
Journal of Mathematical Research with Applications

Nov., 2013, Vol. 33, No. 6, pp. 717–731

DOI:10.3770/j.issn:2095-2651.2013.06.008

Http://jmre.dlut.edu.cn

Toeplitz Operators with Quasihomogeneous Symbols on
the Dirichlet Space of Bn

Hongzhao LIN1,2, Bo ZHANG3, Yufeng LU1,∗

1. Department of Mathematics, Dalian University of Technology, Liaoning 116024, P. R. China;

2. Department of Computer and information, Fujian Agriculture and Forestry University,

Fujian 350002, P. R. China;

3. Department of Science, Dalian Ocean University, Liaoning 116023, P. R. China

Abstract In this paper, we study some algebraic properties of Toeplitz operators with quasi-

homogeneous symbols on the Dirichlet space of the unit ball Bn. First, we describe com-

mutators of a radial Toeplitz operator and characterize commuting Toeplitz operators with

quasihomogeneous symbols. Then we show that finite rank product of such operators only

happens in the trivial case. Finally, some necessary and sufficient conditions are given for

the product of two quasihomogeneous Toeplitz operators to be a quasihomogeneous Toeplitz

operator.
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1. Introduction

For any integer n ≥ 1, let Bn = {z ∈ Cn : |z| < 1} be the open unit ball of Cn and dm be
the normalized Lebesgue measure on Bn. The Sobolev space w1,2 is defined to be the completion
of smooth functions on Bn which satisfy

‖f‖2 = |
∫

Bn

fdm|2 +
n∑

i=1

∫

Bn

(| ∂f

∂zi
|2 + | ∂f

∂z̄i
|2)dm < ∞.

The inner product 〈·, ·〉 on w1,2 is defined by

〈f, g〉 =
∫

Bn

fdm

∫

Bn

ḡdm +
n∑

i=1

∫

Bn

(
∂f

∂zi

∂g

∂zi
+

∂f

∂z̄i

∂g

∂z̄i
)dm, ∀f, g ∈ w1,2.

The Dirichlet space D of Bn is the closed subspace consisting of all holomorphic functions f ∈
w1,2. It is easily verified that each point evaluation is a bounded linear functional on D. Hence,
for each z ∈ Bn, there exists a unique reproducing kernel Kz(w) ∈ D such that

f(z) = 〈f,Kz〉, ∀f ∈ D.

Actually, it can be calculated that Kz(w) = 1 +
∑

α∈Zn
+

(|α|+n−1)!
|α|n!α! wαz̄α, where α = (α1, . . . , αn)

is a multi-index, αi ∈ Z+, |α| =
∑n

i=1 αi and zα = zα1
1 · · · zαn

n . For multi-indexes α and β, the
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notation α º β means that

αi ≥ βi, i = 1, . . . , n,

α Â β means that α º β and α 6= β, and α � q means that there exists i0 such that αi0 < qi0 .

Let P be the orthogonal projection from w1,2 onto D. By the explicit formula for Kz(w),
we have

Pψ(z) = 〈Pψ, Kz〉 = 〈ψ, Kz〉 =
∫

Bn

ψdm

∫

Bn

Kzdm +
n∑

i=1

∫

Bn

∂ψ

∂wi

∂Kz

∂wi
dm(w), ψ ∈ w1,2.

Let Ω = {ϕ ∈ w1,2 : ϕ, ∂ϕ
∂zi

, ∂ϕ
∂z̄i

∈ L∞(Bn)} and ‖ϕ‖1,2
∞ = max{‖ϕ‖∞, ‖ ∂ϕ

∂zi
‖∞, ‖ ∂ϕ

∂z̄i
‖∞}. Given a

function ϕ ∈ Ω, the Toeplitz operator Tϕ with symbol ϕ is defined by

Tϕf = P (ϕf), f ∈ D.

It is easy to verify that the Toeplitz operator Tϕ : D → D is a bounded linear operator and
‖Tϕ‖ ≤ ‖ϕ‖1,2

∞ , whenever ϕ ∈ Ω.

A function f on unit disc D is said to be quasihomogeneous of degree p if it is of the
form f(reiθ) = eipθφ(r), where φ is a radial function, i.e., φ(z) = φ(|z|), z ∈ D. In this case
the associated Toeplitz operator Teipθφ(r) is also called quasihomogeneous Toeplitz operator of
degree p. If p = (p1, . . . , pn) ∈ Zn, we can also get the definition above on the unit ball Bn.

The algebraic properties of Toeplitz operators on the classical Hardy spaces and Bergman
spaces have been well studied, for example, as in [1–5]. It is known that on the Bergman space
the commuting problem still remains open except for bounded harmonic symbols. As the quasi-
homogeneous functions are the nature generalization of radial functions which are nonharmonic,
quasihomogeneous symbols operators excited many researchers’ interest. Toeplitz operators with
those symbols were intensively studied in [6–20].

On the Bergman space of the unit disk, C̆uc̆kovic and Rao [6] first studied quasihomoge-
neous Toeplitz operators by using the Mellin transform. Later, Louhichi and Zakariasy [7] gave
some basic results and a partial characterization of commuting quasihomogeneous Toeplitz op-
erators. In terms of T -functions, Louhichi, Strouse and Zakariasy [8] found some necessary and
sufficient conditions for the product of two quasihomogeneous Toeplitz operators to be a Toeplitz
operator. Louhichi and Rao [10] pointed out an unusual phenomenon that the commutant of a
quasihomogeneous Toeplitz operator is equal to its bicommutant. That is, if two Toeplitz opera-
tors commute with a quasihomogeneous Toeplitz operator, then they commute with each other.
At the same time, C̆uc̆kovic and Louhichi [11] studied the zero product and (semi)commutators
of quasihomogeneous Toeplitz operators.

