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1. Introduction

We adopt the following notations: for a matrix A, µ(A), tr(A), rank(A), A′, A−, A+ and
Vec(A) denote the range space, trace, rank, transpose, g-inverse, Moore-Penrose inverse and
usual column-stacking of A, respectively. The n× n identity matrix is denoted by In. For non-
negative definite matrix A and B, A ≥ B (A > B) means that A−B is non-negative (positive)
definite. A⊗ B denotes the Kronecker product of A and B, Rm×n stands for the set composed
of all m× n real matrices.

Consider the following general multivariate linear model

Y = XΘ + ε, E(ε) = 0, Cov(Vec(ε)) = Σ⊗ V, (1.1)

where Y ∈ Rn×q is observable, X ∈ Rn×p is a design matrix, ε is an n × q matrix of random
errors with zero mean, V ≥ 0 is known, Σ and Θ ∈ Rp×q are unknown parameter matrices.

In practical situations, there is usually some prior information on the parameters of the
model. In other words, the model parameters need to satisfy certain constraint conditions.
Common constraints in the literature include ellipsoid constraints and inequality constraints. In
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particular, statistical inference problems with inequality constraints have received much attention
recently. In this paper, we discuss the admissibility of linear estimators in model (1.1) with
respect to the following inequality constraint

T = {(Θ,Σ) | tr(H ′Θ) ≥ 0,Σ ≥ 0}, (1.2)

where H ∈ Rp×q is known. It should be pointed out that references [1–7] have considered similar
problems with some inequality constraints.

Different from the aforementioned references, the loss function considered in this paper is
a kind of balanced loss function. Balanced loss function was originally proposed by Zellner
[8], which takes error of estimation and goodness-of-fit into account. Therefore, it is a more
comprehensive and reasonable measure of efficiency compared with the usual quadratic loss or
matrix loss function.

According to Zellner’s thought, we use the following balanced loss function:

L(d(Y );Θ,Σ) = tr[ω(Y −Xd(Y ))′T+(Y −Xd(Y )) + (1− ω)(d(Y )−Θ)′S(d(Y )−Θ)], (1.3)

where ω ∈ [0, 1] and S > 0 are known, T = V + XX ′, and d(Y ) is an estimator of Θ. The
corresponding risk is

R(d(Y );Θ,Σ) = EL(d(Y );Θ,Σ).

Note that quadratic loss function can be considered as a special case of (1.3), so the results
in this paper generalize some related results in [2–5].

In order to estimate Θ, we consider the class of the homogeneous linear estimators and the
inhomogeneous linear estimators:

LH = {AY : A ∈ Rp×n}, LI = {AY + A1 : A ∈ Rp×n, A1 ∈ Rp×q}.
Definition 1.1 Let d(Y ), d1(Y ) and d2(Y ) be three estimators of Θ. Then d1(Y ) is said to be

better than d2(Y ) if

R(d1(Y );Θ,Σ) ≤ R(d2(Y );Θ,Σ)

for all (Θ,Σ) ∈ T with strict inequality holding for at least one point. If there does not exist

any better estimator which is better than d(Y ) in the class of some estimators ϕ, then d(Y ) will

be said to be admissible in ϕ, which is denoted by d(Y )
ϕ∼ Θ(T ).

In this paper, the admissibility for linear estimators of regression coefficient Θ in model
(1.1) under the balanced loss function (1.3) is studied, and necessary and sufficient conditions
for admissible linear estimators in LH and LI are obtained, respectively.

2. Admissible linear estimators in LH
Lemma 2.1 For the multivariate linear model

Z = (X ′T+X)Θ + ε, E(ε) = 0, Cov(Vec(ε)) = σ2Iq ⊗ (X ′T+X)(I − (X ′T+X)),

denote B = ωX ′T+X + (1− ω)S, C = (1− ω)B−1S, L1 = {AZ : A ∈ Rp×p}, LB(d;CΘ, σ2) =
tr[(d−CΘ)′B(d−CΘ)] and Â = A−ωB−1. Suppose that CΘ is estimable, then under the loss
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function LB(d;CΘ, σ2), ÂZ
LH∼ CΘ if and only if AX ′T+Y

LH∼ Θ under the loss function (1.3).

