Journal of Mathematical Research with Applications Nov., 2013, Vol. 33, No. 6, pp. 732–736 DOI:10.3770/j.issn:2095-2651.2013.06.009 Http://jmre.dlut.edu.cn

Reflexivity of Weighted Shifts

Bahmann YOUSEFI^{1,*}, Khadijeh JAHEDI²

1. Department of Mathematics, Payame Noor University, P.O. Box 19395-3697, Tehran, Iran;

2. Department of Mathematics, Shiraz Branch, Islamic Azad University, Shiraz, Iran

Abstract Let $\{\beta(n)\}_n$ be a sequence of positive numbers such that $\beta(0) = 1$ and let $1 \le p < \infty$. We will investigate the reflexivity of all integer powers of the multiplication operator on the Banach spaces of formal Laurent series, $L^p(\beta)$.

Keywords Banach space of Laurent series associated with a sequence β ; reflexive operator; weak operator topology.

MR(2010) Subject Classification 47B37; 46A25; 47L10

1. Introduction

First in the following, we generalize a definition from [1].

Let $\{\beta(n)\}_{n=-\infty}^{\infty}$ be a sequence of positive numbers with $\beta(0) = 1$ and $1 \le p < \infty$. We consider the space of sequences $f = \{\hat{f}(n)\}_{n=-\infty}^{\infty}$ such that

$$||f||^p = ||f||^p_{\beta} = \sum_{n=-\infty}^{\infty} |\hat{f}(n)|^p \beta(n)^p < \infty.$$

The notation

$$f(z) = \sum_{n = -\infty}^{\infty} \hat{f}(n) z^n$$

shall be used whether or not the series converges for any value of z. These are called formal Laurent series. Note that when n ranges on $\mathbb{N} \cup \{0\}$, they are called formal power series and are denoted by $H^p(\beta)$. Let $L^p(\beta)$ denote the space of such formal Laurent series, which is the reflexive Banach space with the norm $\|\cdot\|_{\beta}$. Let $\hat{f}_k(n) = \delta_k(n)$. So $f_k(z) = z^k$ and then $\{f_k\}_{k \in \mathbb{Z}}$ is a basis for $L^p(\beta)$ such that $\|f_k\| = \beta(k)$. Now consider M_z , the operator of multiplication by z on $L^p(\beta)$:

$$(M_z f)(z) = \sum_{n=-\infty}^{\infty} \hat{f}(n) z^{n+1}$$

where

$$f(z) = \sum_{n=-\infty}^{\infty} \hat{f}(n) z^n \in L^p(\beta)$$

Received October 7, 2012; Accepted June 4, 2013

* Corresponding author

E-mail address: b_yousefi@pnu.ac.ir (Bahmann YOUSEFI); mjahedi80@yahoo.com (Khadijeh JAHEDI)

Reflexivity of weighted shifts

In other words, $(M_z f)(n) = \hat{f}(n-1)$ for all $n \in \mathbb{Z}$. Clearly, M_z shifts the basis $\{f_k\}_k$. The operator M_z is bounded if and only if $\{\beta(k+1)/\beta(k)\}_k$ is bounded and in this case

$$\|M_z^n\| = \sup_k [\beta(k+n)/\beta(k)]$$

for all $n \in \mathbb{N} \cup \{0\}$. We denote the set of multipliers

$$\{\varphi \in L^p(\beta): \varphi L^p(\beta) \subseteq L^p(\beta)\}$$

by $L^p_{\infty}(\beta)$ and the linear transformation of multiplication by φ on $L^p(\beta)$ by M_{φ} . The space $L^p_{\infty}(\beta)$ is a commutative Banach algebra with the norm $\|\varphi\|_{\infty} = \|M_{\varphi}\|$. The set of multipliers on $H^p(\beta)$ is also denoted by $H^p_{\infty}(\beta)$.

If λ is a complex number, then $e(\lambda)$ denotes the functional of evaluation at λ defined on Laurent polynomials p (that are finite combination of the vectors $\{f_n\}_{n=-\infty}^{\infty}$) by $e(\lambda)(p) = p(\lambda)$. Note that Laurent polynomials are dense in $L^p(\beta)$. We say that λ is a bounded point evaluation on $L^p(\beta)$ if the functional $e(\lambda)$ extends to a bounded linear functional on $L^p(\beta)$.