On the Bergman space of the unit ball, Zhou and Dong [12] investigated algebraic properties
of Toeplitz operators with radial symbols and quasihomogeneous symbols. They also discussed
algebraic properties of Toeplitz operators with separately quasihomogeneous symbols in [14] (i.e.,
symbols being of the form ξkφ(|z1|, . . . , |zn|)).

On the Bergman space of the polydisc, Dong [16] and Zhang [17] respectively studied the
commuting problem and the finite rank product problem for the separately quasihomogeneous
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Toeplitz operators.

In recent years, Toeplitz operators on Dirichlet spaces attracted more and more attention
of mathematicians. Chen [18] showed that every continuous function f in L∞(D,dA) has the
following polar decomposition

f(reiθ) =
∑

k∈Z
eikθfk(r)

if and only if f(reiθ) is absolutely continuous (‖ · ‖D) on θ ∈ [0, 2π] for almost every r ∈ [0, 1).
Then, (semi-)commuting Toeplitz operators whose symbols have the decomposition above were
studied. Moreover, since Tφ = 0 may not imply φ = 0 in this case, Chen also showed that radial
Toeplitz operators not only commute with another such operator. Deng, Pan and Chen studied
the boundedness, compactness and product of quasihomogeneous Toeplitz operators in [19, 20].

Unlike the case of Bergman space, little has been known about quasihomogeneous Toeplitz
operators on the Dirichlet space of unit ball. The authors [21] gave some basic properties of
Toeplitz operators with pluriharmonic symbols and discuss the commuting problem of Toeplitz
operators with zpz̄qφ(|z|) symbols. Motivated by the work in [12, 14, 18] and [21], in this paper
we will investigate some properties of quasihomogeneous Toeplitz operators. In Section 2, we
give some basic properties of quasihomogeneous Toeplitz operators and characterize the com-
muting quasihomogeneous Toeplitz operators. In Section 3, we discuss the problems of finite
rank product and zero product of those operators. At last, we obtain the necessary and sufficient
conditions for the product of two quasihomogeneous Toeplitz operators to be a Toeplitz operator.

2. Commuting Toeplitz operators with quasihomogeneous symbols

In this section, we will characterize commuting Toeplitz operators with bounded quasiho-
mogeneous symbols on the Dirichlet space of the unit ball. The definition of quasihomogeneous
function on the unit disk has been given in many papers and a similar definition on the unit ball
has also been given in [22].

Definition 2.1 Let p, s ∈ Zn
+ and f ∈ L1(Bn,dm). f is called a quasihomogeneous function of

degree (p, s) if

f(rξ) = ξpξ
s
φ(r)

for any ξ in the unit sphere Sn and r =
√
|z1|2 + · · ·+ |zn|2 ∈ [0, 1).

First, we make some notations. Let φ = φ(r) be a radial function, Σ = {φ : φ, φ′ ∈ L1([0, 1])}
and Σ′ = {φ : φ ∈ Σ and φ is absolutely continuous on [0, 1)}. In the remaining part of this
paper, we will always assume φ ∈ Σ. For φ ∈ Σ and k ∈ Z+, let φ̃(k) =

∫ 1

0
rk−1φ(r)dr

and φ̂(k) =
∫ 1

0
rk−1[φ +

∫ 1

r
φ′(t)dt]dr. Before discussing the commutivity of Toeplitz operators

with quasihomogeneous symbols, we need the following lemma which can be obtained by direct
computation.
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Lemma 2.2 Let p, s ∈ Zn
+ and φ ∈ Σ. Then for any α ∈ Zn

+,

Tξpφzα =

{
(τα + |p|)φ̂(τα + |p|)zα+p, p + α Â 0;

2n
∫ 1

0
r2n−1φ(r)dr, p = α = 0,

Tξ̄sφzα =





d(α, α− s)(τα − |s|)φ̂(τα − |s|)zα−s, α Â s;
2n!s!

(n+|s|−1)!

∫ 1

0
r2n+|s|−1φ(r)dr, α = s;

0, α � s,

Tξpξ̄sφzα =





d(α + p, α + p− s)(τα + |p| − |s|)φ̂(τα + |p| − |s|)zα+p−s, α + p− s Â 0;
2n!(p+α)!

(n+|p+α|−1)!

∫ 1

0
r2n+|α|−1φ(r)dr, α + p− s = 0;

0, α + p− s � 0,

where τα = 2n + 2|α| − 2, d(α, α− q) = α!
(n+|α|−1)!/

(α−q)!
(n+|α−q|−1)! .

Proof By taking p = 0 or s = 0 in the third equation, we can get the other two equations. So,
we only need to prove the third equation. For multi-index α, β ∈ Zn

+, we calculate

〈Tξpξ̄sφzα, zβ〉 = 〈ξpξ̄sφzα, zβ〉 = 〈φr−|p+s|zp+αz̄s, zβ〉.
Denote F (r) = φ · r−|p+s|, then

∂F

∂zi
=

∂F

∂r

∂r

∂zi
= F ′

zi

2r
. (2.1)

For any positive integer k such that 2n + 2k − |p + s| − 3 > 0, we have

F̃ ′(2n + 2k − 1) + 2(n + k − 1)F̃ (2n + 2k − 2)

