
Journal of Mathematical Research with Applications

Jan., 2014, Vol. 34, No. 1, pp. 43–48

DOI:10.3770/j.issn:2095-2651.2014.01.004

Http://jmre.dlut.edu.cn

On 3-Hued Coloring of Graphs
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Abstract For integers k > 0, r > 0, a (k, r)-coloring of a graph G is a proper k-coloring of

the vertices such that every vertex of degree d is adjacent to vertices with at least min{d, r}
different colors. The r-hued chromatic number, denoted by χr(G), is the smallest integer k

for which a graph G has a (k, r)-coloring. Define a graph G is r-normal, if χr(G) = χ(G).

In this paper, we present two sufficient conditions for a graph to be 3-normal, and the best

upper bound of 3-hued chromatic number of a certain families of graphs.
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1. Introduction

Graphs in this paper are simple and finite. For a graph G and v ∈ V (G), dG(v) and NG(v)
denote the degree of v in G and the set of vertices adjacent to v in G, respectively. δ(G) and
∆(G) denote the smallest degree and the largest degree in G, respectively. We say that a set
of vertices are independent if there is no edge between these vertices. The independent number
α(G) of a graph G is the size of a largest independent set of G.

For an integer k > 0, let k = {1, 2, . . . , k}. A proper k-coloring of a graph G is a map
c : V (G) −→ k such that if u, v ∈ V (G) are adjacent vertices in G, then c(u) 6= c(v). The
smallest k such that G has a proper k-coloring is the chromatic number of G, denoted by χ(G).

Let G be a graph, k > 0 be an integer, k = {1, 2, . . . , k}, and c : V (G) −→ k be a
map. We denote by c−1(i) the vertex set which receives the color i. For S ⊆ V (G), define
c(S) = {c(u)|u ∈ S}. If for a vertex v with degree at least 2, |c(N(v))| = 1, then v is called a
bad vertex, otherwise it is called a good vertex. We refer to [2] for undefined terminologies and
notations.

Definition 1.1 ([8]) For integers k > 0 and r > 0, a proper (k, r)-coloring of a graph G is a

map c : V (G) −→ k satisfying both the following:

(C1) c(u) 6= c(v) for every edge uv ∈ E(G); and

(C2) |c(NG(v))| ≥ min{|NG(v)|, r} for any v ∈ V (G).
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For a fixed number r > 0, the r-hued chromatic number of G, denoted by χr(G), is the

smallest k such that G has a (k, r)-coloring.

By the definition of χr(G), it follows immediately that χ(G) = χ1(G), and so r-hued coloring
is a generalization of the classical graph coloring.

Recently, the dynamic coloring of graphs has been studied extensively by several authors,
for instance see [1, 3–8].

Definition 1.2 ([5]) A graph G is defined as normal if χ2(G) = χ(G). For r ≥ 3, we can

similarly define that a graph G is r-normal if χr(G) = χ(G).

2. Several sufficient conditions

In this section, we give several sufficient conditions of normal graph in 3-hued coloring.

Lemma 2.1 For any v ∈ V (G), if there exists an odd cycle in the subgraph of G induced by

the neighbors of v, then G is 3-normal graph.

Proof For any v ∈ V (G), there is at least an odd cycle whose all vertices are joined to v. For
every k ≥ 1, χ(C2k+1) = 3, so every proper coloring of G is also a 3-hued coloring of G, then G

is a 3-normal graph. ¤

Theorem 2.1 For any x, y ∈ V (G), and xy ∈ E(G), if d(x) + d(y) ≥ n + 2, and G does not

contain an even cycle without a chord as an induced subgraph, then G is a 3-normal graph.

Proof If n ≤ 3, such graphs do not exist.

Assume that n ≥ 4. For any x, y ∈ V (G), and xy ∈ E(G), we have d(x) + d(y) ≥ n + 2.

Suppose d(x) = 2 and y ∈ N(x). We have d(x) + d(y) ≤ 2 + n− 1 = n + 1, a contradiction.
So G does not contain a vertex whose degree is 2.

For any x ∈ V (G), we assume d(x) ≥ 3. Let H be a subgraph of G induced by the neighbors
of v. Next we shall show that there must exist an odd cycle in H. For any y ∈ N(x), we have
d(x) + d(y) ≥ n + 2. So d(y) ≥ n + 2− d(x). Then y is joined to at least two vertices in N(x).
That is dH(y) ≥ 2. So there must exist a cycle in H. Since G does not contain an even cycle
without a chord, H does not contain an even cycle without a chord either. Therefore, H must
contain an odd cycle. By Lemma 1, we have that G is a 3-normal graph. ¤

Theorem 2.2 If α(G) = α, ∆(G) ≤ dn−3α
α−1 e − 1, then G is a 3-normal graph.