By the same method used in [2] we can see that $L^p(\beta)^* = L^q(\beta^{\frac{p}{q}})$, where $\frac{1}{p} + \frac{1}{q} = 1$. Also if

$$f(z) = \sum_{n} \hat{f}(n) z^{n} \in L^{p}(\beta)$$

and

$$g(z) = \sum_{n} \hat{g}(n) z^{n} \in L^{q}(\beta^{\frac{p}{q}}),$$

then clearly

$$\langle f,g \rangle = \sum_{n} \hat{f}(n) \overline{\hat{g}(n)} \beta(n)^{p}$$

Some sources on formal power series are included in [1–6, 11–13].

If Ω is a domain in the complex plane \mathbb{C} , then by $H(\Omega)$ and $H^{\infty}(\Omega)$ we mean respectively the set of analytic functions and the set of bounded analytic functions on Ω . By $\|\cdot\|_{\Omega}$ we denote the supremum norm on Ω .

Let X be a Banach space. It is convenient and helpful to introduce the notation $\langle x, x^* \rangle$ to stand for $x^*(x)$, for $x \in X$ and $x^* \in X^*$. Also the set of bounded linear operators on X is denoted by B(X). If $A \in B(X)$, by $\sigma(A)$ we mean the spectrum of A and by r(A) we mean the spectral radius of A.

Recall that if $A \in B(X)$, then Lat(A) is by definition the lattice of all invariant subspaces of A, and Alg Lat(A) is the algebra of all operators B in B(X) such that $Lat(A) \subset Lat(B)$. For the algebra B(X), the weak operator topology (WOT) is the one induced by the family of seminorms

$$p_{x^*,x}(A) = |\langle Ax, x^* \rangle|$$

where $x \in X$, $x^* \in X^*$ and $A \in B(X)$. Hence $A_{\alpha} \longrightarrow A$ (WOT) if and only if $A_{\alpha}x \longrightarrow Ax$ weakly. Also similarly $A_{\alpha} \longrightarrow A$ (SOT) if and only if $A_{\alpha}x \longrightarrow Ax$ in the norm topology.

An operator A in B(X) is said to be reflexive if $\operatorname{Alg}\operatorname{Lat}(A) = W(A)$, where W(A) is the smallest subalgebra of B(X) that contains A and the identity I and is closed in the weak operator

topology. For some sources see [7–10, 13]. In [13], for all positive integers k, we investigate the reflexivity of M_{z^k} acting on the spaces of formal Laurent series, and here by a different method we extend this result for all $k \in \mathbb{Z}$.

2. Main result

In this section, we will investigate the reflexivity of the powers of the multiplication operator on $L^{p}(\beta)$.

In the following theorems we use the notations:

$$r_{01} = \overline{\lim}\beta(-n)^{\frac{-1}{n}},$$

$$\Omega_{01} = \{z \in \mathbf{C} : |z| > r_{01}\},$$

$$r_{11} = \underline{\lim}\beta(n)^{\frac{1}{n}},$$

$$\Omega_{11} = \{z \in \mathbf{C} : |z| < r_{11}\},$$

$$\Omega_{1} = \Omega_{01} \cap \Omega_{11}.$$

Also, for each $\varphi \in H(\Omega_{11}) \cap L^p_{\infty}(\beta)$, put

$$P_n(\varphi) = \sum_{k=0}^n (1 - \frac{k}{n+1})\hat{\varphi}(k)z^k, \quad n \ge 0$$

Note that $P_n(\varphi)$ is a polynomial and

$$\widehat{P_n(\varphi)}(j) = (1 - \frac{j}{n+1})\widehat{\varphi}(j)$$

whenever $j = 0, \ldots, n$ and is 0 else.

The following theorem extends the results obtained by Shields (for the case p = 2) in [1] and by similarity we omit the proof.

Theorem 2.1 If $\varphi \in H(\Omega_{11}) \cap L^p_{\infty}(\beta)$, then $M_{P_n(\varphi)} \to M_{\varphi}$ in the weak operator topology.