Proof The proof is similar to Lemma 4 in [9], so we omit it. ¤

Lemma 2.2 ([5]) In the class of homogeneous linear estimators LH, for model (1.1) and loss

function L(d; Θ,Σ) = tr[(d− SΘ)′(d− SΘ)], suppose that SΘ is estimable, then AY
LH∼ Θ(T ) if

and only if

(1) AV = AX(X ′T+X)−X ′T+V ;

(2) AX((X ′T+X)− − I)S′ ≥ AX((X ′T+X)− − I)X ′A′;

(3) rank[(AX − S)((X ′T+X)− − I)X ′] = rank(AX − S).

Lemma 2.3 Let L0 = {AX ′T+Y : A ∈ Rp×p}. Then under the loss function (1.3), L0 is a class

of completeness about LH.

Proof Denote PX = X(X ′T+X)X ′T+, then APXY ∈ L0. For every (Θ,Σ) ∈ T , we have

R(AY ; Θ,Σ)−R(APXY ; Θ,Σ) = tr[A(In − PX)V (In − PX)′A′B] · tr(Σ) ≥ 0.

Moreover, the equality holds if and only if AV = APXV . The proof of Lemma 2.3. is completed.
¤

Lemma 2.4 For model (1.1) and loss function (1.3), AY
LH∼ Θ(T ) if and only if AY

LH∼ Θ.

Proof The sufficiency is straightforward, so we need only to prove the necessity. In fact, suppose
on the contrary that AY

LH� Θ, then there exists DY ∈ LH such that

R(AY ; Θ,Σ)

= [ωtr(V T+) + tr(DV D′B)− 2ωtr(XDV T+)]tr(Σ) + tr[Θ′(DX − I)′B(DX − I)Θ]

≤ [ωtr(V T+) + tr(AV A′B)− 2ωtr(XAV T+)]tr(Σ) + tr[Θ′(AX − I)′B(AX − I)Θ]

= R(DY ; Θ,Σ)

for all (Θ,Σ) ∈ T ∗, where T ∗ = {(Θ,Σ)|tr(H ′Θ) < 0,Σ ≥ 0} is the dual cone of T , and the
strict inequality holds for at least one point. Let Θ1 = −Θ, then (Θ1,Σ) ∈ T and

R(AY ; Θ,Σ)

= [ωtr(V T+) + tr(DV D′B)− 2ωtr(XDV T+)]tr(Σ) + tr[Θ′1(DX − I)′B(DX − I)Θ1]

≤ [ωtr(V T+) + tr(AV A′B)− 2ωtr(XAV T+)]tr(Σ) + tr[Θ′1(AX − I)′B(AX − I)Θ1]

= R(DY ; Θ,Σ)

with strict inequality holding for at least one point, which contradicts AY
LH∼ Θ(T ). Therefore,

AY
LH∼ Θ. ¤

Theorem 2.1 In the class of homogeneous linear estimators LH, for model (1.1) and loss

function (1.3), AY
LH∼ Θ(T ) if and only if

(1) AV = APXV ;

(2) (1− ω)ÃX[(X ′T+X)− − I]SB−1 ≥ ÃX[(X ′T+X)− − I]X ′Ã′;
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(3) rank[(AX − I)((X ′T+X)− − I)X ′T+X] = rank(AX − I),
where PX = X(X ′T+X)−X ′T+, B = ω′T+X + (1− ω)S, Ã = A− ωB−1X ′T+.

Proof First, by Lemma 2.1, under the loss function (1.3), AX ′T+Y
LH∼ Θ holds if and only if

ÂZ
LH∼ CΘ under the loss function LB(d;CΘ, σ2) = tr[(d−CΘ)′B(d−CΘ)]. Then from Lemma

2.2 in [10], we get that under the loss function LB(d;CΘ, σ2) = tr[(d−CΘ)′B(d−CΘ)], ÂZ
LH∼

CΘ holds if and only if ÂZ
LH∼ CΘ under the loss function L(d;CΘ, σ2) = tr[(d−CΘ)′(d−CΘ)].