Proof Let c be a proper coloring of G such that c(v) = j = min{i| there is no neighbors of v

in c−1(i)}. If v is a bad vertex, then 2 ≤ d(v) ≤ min{4(G), 2α}, and c(v) = 1 or c(v) = 2, or
c(v) = 3.

Case 1 Assume v1 is a bad vertex and c(v1) = 1.

By the construction of c and 2 ≤ d(v1) ≤ min{4(G), 2α}, if v is not in {vi|c(vi) = 1} ∪
{vi|c(vi) ∈ c(N(v1))}, then there is at least one vertex in V ′

1 = {vi|c(vi) = 1}\{v1} joined to v.
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So there must exist one vertex vj1 ∈ V ′
1 such that d(vj1) ≥ dn−3α

α−1 e. It is a contradiction.

Case 2 Assume v2 is a bad vertex and c(v2) = 2.

By the construction of c and 2 ≤ d(v2) ≤ min{4(G), 2α}, if v is not in {vi|c(vi) = 2} ∪
{vi|c(vi) ∈ c(N(v2))}, then there is at least one vertex in V

′
2 = {vi|c(vi) = 2}\{v2} joined to v.

So there must exist one vertex vj2 ∈ V ′
2 such that d(vj2) ≥ dn−3α

α−1 e+ 1. It is a contradiction.

Case 3 Assume v3 is a bad vertex and c(v3) = 3.

By the construction of c and 2 ≤ d(v3) ≤ min{4(G), 2α}, if v is not in {vi|c(vi) = 3} ∪
{vi|c(vi) ∈ c(N(v3))}, then there is at least one vertex in V ′

3 = {vi|c(vi) = 3}\{v3} joined to v.
So there must exist one vertex vj3 ∈ V ′

3 such that d(vj3) ≥ dn−3α
α−1 e+ 2. It is a contradiction.

So there is no bad vertex in G. Then G is a 3-normal graph. ¤

3. The best upper bound

In this section, we give the best upper bound of 3-hued chromatic number of a certain
families of graphs.

Definition 3.1 An xy-path P is a graph such that: (1) if v ∈ V (P ) and v 6= x, y, then d(v) = 2;

(2) d(x), d(y) ≥ 3, denoted by P ∗.

Lemma 3.1 ([8]) If G is a connected graph and δ(G) = 2, then there is a path P ∗ whose length

is at least 2, or G is a cycle.

Lemma 3.2 Let G be a connected r-regular graph. If every two adjacent vertices are in a

triangle, then G is K4.

Proof ∀v ∈ V (G). Let N(v) = {v1, v2, v3}. Since d(v) = d(v1) = d(v2) = d(v3) = 3, without
loss of generality, we may assume v1v2, v2v3 ∈ E(G). Suppose N(v1) = {v, v2, v4}, then v1, v4

must be in a triangle. Therefore, v4, v are adjacent or v4, v2 are adjacent. In this condition,
d(v) = 4 or d(v2) = 4. It is a contradiction. So N(v1) = {v, v2, v3}, then G is K4. ¤

Theorem 3.1 Let G be a simple graph, ∆ ≤ 3. If every two adjacent 3-vertices are in a triangle,

then χ3(G) ≤ 6.

Proof Without loss of generality, we may assume that G is a connected graph. The proof is by
induction on n = |V (G)|. We use L(v) to denote the available color set for v ∈ V (G).

When |V (G)| ≤ 6, the result is easily verified. Suppose |V (G)| ≥ 7.

Case 1 G has a cut vertex v.

Then there are i connected subgraphs G1, G2, . . . , Gi such that
⋂j=i

j=1 Gj = v. By induction,
Every Gj has a (6, 3)-coloring cj : V (Gj) −→ 6, j = 1, 2, . . . , i. Without loss of generality, we
may assume c1(v) = c2(v) = · · · = ci(v). Because Gj is connected, by changing the colors, we can
make the neighbors of v receive different colors. That is a 3-hued coloring of G, c : V (G) −→ 6,



46 Ting LIU and Lei SUN

such that c(vm) = cj(vm), ∀vm ∈ Gj , j = 1, 2, . . . , i.

Case 2 G is 2-connected and δ = 2.

Case 2.1 G ∼= Cn.