Theorem 2.2 Let M_z be invertible on $L^p(\beta)$. If $r_{01} \leq r_{11}$, then M_{z^k} is reflexive for all integers k.

Proof Let $A \in \operatorname{Alg}\operatorname{Lat}(M_{z^k})$. Since $\operatorname{Lat}(M_z) \subset \operatorname{Lat}(M_{z^k})$, we have $\operatorname{Lat}(M_z) \subset \operatorname{Lat}(A)$. This implies that $A \in \operatorname{Alg}\operatorname{Lat}(M_z)$. Note that since

$$M_z^* e(\lambda) = \lambda e(\lambda)$$

for all λ in Ω_1 , the one dimensional span of $e(\lambda)$ is invariant under M_z^* . Therefore, it is invariant under A^* and we can write

$$A^*e(\lambda) = \varphi(\lambda)e(\lambda), \quad \lambda \in \Omega_1.$$

 So

$$\langle Af, e(\lambda) \rangle = \langle f, A^* e(\lambda) \rangle = \varphi(\lambda) f(\lambda)$$

for all $f \in L^p(\beta)$ and $\lambda \in \Omega_1$. This implies that $A = M_{\varphi}$ and $\varphi \in L^p_{\infty}(\beta) \cap H^{\infty}(\Omega_1)$. Set

$$\mathcal{M} = L^p(\beta) \cap H^\infty(\Omega_{11}).$$

Since $L^p(\beta)$ contains the constants, $\mathcal{M} \neq \{0\}$. Clearly, every function in \mathcal{M} is analytic in Ω_{11} . Now we show that \mathcal{M} is a closed invariant subspace of $L^p(\beta)$ that is invariant under M_z . To see this, let $\{\varphi_n\}_n$ be a sequence in \mathcal{M} such that φ_n converges to h in $L^p(\beta)$. Note that $L^p(\beta) \subset H(\Omega_1)$. By applying the Cauchy integral formula we can write $h = h_1 + h_2$ where $h_1 \in H(\Omega_{11})$ and $h_2 \in H_0(\Omega_{01})$ ($H_0(\Omega_{01})$ denotes the space of all functions in $H(\Omega_{01})$ that vanishes at ∞). Now $\varphi_n - h_1$ converges uniformly to h_2 on compact subsets of Ω_1 and so $z^k(\varphi_n - h_1)$ converges uniformly to z^kh_2 on compact subsets of Ω_1 ($k = 0, 1, \ldots$). Since

$$z^k(\varphi_n - h_1) \in H(\Omega_{11}),$$

we have

$$\int_{\gamma_0} \xi^k (\varphi_n(\xi) - h_1(\xi)) d\xi = 0, \quad k = 0, 1, 2, \dots; \ n = 1, 2, \dots$$

where

$$\gamma_0 = \{ z : |z| = r_{11} - \varepsilon > r_{01} \}$$

for some $\varepsilon > 0$. Choose the circle γ'_0 sufficiently close to γ_0 with smaller radius so that γ_0 lies in $ext(\gamma'_0)$. We can write

$$h_2(z) = \sum_{n=-\infty}^{-1} a_n z^n, \quad z \in \text{ext}(\gamma'_0)$$
$$a_n = \frac{1}{2\pi i} \int_{\gamma_0} h_2(\xi) d\xi / \xi^{n+1}, \quad n < 0.$$

But

$$\int_{\gamma_0} \xi^k h_2(\xi) d\xi = 0, \quad k = 0, 1, 2, \dots$$

From this it follows that $h_2(z) = 0$, $z \in ext(\gamma'_0)$. Hence $h \equiv 0$. Therefore, $h = h_0$ is analytic on Ω_{11} and so \mathcal{M} is closed and is invariant under M_z . Since $A\mathcal{M} \subset \mathcal{M}$ and $1 \in \mathcal{M}$, we see that

$$A1 = \varphi \in \mathcal{M} \subset H^{\infty}(\Omega_{11})$$

Hence

$$\varphi \in L^p_{\infty}(\beta) \cap H^{\infty}(\Omega_{11}) \subset L^p_{\infty}(\beta) \cap H(\Omega_{11}).$$