By Lemma 2.2, under the loss function (1.3), AX ′T+Y
LH∼ Θ(T ) holds if and only if

Â(X ′T+X)(I − (X ′T+X)) = ÂX ′T+X(I − (X ′T+X)), (2.1)

ÂX ′T+X((X ′T+X)− − I)C ′ ≥ ÂX ′T+X((X ′T+X)− − I)X ′T+XÂ′, (2.2)

rank(ÂX ′T+X − C)((X ′T+X)− − I)X ′T+X = rank(ÂX ′T+X − C). (2.3)

Note that Â = A− ωB−1 and C = (1− ω)B−1S, thus (2.2) and (2.3) become

(1− ω)(AX ′T+ − ωB−1X ′T+)X((X ′T+X)− − I)SB−1

≥ (AX ′T+ − ωB−1X ′T+)X((X ′T+X)− − I)X ′(AX ′T+ − ωB−1)′ (2.4)

and
rank[(AX ′T+X − I)((X ′T+X)− − I)X ′T+X] = rank(AX ′T+X − I). (2.5)

From Lemma 2.3, R(AY ; Θ,Σ) = R(APXY ; Θ,Σ) if and only if AV = APXV , and then by
Lemma 2.4, we obtain that under the loss function (1.3), AY

LH∼ Θ(T ) holds if and only if (1),
(2) and (3) hold simultaneously. This completes the proof of Theorem 2.1. ¤

3. Admissible linear estimators in LI
Lemma 3.1 ([5]) If tr(K ′Θ) ≥ 0 for all Θ ∈ {Θ|tr(H ′Θ) ≥ 0}, then there exists a real constant

λ ≥ 0, such that K = λH.

Theorem 3.1 In the class of inhomogeneous linear estimators LI, for model (1.1) and loss

function (1.3), if AY + A1
LI∼ Θ(T ), then

(1) A1 ∈ µ(AX − I);
(2) tr(H ′(AX − I)+A1) ≤ 0 or µ(H) * µ[(B1/2(AX − I))′];
(3) AY

LH∼ Θ(T ),
where B = ωX ′T+X + (1− ω)S.

Proof (1) Let P be an orthogonal projection matrix onto µ(B1/2(AX − I)), and C =
B−1/2PB1/2A1, then C ∈ µ(AX − I). Note that

R(AY + A1; Θ,Σ)−R(AY + C; Θ,Σ)

= tr[((AX − I)Θ + A1)′B((AX − I)Θ + A1)− ((AX − I)Θ + C)′B((AX − I)Θ + C)]

= tr[A′1BA1 − C ′BC + A′1B(AX − I)Θ− C ′B(AX − I)Θ]

= tr(A′1BA1 − C ′BC) = tr(A′1B
1/2(I − P )B1/2A1) ≥ 0. (3.1)
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Suppose A1 /∈ µ(AX − I), then the strict inequality in (3.1) holds. In fact, if A1 /∈ µ(AX − I),
then A1 = A11 + A12, where A11 ∈ µ(AX − I), A12 ∈ µ⊥(AX − I) and A12 6= 0. Thus,
B1/2A11 ∈ µ(B1/2(AX − I)), A12 ∈ µ⊥(B1/2(AX − I)), and (3.1) becomes tr(A′12B

1/2(I −
P )B1/2A12) > 0. It follows that AY + C is better than AY + A1 in the class of LI, which
contradicts AY + A1

LI∼ Θ(T ). Hence, A1 ∈ µ(AX − I).

(2) Suppose, by contraction, that H is such that tr(H ′(AX − I)+A1) > 0 and µ(H) ⊆
µ[(B1/2(AX − I))′]. Write H = (B1/2(AX − I))′(B1/2(AX − I))H0 for some H0, let C =
(AX − I)+A1 − λH0, where λ > 0. Then for all (Θ,Σ) ∈ T , we have

R(AY + (AX − I)C; Θ,Σ)−R(AY + A1; Θ,Σ)

= λ2tr[H ′
0(AX − I)′B(AX − I)H0]− 2λtr(H ′Θ)− 2λtr[H ′(AX − I)+A1]. (3.2)

Since tr(H ′(AX − I)+A1) > 0 and tr(H ′Θ) ≥ 0, it follows that for λ sufficiently small,

R(AY + (AX − I)C; Θ,Σ)−R(AY + A1; Θ,Σ) < 0, ∀(Θ,Σ) ∈ T .

