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Abstract In this paper, by using superposition method, we aim to show that
∑n

i=1 (2i− 1)2k−1

is the product of n2 and a rational polynomial in n2 with degree k−1, and that
∑n

i=1 (2i− 1)2k

is the product of n(2n− 1)(2n + 1) and a rational polynomial in (2n− 1)(2n + 1) with degree

k−1. Moreover, recurrence formulas to compute the coefficients of the corresponding rational

polynomials are also obtained.
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1. Introduction

The study on sums of powers of integers
∑n

i=1 im has a long history. In recent years, it has
been extensively studied and many good results have been obtained [2–6, 8, 9, 11–13, 16], some
of which were improved in our former paper [10] along with [3–6, 16]. It is well-known that one
of the unusual and effective methods used to express the sums of powers of integers used the
so-called Bernoulli numbers, while Edwards [8] traced the knowledge of the formula to Johann
Faulhaber who showed us how to obtain the coefficients by matrix inversion. By submitting
problem E3204 to the Math Monthly [9], Gessel responded to the same stimulus on a bivariate
generating function for Faulhaber’s coefficients. Faulhaber’s work, including more generally r-
fold sums of powers, was nicely exposed by Knuth [11]. For the study of polynomial relations
between sums of powers functions, the readers can refer to Beardon [2]. Recall that in [10] we
have proved that

n∑

i=1

i2k+1 = n2(n + 1)2
k∑

i=1

ain
k−i(n + 1)k−i, k = 1, 2, . . . , (1.1)

where 



a1 =
1

2(k + 1)
,

ai = −
∑i−1

r=1 ar( k−r+2
2i−2r+1)

k − i + 2
, i = 2, 3, . . . , k.

(1.2)
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In fact, ai (i = 2, 3, . . . , k) can also be rewritten as




ai = −
∑i−1

r=1 ar( k−r+2
2i−2r+1)

k − i + 2
, i 6 [k+2

2 ],

ai = −
∑i−1

r=2i−k−1 ar( k−r+2
2i−2r+1)

k − i + 2
, i > [k+2

2 ].

Therefore, we have




a2 = −k − 1
2 · 3!

,

a3 =
k(k − 2)(7k − 1)

3!5!
,

a4 = −k(k − 1)(k − 3)
3!7!

(31k2 − 27k − 10),

a5 =
3k(k − 1)(k − 2)(k − 4)

10!
(127k3 − 310k2 + 37k + 90),

a6 = −k(k − 1)(k − 2)(k − 3)(k − 5)
3!11!

(2555k4 − 12674k3 + 14161k2

+ 2486k − 3864),

a7 =
k(k − 1)(k − 2)(k − 3)(k − 4)(k − 6)

15!
(1414477k5 − 11974437k4+

31092673k3 − 22432587k2 − 7706534k + 6399960),

· · ·
ak−1 = −4ak−2 + ak−3

3
,

ak = −ak−1

2
.

In [10], we have also proved that

n∑

i=1

i2k = n(n + 1)(2n + 1)
k∑

i=1

bin
k−i(n + 1)k−i, k = 1, 2, . . . , (1.3)

where




b1 =
1

(4k + 2)
,

bi = −
i−1∑
r=1

br( k−r+2
2i−2r+1)

k − r + 2
, i = 2, 3, . . . , k,

(1.4)

and bi (i = 2, 3, . . . , k) can be rewritten as




bi = −
i−1∑
r=1

br( k−r+2
2i−2r+1)

k − r + 2
, i 6 [k+2

2 ],

bi = −
i−1∑

r=2i−k−1

br( k−r+2
2i−2r+1)

k − r + 2
, i > [k+2

2 ].

However, to the best of our knowledge, the results concerning sums of powers of odd integers
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are very few [1, 14, 15]. In this case, it follows straightforward that

n∑

i=1

(2i− 1)m =
2n∑

i=1

im − 2m
n∑

i=1

im. (1.5)

Thus, using (1.1), (1.2) and (1.5), we obtain that,




n∑

i=1

(2i− 1) = n2,

n∑

i=1

(2i− 1)3 = n2(2n2 − 1),

n∑

i=1

(2i− 1)5 =
n2(16n4 − 20n2 + 7)

3
.

(1.6)

In an analogous way, (1.3) together with (1.4) and (1.5) yields that,




n∑

i=1

(2i− 1)2 =
n(2n− 1)(2n + 1)

3
,

n∑

i=1

(2i− 1)4 =n(2n− 1)(2n + 1)[
(2n− 1)(2n + 1)

5
− 4

15
],

n∑

i=1

(2i− 1)6 =n(2n− 1)(2n + 1)[
(2n− 1)2(2n + 1)2

7
− 4(2n− 1)(2n + 1)

7
+

16
21

].