When n ≡ 0 (mod 3), χ3(Cn) = χ2(Cn) = 3; when n = 5, χ3(Cn) = χ2(Cn) = 5; for the
other cases, χ3(Cn) = χ2(Cn) = 4.

Case 2.2 G has a path P ∗ = v1v2 · · · vm, for some m ≥ 4.

Let G′ = G−{v2, . . . , vm−1}. By induction, G′ has a (6,3)-coloring c′ : V (G′) −→ 6. Since G

is 2-connected, we have v1 6= vm, otherwise v1 = vm is a cut vertex. Suppose N(v1) = {v2, a, b},
N(vm) = {vm−1, c, d}, we use

i2 ∈ {1, 2, . . . , 6}\{c(a), c(b), c(v1)} to color v2;

i3 ∈ {1, 2, . . . , 6}\{c(v1), c(v2)} to color v3;

· · · ;
ij ∈ {1, 2, . . . , 6}\{c(vj−2), c(vj−1)} to color vj , j = 1, · · ·m− 2;

· · · ;
im−1 ∈ {1, 2, . . . , 6}\{c(vm−3), c(vm−2), c(vm), c(c), c(d)} to color vm−1.

Case 2.3 G has a path P ∗ = v1v2 · · · vm, for m = 3.

Note that in this case there could not exist an edge xy in G such that d(x) = d(y) = 2.
Suppose d(v) = 2, N(v) = {x, y}, d(x) = d(y) = 3, N(x)\{v} = {a, b}, N(y)\{v} = {c, d}. Since
G is simple, we have x 6= y.

Case 2.3.1 xy ∈ E(G).

Let G′ = G − v. By induction, G′ has a (6, 3)-coloring c′ : V (G′) −→ 6, c′(x) 6= c′(y). We
use i ∈ {1, 2, . . . , 6}\{c(x), c(y), c(a), c(c)} to color v.

Case 2.3.2 x, y are not adjacent vertices and {a, b} ∩ {c, d} 6= ∅.
Without loss of generality, we may assume a ∈ N(x)∩N(y)\{v}. Let G′ = G− v + xy. By

induction G′ has a (6, 3)-coloring c′ : V (G′) −→ 6. We use i ∈ {1, 2, . . . , 6}\{c(x), c(y), c(a), c(b),
c(d)} to color v.

Case 2.3.3 x, y are not adjacent vertices and {a, b} ∩ {c, d} = ∅. Without loss of generality, we
may assume d(a) ≤ d(b).

Case 2.3.3.1 d(a) = d(b) = 3 and N(a)\{b} = N(b)\{a} = {x, e}.
Because G is connected, d(e) = 3. Let G′ = G\{x, v}, |L(x)| = |{1, 2, . . . , 6}\{c(a), c(b), c(e)

}| = 3. By induction, G′ has a (6, 3)-coloring c′ : V (G′) −→ 6. If A = L(x)∩{c(c), c(d)} 6= ∅, we
may assume that c(c) = i ∈ A. Let c(x) = i. And we use j ∈ {1, 2, . . . , 6}\{c(x), c(y), c(a), c(b),
c(d)} to color v. If A = L(X)∩{c(c), c(d)} = ∅, we use i ∈ L(x)\{c(y)} to color x, L(x)\{c(x), c(y)}
to color v.

Case 2.3.3.2 d(a) = d(b) = 3, N(a) = {x, b, e}, N(b) = {x, a, f} and e 6= f .
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We have d(e) = d(f) = 2. Suppose N(e) = {a, g}, N(f) = {b, h}. Let G′ = G− {a, b, x, v}.
By induction, G′ has a (6, 3)-coloring c′ : V (G′) −→ 6. Let |L(a)| = |{1, 2, . . . , 6}\{c(e), c(g)}| ≥
4, |L(b)| = |{1, 2, . . . , 6}\{c(f), c(h)}| ≥ 4. Then A = L(a) ∩ {c(y), c(c), c(d)} 6= ∅. Let c(a) =
i ∈ A. We use j ∈ L(b)\{c(a), c(e)} to color b, {1, 2, . . . , 6}\{c(a), c(b), c(e), c(f), c(y)} to color
x, {1, 2, . . . , 6}\{c(x), c(y), c(b), c(c), c(d)} to color v.

Case 2.3.3.3 d(a) = 2,d(b) = 3.