=
∫ 1

0

F ′(r)r2n+2k−2dr + 2(n + k − 1)
∫ 1

0

F (r)r2n+2k−3dr

=
∫ 1

0

φ′r2n+2k−|p+s|−2dr + (2n + 2k − |p + s| − 2)
∫ 1

0

φr2n+2k−|p+s|−3dr

= (2n + 2k − |p + s| − 2)φ̂(2n + 2k − |p + s| − 2). (2.2)

The last equation holds with integration by part since φ′ belongs to L1([0, 1]) and r2n+2k−|p+s|−2

is absolutely continuous on [0, 1].
By (2.1) and the well known equation

∫
Bn

fdm = 2n
∫ 1

0
r2n−1dr

∫
Sn

f(rξ)dσ, we have

〈Tξpξ̄sφzα, zβ〉 =
∫

Bn

ξpξ̄sφzαdm

∫

Bn

zβdm +
n∑

i=1

∫

Bn

∂

∂zi
(Fzp+αz̄s)

∂zβ

∂zi
dm

=
∫

Bn

ξpξ̄sφzαdm

∫

Bn

zβdm +
∑

βi>0

βi

2

∫

Bn

F ′r−1zp+αz̄s+βdm+

∑

βi>0,pi+αi>0

βi(pi + αi)
∫

Bn

Fzp+α−ei z̄s+β−eidm

=
∫

Bn

ξpξ̄sφzαdm

∫

Bn

zβdm +
∑

βi>0

βi

2

∫ 1

0

2nF ′(r)r2n−2+|p+α|+|s+β|dr

∫

Sn

ξp+αξ̄s+βdσ+

∑

βi>0,pi+αi>0

βi(pi + αi)
∫ 1

0

2nF (r)r2n−3+|p+α|+|s+β|dr

∫

Sn

ξp+α−ei ξ̄s+β−eidσ
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If α + p Â s and β 6= α + p− s, then 〈Tξpξ̄sφzα, zβ〉 = 0. If α + p Â s and β = α + p− s, by (2.2)
we calculate

〈Tξpξ̄sφzα, zβ〉

=
n∑

i=1,βi>0

βinF̃ ′(2n + 2|p + α| − 1)
∫

Sn

|ξp+α|2dσ+

∑
pi+αi−si>0,pi+αi>0

(pi + αi − si)(pi + αi)2nF̃ (2n + 2|p + α| − 2)
∫

Sn

|ξp+α−ei |2dσ

=
∑

βi>0

βin!(p + α)!
(n− 1 + |p + α|)! F̃

′(2n + 2|p + α| − 1)+

∑
pi+αi−si>0,pi+αi>0

(pi + αi − si)(pi + αi)
2n!(p + α− ei)!

(n− 2 + |p + α|)! F̃ (2n + 2|p + α| − 2)

= |p + α− s| n!(p + α)!
(n− 1 + |p + α|)! F̃

′(2n + 2|p + α| − 1)+

∑
pi+αi−si>0

(pi + αi − si)
2n!(p + α)!

(n− 2 + |p + α|)! F̃ (2n + 2|p + α| − 2)

=
|p + α− s|n!(p + α)!

(n− 1 + |p + α|)! (F̃ ′(2n + 2|p + α| − 1) + 2(n + |p + α| − 1)F̃ (2n + 2|p + α| − 2))

= d(p + α, p + α− s)||zp+α−s||2(2n + 2|α + p| − |p + s| − 2)φ̂(2n + 2|α + p| − |p + s| − 2)

= d(p + α, p + α− s)||zp+α−s||2(τα + |p| − |s|)φ̂(τα + |p| − |s|).
If α + p = s,

〈Tξpξ̄sφzα, zβ〉 =

{
2n!(p+α)!

(n−1+|p+α|)!
∫ 1

0
φr2n+|α|−1dr, β = 0;

0, β Â 0.

If α + p � s, 〈Tξpξ̄sφzα, zβ〉 = 0 for any multi-index β.
Thus we get the third equation. The proof is completed. ¤
Assume φ ∈ Σ′, φ is absolutely continuous on [0,1). Integrating by parts, we have mφ̂(m) =

limr→1− φ(r) .= φ(1−), for any positive integer m. Consequently, we can get the following lemma
immediately from Lemma 2.2.

Lemma 2.3 Let p, s ∈ Zn
+ and φ ∈ Σ′. Then for any α ∈ Zn

+,

Tξpφzα =

{
φ(1−)zα+p, p + α Â 0;

2n
∫ 1

0
r2n−1φ(r)dr, p = α = 0,

Tξ̄sφzα =





d(α, α− s)φ(1−)zα−s, α Â s;
2n!s!

(n+|s|−1)!

∫ 1

0
r2n+|s|−1φ(r)dr, α = s;

0, α � s,

Tξpξ̄sφzα =





d(α + p, α + p− s)φ(1−)zα+p−s, α + p− s Â 0;
2n!(p+α)!

(n+|p+α|−1)!

∫ 1

0
r2n+|α|−1φ(r)dr, α + p− s = 0;

0, α + p− s � 0.
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Special attention should be paid to the following cases.

Corollary 2.4 Let φ ∈ Σ′ and k have the index decomposition k = p − s such that p⊥s with

p, s Â 0. Then for any multi-index α º 0,

Tξkφzα = Tξpξ̄sφzα =

{
d(p + α, p + α− s)φ(1−)zα+p−s, α º s;

0, α � s.

Corollary 2.5 Let φ ∈ Σ′. Then for any multi-index α º 0,

Tφzα =

{
φ(1−)zα, α Â 0;

2n
∫ 1

0
φr2n−1dr(= 2nφ̃(2n)), α = 0.