(1.7)

The relations in (1.6) and (1.7) motive us to conjecture that for k = 1, 2, . . . ,

n∑

i=1

(2i− 1)2k−1 = n2
k∑

i=1

cin
2k−2i, (1.8)

n∑

i=1

(2i− 1)2k = n(2n− 1)(2n + 1)
k∑

i=1

di(2n− 1)k−i(2n + 1)k−i, (1.9)

where ci and di (i = 1, 2, . . . , k) are undetermined constants.

In fact,
∑n

i=1 (2i− 1)2k−1 is a rational polynomial in n2 from Faulhaber’s theorem on sums
of odd powers [1, 7, 11]. However, no explicit calculation formula on

∑n
i=1 (2i− 1)2k−1 has been

given. In this paper, we aim to establish two concise calculation formulae on sums of powers of
odd integers by using superposition method. In other words, we will show that our conjectures
(1.8) and (1.9) are indeed valid. In addition, we obtain recurrence formulas to compute the
coefficients of rational polynomials in formulas above. Furthermore, we also give the relations
among ai, bi, ci and di (i = 1, 2, . . . , k). Finally, we put forward a conjecture on signs of the
coefficients in formulas (1.8) and (1.9).

2. The summation theorems
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Theorem 2.1 For any n ∈ N+, (1.8) holds if and only if




c1 =
4k−1

k
,

ci = −

i−1∑
r=1

4rcr(2k−2r+2
2i−2r+1 )

22i+1(k − i + 1)
, i = 2, 3, . . . , k.

(2.1)

Theorem 2.2 Let P (n, r) := n(n− 1) · · · (n− r + 1)(n, r ∈ N+, r 6 n) and α1 = 2. Then

ci = −4k−iP (2k − 1, 2i− 3)αi, i = 2, 3, . . . , k, (2.2)

where α2 = 1
3 , αi = α1

(2i−1)! − α2
(2i−3)! − · · · − αi−1

3! (i = 3, 4, . . . , k).

Theorem 2.3 For any n ∈ N+, (1.9) holds if and only if




d1 =
1

2k + 1
,

di = −4i
i−1∑
r=1

dr( k−r+2
2i−2r+1)

4r(k − r + 2)
, i = 2, 3, . . . , k,

(2.3)

and di (i = 2, 3, . . . , k) can also be rewritten as




di = −4i
i−1∑
r=1

dr( k−r+2
2i−2r+1)

4r(k−r+2) , i 6 [k+2
2 ],

di = −4i
i−1∑

r=2i−k−1

dr( k−r+2
2i−2r+1)

4r(k−r+2) , i > [k+2
2 ].

From (1.2) and (1.4) we get immediately the following corollary.

Corollary 2.1 It holds that bi = k−i+2
2k+1 ai (i = 1, 2, . . . , k), where ai and bi are given by (1.2)

and (1.4), respectively.

From which and (1.4), (2.3) we have the following corollary.

Corollary 2.2 It holds that di = 22i−1bi = 22i−1 k−i+2
2k+1 ai (i = 1, 2, . . . , k), where ai, bi and di

are as presented in (1.2), (1.4) and (2.3), respectively.

To end this section, we put forward the following conjecture on the signs of the coefficients
ci and di in Theorems 2.1 and 2.3.

Conjecture It holds that sgn ci = (−1)i−1, sgn di = (−1)i−1, i = 1, 2, . . . , k.

3. Proofs of the summation theorems

In this section, we present the proofs of our results stated in the above section, by using
superposition method.

Proof of Theorem 2.1 Let bm = (2m − 1)2k−1 and s0 = 0, sm =
∑k

i=1 cim
2k−2i+2 (m =

1, 2, . . . , n). Clearly, (1.8) holds if and only if bm = sm − sm−1. On the other hand, since

cim
2k−2i+2 − ci(m− 1)2k−2i+2 =

ci

22k−2i+2
[(2m)2k−2i+2 − (2m− 2)2k−2i+2]
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=
ci

22k−2i+2
[(2m− 1 + 1)2k−2i+2 − (2m− 1− 1)2k−2i+2]

=
ci

22k−2i+1

k−i+1∑
r=1

(2k−2i+2
2r−1 )(2m− 1)2k−2i−2r+3,

we have

sm − sm−1 =
k∑

i=1

ci

22k−2i+1

k−i+1∑
r=1

(2k−2i+2
2r−1 )(2m− 1)2k−2i−2r+3

=
k∑

i=1

i∑
r=1

cr

22k−2r+1
(2k−2r+2
2i−2r+1 )(2m− 1)2k−2i+1.

Hence, sm − sm−1 = (2m − 1)2k−1 holds if and only if ci (i = 1, 2, . . . , k) satisfy the following
system of linear equations.





c1(2k
1 ) = 22k−1,

c1(2k
3 ) + c222(2k−2

1 ) = 0,

· · ·
c1( 2k

2i−1) + c222(2k−2
2i−3 ) + · · ·+ ci22i−2(2k−2i+2

1 ) = 0,

· · ·
c1( 2k

2k−1) + c222(2k−2
2k−3) + · · ·+ ck22k−2(21) = 0.