Suppose N(b) = {x, a, f}. Let G′ = G\{x, v}. By induction, G′ has a (6, 3)-coloring c′ :
V (G′) −→ 6. Let |L(x)| = |{1, 2, . . . , 6}\{c(a), c(b), c(f)}| = 3. If A = L(x)∩{c(c), c(d)} 6= ∅, we
may assume c(c) = i ∈ A. Let c(x) = i. We may use j ∈ {1, 2, . . . , 6}\{c(x), c(y), c(a), c(b), c(d)}
to color v. If A = L(x)∩{c(c), c(d)} = ∅, we may use i ∈ L(x)\{c(y)} to color x, L(x)\{c(x), c(y)}
to color v.

Case 2.3.3.4 d(a) = d(b) = 2 and d(c) = d(d) = 2.

Note that in this case a, b are not adjacent, otherwise there is a contradiction with m = 2.
If N(a) = N(b) = {x, z},N(z) = {a, b, z′}, let G′ = G − {a} + xz. By induction, G′ has an
(6, 3)-coloring c′ : V (G′) −→ 6. We may use {1, 2, . . . , 6}\{c(z), c(z′), c(b), c(x), c(v)} to color a.
If N(a) = {e, x}, N(b) = {f, x}, and e 6= f , we can get d(e) = d(f) = 3.

If N(a) ∩N(c) = {e}.
Suppose N(d) = {y, g}. Let G′ = G\{x, v, y}. By induction, G′ has a (6, 3)-coloring c′ :

V (G′) −→ 6. We may use i ∈ {1, 2, . . . , 6}\{c(a), c(b), c(e), c(f)} to color x, j ∈ {1, 2, . . . , 6}\{c(c),
c(d), c(e), c(g), c(x)} to color y. And let c(v) = c(e).

If N(a) ∩N(c) = N(b) ∩N(d) = ∅.
Suppose N(a) = {e, x}, N(b) = {f, x}, N(c) = {y, g}, N(d) = {y, h}. Let G′ = G\{a, b, x, v,

y, c, d}. By induction, G′ has a (6, 3)-coloring c′ : V (G′) −→ 6. Suppose |L(a)| = |{1, 2, . . . , 6}\({
c(e)}∪ c(NG(e)))| = 3, |L(b)| = |{1, 2, . . . , 6}\({c(f)}∪ c(NG(f)))| = 3, |L(c)| = |{1, 2, . . . , 6}\({
c(g)} ∪ c(NG(g)))| = 3, |L(d)| = |{1, 2, . . . , 6}\({c(h)} ∪ c(NG(h)))| = 3, if L(a) ∩ L(c) = ∅
or L(b) ∩ L(d) = ∅. Without loss of generality, we may assume A = L(a) ∩ L(c) 6= ∅. Let
c(a) = c(c) = i1 ∈ A. We may use i2 ∈ {1, 2, . . . , 6}\{c(a), c(b), c(e), c(f)} to color x, i3 ∈
{1, 2, . . . , 6}\{c(c), c(d), c(g), c(h)} to color y, i4 ∈ {1, 2, . . . , 6}\{c(x), c(y), c(a), c(b), c(d)} to
color v. If L(a)∩L(c) = L(b)∩L(d) = ∅, we may assume L(a) = L(b) = {1, 2, 3}, L(c) = L(d) =
{4, 5, 6}. Let c(a) = 1, c(y) = c(b) ∈ {1, 2, 3}\{c(g), c(h)}, c(x) = {1, 2, 3}\{c(a), c(b)}. We may
use i ∈ {1, 2, . . . , 6}\{c(x), c(y), c(a), c(c), c(d)} to color v.

Case 3 G is 2-connected and δ = 3.

Since ∆ ≤ 3, we have ∆ = δ = 3. Since every two adjacent vertices are in a triangle, by
Lemma 3.3, we can conclude G = K4. The result is right.

The upper bound in the Theorem 3.4 is best possible. There exists a graph G with χ3(G) =
6. Suppose V (G) = {v1, v2, . . . , v6}, E(G) = {v1v2, v2v3, v3v4, v4v5, v5v1, v6v1, v6v2, v6v3}. Since
there are six vertices in V (G), we have χ3(G) ≤ 6. Next, we will show that χ3(G) ≥ 6. Suppose
χ3(G) = 5, c : V (G) −→ 5 is a (5, 3)-coloring. Without loss of generality, we may assume that
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c(v1) = 1, c(v2) = 2, c(v5) = 3, c(v6) = 4. Then c(v3) = 5, otherwise, there will be a bad vertex.
On this condition, no matter which color we choose from {1, 2, . . . , 5} to v4, there is a bad vertex.
Then χ3(G) ≥ 6. So χ3(G) = 6. ¤
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