
Rd

exp{−1

4
| λ |2 t} exp{2(x2+ | z |2 t2(

d∑
i=1

sup
x∈R

| fi(x) |)2)1

t
}dλ |,

for all z ∈ C.

Secondly, by using similar method, we apply Lemma 2.3 again to verify

ξ(x) =

∫ T

0

δ(x − Bt) ⋄ Wtdt (7)

is also a Hida distribution.

In fact, it follows from (5)–(7)

S(δ(x − Bt) ⋄ Wt)(f) = (
1

2π
)d

∫
Rd

S(Φ(w))(f)S(Wt)(f)dλ

= (
1

2π
)d

∫
Rd

exp{−1

2
λ2t + iλ(x −

∫ t

0

f(s)ds)}dλf(t).

For all z ∈ C, the bound is obtained as follows:

| S(δ(x − Bt) ⋄ Wt)(zf) |

= (
1

2π
)d | zf(t) ||

∫
Rd

exp{−1

2
λ2t + iλ(x − z

∫ t

0

f(s)ds)}dλ |

≤ (
1

2π
)d | zf(t) ||

∫
Rd

exp{−1

4
| λ |2 t}·

exp{−(
| λ |

√
t

2
− 1√

t
| x− | z |

∫ t

0

f(s)ds |)2}·

exp{1

t
| x− | z |

∫ t

0

f(s)ds |2}dλ |

≤ (
1

2π
)d | z |

d∑
i=1

sup
x∈R

| fi(x) ||
∫

Rd

exp{−1

4
| λ |2 t}·
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exp{2(x2+ | z |2 t2(

d∑
i=1

sup
x∈R

| fi(x) |)2)1

t
}dλ | . (8)

The first exponential part in (8) is integrable on Rd with respect to λ, while the second part is

a constant with respect to λ.

Hence, according to Lemma 2.3, Brownian stochastic current

ξ(x) =

∫ T

0

δ(x − Bt) ⋄ Wtdt

is a Hida distribution, and the following equalities are established

S(ξ(x))(f) =

∫ T

0

S(δ(x − Bt))(f)S(Wt)(f)dt

= (
1

2π
)d

∫ T

0

∫
Rd

exp{−1

2
λ2t + iλ(x −

∫ t

0

f(s)ds)}f(t)dλdt.

Lastly, when ε tends to 0, by dominated convergence theorem S(ξε(x))(f) converges to

S(ξ(x))(f). Applying Lemma 2.2, we obtain the required convergence. In other words, when ε

tends to 0, ξε(x) converges to ξ(x) in (S)∗. �

From what we stated above, we can draw the conclusion that our results are different from

those in [4], where the Brownian stochastic current was used to define Skorohod integral via Malli-

avin calculus. Here we are interested in Hida generalized functionals space and the condition

of Brownian stochastic current belonging to this space. On the other hand, we give Wick-type

Brownian stochastic current for the first time, which admits us to use the developed white noise

theory. In particular, the S-transform and the space of generalized white noise functionals are

playing significant roles.
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