(3.1)

The equivalence between (2.1) and (3.1) follows from direct calculation. The proof is completed.
¤

Proof of Theorem 2.2 We derive the result by using the second induction method.
From (2.1), c2 = −4k−2(2k−1)

3 , so that for i = 2, (2.2) is true.
Assume that (2.2) is true for i 6 m (2 6 m < k). Then from (2.1) we have

cm+1 = −
∑m

r=1 4rcr(2k−2r+2
2m−2r+3)

22m+3(k −m)

= − 4c1( 2k
2m+1)

22m+3(k −m)
+

∑m
r=2 4kP (2k − 1, 2r − 3)αr(2k−2r+2

2m−2r+3)
22m+3(k −m)

= −4k−m−1P (2k − 1, 2m− 1)α1

(2m + 1)!
+

m∑
r=2

4k−m−1P (2k − 1, 2m− 1)αr

(2m− 2r + 3)!

= −4k−m−1P (2k − 1, 2m− 1)αm+1,

hence (2.2) is true for i = m + 1. The proof is completed. ¤

Proof of Theorem 2.3 Let bm = (2m− 1)2k and s0 = 0, sm =
∑k

i=1 dim(2m− 1)k−i+1(2m +
1)k−i+1 (m = 1, 2, . . . , n). Clearly, (1.9) holds if and only if bm = sm − sm−1. For simplicity, we
let p = k − i + 1, then it holds that

dim(2m− 1)p(2m + 1)p − di(m− 1)(2m− 3)p(2m− 1)p

=
di

2
(2m− 1)p[2m(2m + 1)p − (2m− 2)(2m− 3)p]

=
di

2
(2m− 1)p[(2m− 1 + 1)(2m− 1 + 2)p − (2m− 1− 1)(2m− 1− 2)p]
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=
di

2
(2m− 1)p{(2m− 1)[(2m− 1 + 2)p − (2m− 1− 2)p]+

[(2m− 1 + 2)p + (2m− 1− 2)p]}

= di

[ p
2 ]+1∑
r=1

22r−2(2( p
2r−1) + ( p

2r−2))(2m− 1)2p−2r+2.

Therefore, we have

sm − sm−1 =
k∑

i=1

di

[ p
2 ]+1∑
r=1

22r−2(2( p
2r−1) + ( p

2r−2))(2m− 1)2p−2r+2

=
k∑

i=1

i∑
r=1

dr22i−2r(2( k−r+1
2i−2r+1) + (k−r+1

2i−2r))(2m− 1)2k−2i+2

=
[ k+1

2 ]∑

i=1

i∑
r=1

dr22i−2r(2( k−r+1
2i−2r+1) + (k−r+1

2i−2r))(2m− 1)2k−2i+2+

k∑

i=[ k+1
2 ]+1

[
i∑

r=2i−k

dr22i−2r(2( k−r+1
2i−2r+1) + (k−r+1

2i−2r))+

d2i−k−122k−2i+2](2m− 1)2k−2i+2

=
k∑

p=[ k
2 ]+1

k−p+1∑
r=1

dr22k−2p−2r+2(2( k−r+1
2k−2p−2r+3) + ( k−r+1

2k−2p−2r+2))(2m− 1)2p+

[ k
2 ]∑

p=1

[
k−p+1∑

r=k−2p+2

dr22k−2p−2r+2(2( k−r+1
2k−2p−2r+3) + ( k−r+1

2k−2p−2r+2))+

dk−2p+122p](2m− 1)2p

=
k∑

p=[ k
2 ]+1

k∑

l=p

dk−l+122l−2p(2( l
2l−2p+1) + ( l

2l−2p))(2m− 1)2p (l = k − r + 1)+

[ k
2 ]∑

p=1

[
2p−1∑

l=p

dk−l+122l−2p(2( l
2l−2p+1) + ( l

2l−2p)) + dk−2p+122p](2m− 1)2p.

Hence, sm − sm−1 = (2m − 1)2k holds if and only if di (i = 1, 2, . . . , k) satisfy the following
system of linear equations.





d1(2(k
1) + 1) = 1,

d122(2(k
3) + (k

2)) + d2(2(k−1
1 ) + 1) = 0,

· · ·
d122i−2(2( k

2i−1) + ( k
2i−2)) + d222i−4(2( k−1

2i−3 ) + ( k−1
2i−4 )) + · · ·+ di(2(k−i+1

1 ) + 1) = 0,

· · ·
dk−122(22) + dk(2(11) + 1) = 0.

(3.2)

Along the same line as in Theorem 2.1, we can show the equivalence between (2.3) and (3.2).
The proof is completed. ¤
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