In the section 4 of [21], we discuss the zero product and commuting problem of Toeplitz
operators with zpz̄qφ(r2) symbols. With analogue argument, by Lemmas 2.2 and 2.3 we can
get similar consequences corresponding to Toeplitz operators with ξpξ̄qφ(r) symbols. We just
exhibit the results directly and omit the proof.

Theorem 2.6 Let p, q Â 0, φ, ψ ∈ Σ. Tξpφ(r)Tξqψ(r) = Tξqψ(r)Tξpφ(r) if and only if (τα +
|q|)ψ̂(τα+ |q|)(τα+2|q|+ |p|)φ̂(τα+2|q|+ |p|) = (τα+ |p|)φ̂(τα+ |p|)(τα+2|p|+ |q|)ψ̂(τα+2|p|+ |q|)
holds for any multi-index α º 0. In particular, if |p| = |q|, then Tξpφ(r)Tξqφ(r) = Tξqφ(r)Tξpφ(r).

Note that by Lemma 2.3 for φ ∈ Σ′ and p Â 0, Tξpφ = 0 if and only if φ(1−) = 0. Direct
calculation leads to the following, which is somewhat analogous to Theorem 4.2 in [21].

Theorem 2.7 Let pi Â 0 and φi ∈ Σ′. Then the followings hold.

(1) Tξp1φ1Tξp2φ2 = Tξp2φ2Tξp1φ1 = Tξp1+p2φ1φ2
.

(2) Tξp1φ1 × · · · × Tξpk φk
= 0 if and only if φi(1−) = 0 for some i, that is Tξpiφi

= 0 for

some i.

(3) Let pi 6= pj for i 6= j. Tξp1φ1 + · · · + Tξpk φk
= 0 if and only if Tξpiφi

= 0 for each i if

and only if φi(1−) = 0 for each i.

As for Toeplitz operators with ξ̄sφ(r) symbols, direct calculation leads to the following
theorem, which is analogous to Theorem 4.3 in [21].

Theorem 2.8 Let s, t Â 0, φ, ψ ∈ Σ. Tξ̄sφ(r)Tξ̄tψ(r) = Tξ̄tψ(r)Tξ̄sφ(r) if and only if (2n+2|s|+|t|−
2)ψ̂(2n+2|s|+|t|−2)

∫ 1

0
φr2n+|s|−1dr = (2n+2|t|+|s|−2)ψ̂(2n+2|t|+|s|−2)

∫ 1

0
ψr2n+|t|−1dr and

(τα−|t|)ψ̂(τα−|t|)(τα−2|t|−|s|)φ̂(τα−2|t|−|s|) = (τα−|s|)φ̂(τα−|s|)(τα−2|s|−|t|)ψ̂(τα−2|s|−|t|)
holds for any multi-index α Â 0. In particular, if |p| = |q|, then Tξ̄pφ(r)Tξ̄qφ(r) = Tξ̄qφ(r)Tξ̄pφ(r).

Theorem 2.9 Let s, t, si Â 0, si 6= sj for i 6= j and φ, ψ, φi ∈ Σ′. Then the following assertions

hold.

(1) Tξ̄sφ(r)Tξ̄tψ(r) = Tξ̄tψ(r)Tξ̄sφ(r) if and only if

ψ(1−)
∫ 1

0

r2n+|s|−1φ(r)dr = φ(1−)×
∫ 1

0

r2n+|t|−1ψ(r)dr.

In this case, Tξ̄sφ(r)Tξ̄tψ(r) may not equal Tξ̄s+tφψ.



Toeplitz Operators with quasihomogeneous symbols on the Dirichlet space of Bn 723

(2) Tξ̄s1φ1
× · · · × Tξ̄sk φk

= 0 if and only if one of the following holds:

(i) φ1(1−) = 0 and
∫ 1

0
r2n+|s1|−1φ1(r)dr = 0;

(ii) There exists i0 where 2 ≤ i0 ≤ k such that φi0(1
−) = 0.

(3) Tξ̄s1φ1
+ · · ·+ Tξ̄sk φk

= 0 if and only if Tξ̄siφi
= 0 for each i.

Analogously to Theorem 4.10 in [21], next theorem describes the quasihomogeneous Toeplitz
operators which commute with radial Toeplitz operators.

Theorem 2.10 Let p, q Â 0 and φ, ψ ∈ Σ′. Then the following assertions hold.

(1) If p Â q, TφTξpξ̄qψ = Tξpξ̄qψTφ if and only if ψ(1−) = 0 or φ(1−) = n
∫ 1

0
r2n−1φ(r)dr;

(2) If q Â p, TφTξpξ̄qψ = Tξpξ̄qψTφ if and only if
∫ 1

0
r2n+|q|−1ψ(r)dr = 0 or φ(1−) =

n
∫ 1

0
r2n−1φ(r)dr;

(3) If p � q and q � p or p = q, TφTξpξ̄qψ = Tξpξ̄qψTφ.

Corollary 2.11 Let p, s Â 0 with p ⊥ s and φ, ψ ∈ Σ′. Then Tφ(r)Tξpξ̄sψ(r) = Tξpξ̄sψ(r)Tφ(r).

C̆uc̆kovic and Rao [6] showed that a Toeplitz operator with radial symbol on the Bergman
space of the unit disk may only commute with Toeplitz operators with radial symbols. Zhou and
Dong [12] showed it is not true on the Bergman space of the unit ball. By Corollary 2.11, it is
not surprise to see that it is neither true on the Dirichlet space of the unit ball.

In the end of this section, we characterize commuting Toeplitz operators with quasihomo-
geneous symbols.