Thus, AY + (AX − I)C is better than AY + A1, which contradicts the assumption. Hence, we
have tr(H(AX − I)+A1) ≤ 0 or µ(H) * µ[(B1/2(AX − I))′].

(3) According to part (1), we can write A1 = (AX − I)A0 for some A0. Suppose that DY

is better than AY . Similarly to Lemma 2.2 in [2], we can get

tr(DV D′B)− 2ωtr(XDV T+) ≤ tr(AV A′B)− 2ωtr(XAV T+),

tr[(DX − I)′B(DX − I)] ≤ tr[(AX − I)′B(AX − I)].

Therefore, for all (Θ,Σ) ∈ T ,

R(DY + (DX − I)A0; Θ,Σ)

= [ωtr(V T+) + tr(DV D′B)− 2ωtr(XDV T+)]tr(Σ)+

tr[(Θ + A0)′(DX − I)′B(DX − I)(Θ + A0)]

≤ [ωtr(V T+) + tr(AV A′B)− 2ωtr(XAV T+)]tr(Σ)+

tr[(Θ + A0)′(AX − I)′B(AX − I)(Θ + A0)]

= R(AY + A1; Θ,Σ). (3.3)

Since AY + A1
LI∼ Θ(T ), the equality in (3.3) holds for all (Θ,Σ) ∈ T . Replacing Σ by λ2Σ and

Θ by λΘ (λ > 0), then multiplying 1/λ2 to both sides of (3.3) and letting λ →∞, we have

R(DY ; Θ,Σ)

= [ωtr(V T+) + tr(DV D′B)− 2ωtr(XDV T+)]tr(Σ) + tr[Θ′(DX − I)′B(DX − I)Θ]

= [ωtr(V T+) + tr(AV A′B)− 2ωtr(XAV T+)]tr(Σ) + tr[Θ′(AX − I)′B(AX − I)Θ]

= R(AY ; Θ,Σ).

This means that there exists no homogeneous linear estimator which is better than AY on T .
Therefore, AY

LH∼ Θ(T ). ¤
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Theorem 3.2 In the class of inhomogeneous linear estimators LI, for model (1.1) and loss

function (1.3), AY + A1
LI∼ Θ(T ) holds if and only if

(1) A1 ∈ µ(AX − I);
(2) tr[H ′(AX − I)+A1] ≤ 0 or µ(H) * µ[(B1/2(AX − I))′];
(3) AY

LH∼ Θ(T ),
where B is the same as that in Theorem 3.1.

Proof By Theorem 3.1, we need only to establish the sufficiency. Suppose that DY +(DX−I)D0

is better than AY + A1 = AY + (AX − I)A0, then for all (Θ,Σ) ∈ T ,

R(DY + (DX − I)D0; Θ,Σ)

= [ωtr(V T+) + tr(AV A′B)− 2ωtr(XAV T+)]tr(Σ)+

tr[((AX − I)Θ + A1)′B((AX − I)Θ + A1)]

≤ [ωtr(V T+) + tr(AV A′B)− 2ωtr(XAV T+)]tr(Σ)+

tr[((AX − I)Θ + A1)′B((AX − I)Θ + A1)].

= R(AY + A1; Θ,Σ). (3.4)

Replacing Σ by λΣ(λ > 0), and letting λ →∞, we get

ωtr(V T+) + tr(DV D′B)− 2ωtr(XDV T+) ≤ ωtr(V T+) + tr(AV A′B)− 2ωtr(XAV T+).

On the other hand, replacing Σ by λΣ(λ > 0) and Θ by kΘ(k > 0), then letting λ → 0 and
k →∞, we have

tr[(DX − I)′B(DX − I)] ≤ tr[(AX − I)′B(AX − I)].

Since AY
LH∼ Θ(T ), we conclude that

R(DY ; Θ,Σ) = R(AY ; Θ,Σ).