Thus by Theorem 2.1, $M_{P_n(\varphi)} \to M_{\varphi}$ in the weak operator topology. Now let \mathcal{M}_k be the closed linear span of the set $\{f_{nk} : n \geq 0\}$. We have

$$M_{z^k} f_{nk} = f_{(n+1)k} \in \mathcal{M}_k$$

for all $n \ge 0$. Thus $\mathcal{M}_k \in \operatorname{Lat}(M_{z^k})$, and so $\mathcal{M}_k \in \operatorname{Lat}(M_{\varphi})$. Let

$$\varphi(z) = \sum_{n=0}^{\infty} \hat{\varphi}(n) z^n.$$

Since $1 \in \mathcal{M}_k$,

$$M_{\varphi}1 = \varphi \in \mathcal{M}_k.$$

Hence $\hat{\varphi}(i) = 0$ for all $i \neq nk$, $n \geq 0$. Now, by the particular construction of $P_n(\varphi)$ relative to φ , each $P_n(\varphi)$ should be a polynomial in z^k , i.e., $P_n(\varphi)(z) = q_n(z^k)$ for some polynomial q_n . Thus

$$M_{P_n(\varphi)} = P_n(\varphi)(M_z) = q_n(M_{z^k}) \to A$$

in the weak operator topology. Hence $A \in W(M_{z^k})$. Thus M_{z^k} is reflexive for all positive integers k.

Note that since $M_z f_m = f_{m+1}$, we have $M_z^{-1} f_m = f_{m-1}$ for all m. Let $f'_m = f_{-m}$. Then $M_z^{-1} f'_m = f'_{m+1}$ for all m. So $\{f'_m\}$ is shifted (forward) by M_z^{-1} . Hence by the above discussion M_z^{-k} is reflexive for all $k \ge 1$. But the identity operator is also reflexive, thus indeed M_{z^k} is reflexive for all integers k. Now the proof is completed. \Box

References

- A. L. SHIELDS. Weighted Shift Operators and Analytic Functions Theory. Amer. Math. Soc., Providence, R.I., 1974.
- [2] B. YOUSEFI. On the space $\ell^p(\beta)$. Rend. Circ. Mat. Palermo (2), 2000, 49(1): 115–120.
- [3] B. YOUSEFI. Unicellularity of the multiplication operator on Banach spaces of formal power series. Studia Math., 2001, 147(3): 201–209.
- [4] B. YOUSEFI. Bounded analytic structure of the Banach space of formal power series. Rend. Circ. Mat. Palermo (2), 2002, 51(3): 403-410.
- B. YOUSEFI, S. JAHEDI. Composition operators on Banach spaces of formal power series. Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8), 2003, 6(2): 481–487.
- [6] B. YOUSEFI. Strictly cyclic algebra of operators acting on Banach spaces H^p(β). Czechoslovak Math. J., 2004, 54(129): 261–266.
- [7] B. YOUSEFI. On the eighteenth question of Allen Shields. Internat. J. Math., 2005, 16(1): 37-42.
- [8] B. YOUSEFI, S. JAHEDI. Reflexivity of the multiplication operator on the weighted Hardy spaces. Southeast Asian Bull. Math., 2007, 31(1): 163–168.
- B. YOUSEFI, J. DOROODGAR. Reflexivity on Banach spaces of analytic functions. J. Math. Ext., 2008, 3(1): 87–93.
- [10] B. YOUSEFI, A. KHAKSARI. Multiplication operators on analytic functional spaces. Taiwanese J. Math., 2009, 13(4): 1159–1165.
- [11] B. YOUSEFI, A. I. KASHKOOLY. On the eleventh question of Allen Shields. Fixed Point Theory Appl., 2011, 2011:16, 9 pp.
- [12] K. JAHEDI, B. YOUSEFI. Numerical range of operators acting on Banach spaces. Czechoslovak Math. J., 2012, 62(137): 495–503.
- [13] B. YOUSEFI, SH. KHOSHDEL. Reflexivity of powers of the multiplication operator on special function spaces. Acta Math. Sci. Ser. B Engl. Ed., 2012, 32(6): 2279–2284.