Theorem 2.12 Suppose ki has the index decomposition ki = pi − si with pi ⊥ si and

φi(1−) 6= 0, φi ∈ Σ′ for i = 1, 2. Then Tξk1φ1
Tξk2φ2

= Tξk2φ2
Tξk1φ1

if and only if one of the

following conditions holds:

(1) k1 = k2;

(2) Tξk1φ1
= λI;

(3) Tξk2φ2
= λ′I;

(4) s1 = s2 = 0, p1 Â 0, p2 Â 0;

(5) p1 = s1 = 0, p2 Â 0, s2 Â 0;

(6) p2 = s2 = 0, p1 Â 0, s1 Â 0;

(7) p1 = p2 = 0, s1 Â 0, s2 Â 0, φ2(1−)
∫ 1

0
r2n+|s1|−1φ1dr = φ1(1−)

∫ 1

0
r2n+|s2|−1φ2dr;

(8) p1 = p2 = s1 = 0, s2 Â 0,
∫ 1

0
r2n+|s2|−1φ2dr = 0;

(9) p1 = p2 = s2 = 0, s1 Â 0,
∫ 1

0
r2n+|s1|−1φ1dr = 0.

Proof The inverse implication is clear. We only need to show the necessity. For those multi-
indexes α with α− s1 − s2 Â 0, by Lemma 2.3 we have

Tξk1φ1
Tξk2φ2

zα = I1φ1(1−)φ2(1−)zα+p1+p2−s1−s2 ,

Tξk2φ2
Tξk1φ1

zα = I2φ1(1−)φ2(1−)zα+p1+p2−s1−s2 ,

where

I1 = d(α + p2, α + p2 − s2)d(α + p1 + p2 − s2, α + p1 + p2 − s1 − s2),
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I2 = d(α + p1, α + p1 − s1)d(α + p1 + p2 − s1, α + p1 + p2 − s1 − s2).

Since φi(1−) 6= 0, Tξk1φ1
Tξk2φ2

zα = Tξk2φ2
Tξk1φ1

zα implies that I1 = I2, which is equivalent to

d(α + p1, α + p1 − s1) = d(α + p2, α + p2 − s2)d(α + p1 + p2 − s2, α + p1 + p2 − s1).

Note that

d(α + p1 + p2 − s2, α + p1 + p2 − s1) = d(α + p1 + p2 − s2, β)d(β, α + p1 + p2 − s1),

for β = α + p1 + p2 and
(α + p− s)!

(α + p)!
=

(α− s)!
(α)!

, if p ⊥ s.

By the expression of d(·, ·) the last equation is equivalent to I3 = I4, where

I3 =
(α− s1)!(α + p2)!(α + p1 − s2)!
(α− s2)!(α + p1)!(α + p2 − s1)!

,

I4 =
(n− 1 + |α + p2|)!(n− 1 + |α + p1 − s1|)!(n− 1 + |α + p1 + p2 − s2|)!
(n− 1 + |α + p1|)!(n− 1 + |α + p2 − s2|)!(n− 1 + |α + p1 + p2 − s1|)! .

Observe that I3 depends on α while the I4 only depends on |α| for fixed pi, si. Since n > 1, it
follows that I3 = I4 = c for some constant c. Recall that I3, I4 are both composed of factorial
function, c must be 1. That is, I3 = I4 = 1.

With varying α it is easy to see that I3 = 1 holds if and only if one of the following conditions
is fulfilled

(1) s1 = s2, p1 = p2;
(2) s1 = s2 = 0;
(3) p1 = p2 = 0;
(4) s1 = p1 = 0;
(5) s2 = p2 = 0.
Under each of the above conditions, the equation I4 = 1 holds either. Next, we will discuss

the commuting problem under either of the above five conditions, respectively.
Condition (1) contains four cases: pi > 0, si > 0; pi = 0, si = 0; pi > 0, si = 0; pi = 0, si > 0.

There is no doubt that two Toeplitz operators commute in all cases above by using Corollaries
2.4 and 2.5, Theorems 2.7 and 2.8, respectively.

By Lemma 2.3, direct calculation shows that under condition (2), Tξk1φ1
commutes with

Tξk2φ2
if and only if one of the following statements holds

(2.1) p1, p2 Â 0;
(2.2) p1 = 0, p2 = 0;
(2.3) p1 = 0, p2 Â 0, Tξk1φ1

= φ1(1−)I;
(2.4) p1 Â 0, p2 = 0, Tξk2φ2

= φ2(1−)I.
By Lemma 2.3, direct calculation also shows that under condition (3) Tξk1φ1

commutes with
Tξk2φ2

if and only if one of the following statements holds
(3.1) s1, s2 Â 0, φ2(1−)

∫ 1

0
r2n+|s1|−1φ1dr = φ1(1−)

∫ 1

0
r2n+|s2|−1φ2dr;

(3.2) s1 = 0, s2 = 0;
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(3.3) s1 = 0, s2 Â 0, Tξk1φ1
= φ1(1−)I or

∫ 1

0
r2n+|s2|−1φ2dr = 0;

(3.4) s1 Â 0, s2 = 0, Tξk2φ2
= φ2(1−)I or

∫ 1

0
r2n+|s1|−1φ1dr = 0.

By Corollaries 2.4 and 2.5, direct calculation indicates that under condition (4) Tξk1φ1

commutes with Tξk2φ2
if and only if one of the following statements holds

(4.1) p2, s2 Â 0;

(4.2) p2 = 0, s2 = 0;

(4.3) p2 = 0, s2 Â 0, Tξk1φ1
= φ1(1−)I or

∫ 1

0
r2n+|s2|−1φ2dr = 0;

(4.4) p2 Â 0, s2 = 0, Tξk1φ1
= φ1(1−)I.