Consequently,

ωtr(V T+) + tr(DV D′B)− 2ωtr(XDV T+) = ωtr(V T+) + tr(AV A′B)− 2ωtr(XAV T+),

tr[(DX − I)′B(DX − I)] = tr[(AX − I)′B(AX − I)]. (3.5)

It follows from (3.4) that, for all (Θ,Σ) ∈ T
tr[D′

0(AX − I)′B(AX − I)D0]− tr(A′1BA1)

≤ −2tr[Θ′(AX − I)′B(AX − I)(D0 − (AX − I)+A1)]. (3.6)

Let Θ = 0. Then
tr[D′

0(AX − I)′B(AX − I)D0]− tr(A′1BA1) ≤ 0 (3.7)

and for all (Θ,Σ) ∈ T ,

−2tr[Θ′(AX − I)′B(AX − I)(D0 − (AX − I)+A1)] ≥ 0.

By Lemma 3.1, there exists λ ≥ 0, such that

(AX − I)′B(AX − I)(D0 − (AX − I)+A1) = −λH. (3.8)
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If λ = 0, then (AX − I)′B(AX − I)D0 = (AX − I)′BA1, and

(AX − I)D0 = A1. (3.9)

If λ > 0, then from (3.8) we get µ(H) ⊆ µ[(B1/2(AX − I))′]. By condition (2),

tr[H ′(AX − I)+A1] ≤ 0. (3.10)

Furthermore, it follows from (3.8) that

− λ[tr(H ′D0)− tr(H ′(AX − I)+A1)]

= tr[(D0 − (AX − I)+A1)′(AX − I)′B(AX − I)(D0 − (AX − I)+A1)] ≥ 0.

Thus
tr(H ′D0) ≤ tr[H ′(AX − I)+A1]. (3.11)

On the other hand, combining with (3.7), we have

−λ[tr(H ′D0) + tr(H ′(AX − I)+A1)] = tr[D′
0(AX − I)′B(AX − I)D0]− tr(A′1BA1) ≤ 0.

Consequently,
−tr(H ′D0) ≤ tr[H ′(AX − I)+A1]. (3.12)

Together with (3.10), (3.11) and (3.12), we have

tr(H ′D0) = tr[H ′(AX − I)+A1] = 0

when λ > 0. Therefore,

tr[D′
0(AX − I)′B(AX − I)D0]− tr[A′0(AX − I)′B(AX − I)A0]

= −λ[tr(H ′D0) + tr(H ′(AX − I)+A1)] = 0, (3.13)

and

tr[D′
0(AX − I)′B(AX − I)D0]− tr[D′

0(AX − I)′B(AX − I)A0]

= −λtr(D′
0H) = 0. (3.14)

It follows that

tr[((AX − I)D0 − (AX − I)A0)′B((AX − I)D0 − (AX − I)A0)] = 0,

which implies that (3.9) also holds for the case λ > 0. Therefore, (3.9) holds for all λ ≥ 0. Thus
there exists no estimator of Θ which is better than AY + A1 in LI. Consequently, AY + A1

LI∼
Θ(T ). Thus, the proof of Theorem 3.2 is completed. ¤

Together with Theorems 2.1 and 3.2, we obtain

Corollary 3.1 For model (1.1) and loss function (1.3), AY + A1
LI∼ Θ(T ) holds if and only if

(1) A1 ∈ µ(AX − I);
(2) tr[H(AX − I)+A1] ≤ 0 or µ(H) * µ[(B1/2(AX − I))′];
(3) AV = APXV ;

(4) (1− ω)ÃX[(X ′T+X)− − I]SB−1 ≥ ÃX[(X ′T+X)− − I]X ′Ã′;
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(5) rank[(AX − I)((X ′T+X)− − I)X ′T+X] = rank(AX − I),
where PX , B and Ã are the same as that in Theorem 2.1.

So far, we have obtained the necessary and sufficient conditions for AY to be admissible for
Θ in LH and the necessary and sufficient conditions for AY + A1 to be admissible for Θ in LI,
where the parameter space is restricted on T .
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