Similarly, under condition (5) Tξk1φ1
commutes with Tξk2φ2

if and only if one of the following
statements holds

(5.1) p1, s1 Â 0;

(5.2) p1 = 0, s1 = 0;

(5.3) p1 = 0, s1 Â 0, Tξk2φ2
= φ2(1−)I or

∫ 1

0
r2n+|s1|−1φ1dr = 0;

(5.4) p1 Â 0, s1 = 0, Tξk2φ2
= φ2(1−)I.

The proof is finished by careful examination of all the conditions above.

Louhichi and Rao [10] discussed the commutativity of Toeplitz operators on the Bergman
space on the unit disk and raised the conjecture: if two Toeplitz operators commute with a third
one, none of them being the identity, then they commute with each other.

Zhou and Dong [14] found that the bicommutant conjecture of Louhichi and Rao is not
correct on the Bergman space of Bn. Almost at the same time, Vasilevski [13] showed the
conjecture is wrong on the weighted Bergman space of the unit ball. In the following, we can
show that this conjecture is also wrong when formulated for Toeplitz operators on the Dirichlet
space of the unit ball.

Example 2.13 Given n > 1, consider the following three symbols

f1 = r2, f2 = ξ1
1ξ−1

2 , f3 = ξ1
1ξ−2

2 .

By Corollary 2.10, we can prove Tf1 commutes with both Tf2 and Tf3 , while by Theorem
2.12 the operators Tf2 and Tf3 do not commute.

3. Product of Toeplitz operators with quasihomogeneous symbols

In this section, we first study the finite rank product of Toeplitz operators with quasihomoge-
neous symbols. C̆uc̆kovic and Louhichi [11] proved that if the finite product of quasihomogeneous
Toeplitz operators is of finite rank, then one of the symbols must be zero. The following result is
a partial answer to the finite product problem for two Toeplitz operators on the Dirichlet Space
of Bn.

Theorem 3.1 Suppose ki has the index decomposition ki = pi − si with pi ⊥ si and φi ∈ Σ′

for i = 1, . . . , m. Then the following statements are equivalent.

(1) Tξk1φ1
· · ·Tξkm φm

is of finite rank.
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(2) φi0(1−) = 0 for some 1 ≤ i0 ≤ m.

(3) T
ξ

ki0 φi0
is of finite rank for some 1 ≤ i0 ≤ m.

Proof For simplicity, we denote T = Tξk1φ1
· · ·Tξkm φm

. For multi-index α Â s1 + · · ·+ sm, by
Lemma 2.3 we calculate

T (zα) = Cαφ1(1−) · · ·φm(1−)zα+k1+···+km ,

where Cα is a nonzero constant depending on α and ki.

Thus the set {T (zα) : α Â s1 + · · ·+ sm} is a linearly independent set which is included in
the range of T . The finite rank of T implies that φ1(1−) · · ·φm(1−) = 0, which indicates that
(1) is equivalent to (2).

It is easy to see the equivalence of (2) and (3) from Lemma 2.3.

Actually, in the proof of Theorem 3.1, it is obvious that if Tξk1φ1
· · ·Tξkm φm

is of finite rank,
then the rank is less than 1.

By Lemma 2.3, it is easy to obtain the complete characterization of zero Toeplitz operators
with quasihomogeneous symbols, which we list for frequent use.

Lemma 3.2 Suppose k has the index decomposition k = p − s with p ⊥ s and φ ∈ Σ′. Then

the following statements hold.

(1) If p Â 0, Tξkφ = 0 if and only if φ(1−) = 0;

(2) If p = 0, Tξkφ = 0 if and only if φ(1−) = 0 and
∫ 1

0
r2n+|s|−1φdr = 0.

Theorem 3.3 Suppose ki has the index decomposition ki = pi − si with pi ⊥ si and φi ∈ Σ′

for i = 1, 2. Then Tξk1φ1
Tξk2φ2

= 0 if and only if one of the following statements holds:

(1) Tξk1φ1
= 0;

(2) Tξk2φ2
= 0;

(3) p1 = 0, p2 Â 0, s1 � p2, φ1(1−) = 0;

(4) p2 = 0, s1 Â 0, φ2(1−) = 0;

(5) p1 = p2 = s1 = 0, φ1(1−)φ2(1−) = 0 and
∫ 1

0
r2n−1φ1dr

∫ 1

0
r2n−1+|s2|φ2dr = 0.

Proof For simplicity, we denote Tξk1φ1
= T1, Tξk2φ2

= T2. By Theorem 3.1, Tξk1φ1
Tξk2φ2

= 0
implies φ1(1−) = 0 or φ2(1−) = 0. For two multi-indexes p1, p2, to prove this theorem, we need
to consider four cases: case 1, p1, p2 Â 0; case 2, p1 = 0, p2 Â 0; case 3, p1 Â 0, p2 = 0; case 4,
p1 = 0, p2 = 0.

Case 1 If p1, p2 Â 0, by Lemma 3.2, we have Tξk1φ1
Tξk2φ2

= 0 if and only if

φ1(1−) = 0 or φ2(1−) = 0,

which is equivalent to that (1) or (2) holds.

Case 2 (a) If p1 = 0, p2 Â 0, s1 = 0, s2 º 0. For any multi-index α º s2,

T1T2z
α = Tφ1Tξp

2φ2
zα = d(α + p2, α + p2 − s2)φ1(1−)φ2(1−)zα+p2−s2 .
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In view of Corollary 2.4, it follows that T1T2 = 0 if and only if (2) holds or

φ1(1−) = 0. (3.1)

(b) If p1 = 0, p2 Â 0, s1 Â 0, s2 = 0. For any multi-index α,

T1T2z
α = Tξ̄s1φ1

Tξp2φ2z
α

=





2n!s1!
(n−1+|s1|)!φ2(1−)

∫ 1

0
r2n+|s1|−1φ1dr, α + p2 = s1;

d(α + p2, α + p2 − s1)φ2(1−)φ1(1−)zα+p2−s1 , α + p2 Â s1;

0, else.

For s1 º p2, T1T2 = 0 if and only if φ1(1−) = 0 and
∫ 1

0
r2n+|s1|−1φ1dr = 0 or φ2(1−) = 0.

This is equivalent to that (1) or (2) holds.

For s1 � p2, T1T2 = 0 if and only if φ1(1−) = 0 or φ2(1−) = 0, which is equivalent to that
(2) holds or

φ1(1−) = 0. (3.2)

(c) If p1 = 0, p2 Â 0, s1 Â 0, s2 Â 0.

T1T2z
α = Tξ̄s1φ1

Tξp
2 ξ̄s2φ2

zα

=





d(α+p2, α+k2−s1)φ1(1−)φ2(1−)zα+k2−s1 , α+p2−s2−s1 Â 0 and α +p2−s2 º 0;
2n!s1!

(n−1+|s1|)!φ2(1−)
∫ 1

0
r2n+|s1|−1φ1dr, α+p2−s2−s1 = 0 and α+p2−s2 º 0;

0, else.

Since p2 ⊥ s2, s1 + s2 − p2 º 0 is equivalent to s1 − p2 º 0.

For s1 º p2, T1T2 = 0 if and only if φ1(1−) = 0 and
∫ 1

0
r2n+|s1|−1φ1dr = 0 or φ2(1−) = 0 if

and only if (1) or (2) holds.

For s1 � p2, T1T2 = 0 if and only if φ1(1−) = 0 or φ2(1−) = 0, which is equivalent to that
(2) holds or

φ1(1−) = 0. (3.3)

Case 3 (a) If p1 Â 0, p2 = 0, s1 = 0, s2 º 0. For any multi-index α,

T1T2z
α = Tξp1φ1Tξ̄s2φ2

zα

=





2n!s2!
(n−1+|s2|)!

∫ 1

0
r2n+|s2|−1φ2drφ1(1−)zα+p1−s2 , α = s2;

d(α, α− s2)φ2(1−)φ1(1−)zα+p1−s2 , α Â s2;

0, else.

It follows that T1T2 = 0 if and only if (1) or (2) holds.

(b) If p1 Â 0, p2 = 0, s1 Â 0, s2 = 0. For any multi-index α, by Corollary 2.11 we have

T1T2z
α = Tξp1 ξ̄s1φ1

Tφ2z
α = Tφ2Tξp1 ξ̄s1φ1

zα.

Lemma 2.3 shows that T1T2 = 0 if and only if (1) holds or

φ2(1−) = 0. (3.4)
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(c) If p1 Â 0, p2 = 0, s1 Â 0, s2 Â 0.

T1T2z
α = Tξp1 ξ̄s1φ1

Tξ̄s2φ2
zα

=





d(α, α− s2)d(α− s2 + p1, γα)φ1(1−)φ2(1−)zγα , α Â s2 and γα Â 0;

d(α, α− s2)φ2(1−) 2n!s1!
(n−1+|s1|)!

∫ 1

0
r2n−1+|s1|φ1dr, α Â s2 and γα = 0;

0, else,

where γα = α− s2 + p1 − s1.
Note that p1 ⊥ s1, for multi-index β, β − s1 + p1 Â 0 if and only if β º s1. Therefore, for

multi-index α, α Â s2 and γα Â 0 if and only if α º s1 + s2. On the other hand, it is impossible
for multi-index α to satisfy both α Â s2 and γα = 0. That is,

T1T2z
α =

{
d(α, α− s2)d(α− s2 + p1, γα)φ1(1−)φ2(1−)zγα , α º s1 + s2;

0, else,

which means that T1T2 = 0 if and only if (1) holds or

φ2(1−) = 0. (3.5)

Case 4 p1 = 0, p2 = 0. With Lemma 2.3, by direct computation, we can get the following
results. If p1 = 0, p2 = 0, s1 = 0, s2 º 0. T1T2 = 0 if and only if (5) holds.

If p1 = 0, p2 = 0, s1 Â 0, s2 = 0. T1T2 = 0 if and only if (1) holds or

φ2(1−) = 0. (3.6)

If p1 = 0, p2 = 0, s1 Â 0, s2 Â 0. Theorem 2.9 shows that T1T2 = 0 if and only if (1) holds
or

φ2(1−) = 0. (3.7)

As we know, conditions (3.1)–(3.3) are equivalent to (3), while conditions (3.4)–(3.7) are equiv-
alent to (4). The proof is completed. ¤

Finally, we consider when the product of two quasihomogeneous Toeplitz operators equals
another such Toeplitz operator. Note that if φ ∈ Σ′ and φ(1−) = 0, the rank of Tξkφ is less than
1. We only discuss Toeplitz operators with symbols φ(1−) 6= 0.

Theorem 3.4 Suppose ki has the index decomposition ki = pi−si with pi ⊥ si and φi ∈ Σ′ with

φi(1−) 6= 0 for i = 1, 2, 3. Then Tξk1φ1
· Tξk2φ2

= Tξk3φ3
if and only if the following statements

hold:

(1) φ3(1−) = φ1(1−)φ2(1−);
(2) k3 = k1 + k2, pi ⊥ sj for 1 ≤ i, j ≤ 3;

(3) Multi-indexes si, pj satisfy one of the conditions below:

(i) s1 + s2 Â 0, s2 = 0;

(ii) s1 + s2 Â 0, p1 = 0;

(iii) s1 = s2 = 0, p2 Â 0;

(iv) s1 = s2 = 0, p2 = 0, p1 Â 0 and Tξk2φ2
= φ2(1−)I;

(v) s1 = s2 = 0, p1 = p2 = 0 and φ̃1(2n)φ̃2(2n) = φ̃3(2n).
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Proof First suppose s1, s2 are not both 0. For those multi-indexes α with α− s1 − s2 Â 0, by
Lemma 2.3 we have

Tξk1φ1
Tξk2φ2

zα = I1φ1(1−)φ2(1−)zα+p1+p2−s1−s2 ,

Tξk3φ3
zα = I2φ3(1−)zα+p3−s3 ,

where

I1 = d(α + p2, α + p2 − s2)d(α + p1 + p2 − s2, α + p1 + p2 − s1 − s2),

I2 = d(α + p3, α + p3 − s3).

If T1T2 = T3, we have the following

p1 + p2 − s1 − s2 =p3 − s3 (3.8)

I1φ1(1−)φ2(1−) =I2φ3(1−). (3.9)

By the definition of function d(·, ·), (3.9) is equivalent to

I3 = CI4, (3.10)

where

I3 =
(p2 + α)!(p1 + p2 + α− s2)!

(p2 + α− s2)!(p3 + α)!
, C =

φ3(1−)
φ1(1−)φ2(1−)

,

I4 =
(n− 1 + |p2 + α|)!(n− 1 + |p1 + p2 + α− s2|)!

(n− 1 + |p2 + α− s2|)!(n− 1 + |p3 + α|)! .

Observe that I3 depends on α while I4 only depends on |α|, it follows from (3.10) that
I3 = CI4 = c for some constant c. Since both I3, I4 are composed of factorial function, it follows
that

I3 = I4 = C = 1.

It is easy to see that I4 = 1 holds if and only if
(i) s2 = 0, p3 = p1 + p2, s3 = s1; or
(ii) |p2| = |p3|, p1 = 0.
Together with I3 = 1 and (3.8), they are equivalent to
(i′) s2 = 0, p3 = p1 + p2, s3 = s1; or
(ii′) p1 = 0, p3 = p2, s3 = s1 + s2.
Next, we will discuss the above two cases, respectively.
If s2 = 0, p3 = p1 + p2, s3 = s1. Since p3 ⊥ s3 and p1 ⊥ s3, it follows that p2 ⊥ s3. Note

that s1 + s2 Â 0, by Lemma 2.3 for α º s1, we get

T1T2z
α = Tξp1 ξ̄s1φ1

Tξp2φ2z
α

= φ1(1−)φ2(1−)d(α + p1 + p2, α + p1 + p2 − s1)zα+p1+p2−s1

= φ3(1−)d(α + p3, α + p3 − s3)zα+p3−s3

= T3z
α,

which implies that Tξk1φ1
· Tξk2φ2

= Tξk3φ3
. Thus we get (i).
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If p1 = 0, p3 = p2, s3 = s1 + s2. Since p2 ⊥ s3 and p2 ⊥ s2, it follows that p2 ⊥ s1. Using
Lemma 2.3 again, for α º s1 + s2, we obtain

T1T2z
α = Tξ̄s1φ1

Tξp2 ξ̄s2φ2
zα

= φ1(1−)φ2(1−)d(α + p2, α + p2 − s1 − s2)zα+p2−s1−s2

= φ3(1−)d(α + p3, α + p3 − s3)zα+p3−s3

= T3z
α,

which also implies that Tξk1φ1
· Tξk2φ2

= Tξk3φ3
. So (ii) is also obtained.

Now suppose s1, s2 are both 0. By the assumption, we have Tξp1φ1Tξp2φ2 = Tξp3 ξ̄s3φ3
. It is

easy to see that s3 = 0 and p1 + p2 = p3.
If p2 Â 0. It follows from Lemma 2.3 that Tξp1φ1Tξp2φ2 = Tξp3 ξ̄s3φ3

if and only if φ1(1−)φ2(1−)
= φ3(1−), which leads to (iii).

If p2 = 0, p1 Â 0. The equation T1T2 = T3 turns into

Tξp1φ1Tφ2 = Tξp1φ3 ,

which is equivalent to φ3(1−) = φ1(1−)φ2(1−) = φ1(1−)2n
∫ 1

0
r2n−1φ2dr. That is, T1T2 = T3 if

and only if Tφ2 = φ2(1−)I and φ3(1−) = φ1(1−)φ2(1−). It comes to (iv).
If p2 = 0, p1 = 0. By Corollary 2.5, T1T2 = T3 if and only if φ̃1(2n)φ̃2(2n) = φ̃3(2n) and

φ3(1−) = φ1(1−)φ2(1−). Therefore, (v) is achieved. The proof is completed. ¤

Example 3.5 Given n > 1, consider the following three symbols

k1 = (1,−1, 0, . . . , 0), φ1 = r2,

k2 = (1, 0, 0, . . . , 0), φ2 = (r + 1),

k3 = (2,−1, 0, . . . , 0), φ3 = r(r + 1).

Then by Theorem 3.4, it is easy to see that Tξk1φ1
· Tξk2φ2

= Tξk3φ3
.
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[2] S. AXLER, Z̆. C̆UC̆KOVIĆ. Commuting Toeplitz opertors with harmonic symbols. Integral Equations

Operator Theory, 1991, 14: 1–11.
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