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Abstract Let S =
⋃

(Gα : α ∈ E) be a semilattice of groups (i.e., a Clifford semigroup)

and n a natural number. E is called an n-element chain of groups if it is an n-element chain.

Denote by Cn the set of all n-element chains of groups. In this paper we shall show that for

any natural number n, the class of semigroups Cn satisfies the strong isomorphism property.
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1. Introduction

The power semigroup, or global, of a semigroup S is the semigroup P(S) of all nonempty
subsets of S with respect to the operation · defined by

A ·B = {ab : a ∈ A, b ∈ B} for all A,B ∈ P(S).

A class K of semigroups is said to be globally determined if any two members of K having
isomorphic globals must themselves be isomorphic.

Tamura [4] asked in 1967 whether the class of all semigroups is globally determined? The
question was negatively answered in the class of all semigroups by Mogiljanskaja [8] in 1973.
Crvenković, Dolinka and Vinčić [9] proved that involution semigroups are not globally deter-
mined in 2001. But it is known that the following classes are globally determined: groups [5, 6];
rectangular groups [7]; completely 0-simple semigroups [14]; finite semigroups [15]; lattices and
semilattices [11, 13], finite simple semigroups and semilattices of torsion groups in which semilat-
tices are finite [10]; completely regular periodic monoid with irreducible identity [12]. However,
for an important class, the class of Clifford semigroups, the problem has been left unsolved.

Recall that in [13], Kobayashi considered a stronger property: strong isomorphism property.
That is, let K be a class of semigroups. K satisfies the strong isomorphism property if for every
isomorphism ϕ from P(S) onto P(S′), ϕ|S (the restriction ϕ to S) is an isomorphism from S

onto S′ for any S, S′ ∈ K. In this statement S (resp., S′) is considered to be a subset of P(S)
(resp., P(S′)) by identifying an element x of S (resp., S′) with the singleton {x}. He proved
that the class of semilattices satisfies the strong isomorphism property.
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A few words on notation and terminology are in order. N denotes the set of natural numbers,
n denotes the set {1, 2, . . . , n}, E(S) stands for the set of idempotents of a semigroup S and |A|
is the cardinal number (or cardinality) of a set A. For each e ∈ E(S), the maximal subgroup
(H-class) of S containing e will be denoted by He(S). A singleton member of P(S) will be
identified with the element it contains. Let a, b ∈ S. a HS b means a H b in S.

Let S =
⋃

(Gα : α ∈ E) be a semilattice of groups (i.e., a Clifford semigroup) and n a
natural number. E is called an n-element chain of groups if it is an n-element chain. Denote by
Cn the set of all n-element chains of groups. It is clear that a 1-element chain of a group is a
group. We follow the usual practice of abbreviating {g}H where g ∈ S and H ∈ P(S) by gH.
Further, we make the notational convention that eα denotes the idempotent of Gα, α ∈ E and
also ei denotes the idempotent of Gαi , i ∈ N . For X ∈ P(S) and α ∈ E put

Xα = X ∩Gα, suppX = {α ∈ E : Xα 6= ∅}
and

max X = max(suppX), minX = min(suppX).

In this paper we shall show that for any natural number n, the class semigroups Cn satisfies
the strong isomorphism property.

This paper is divided into four sections. The first section is introduction and preliminary;
in the second section, we further characterize the closed subsemigroups of a Clifford semigroup
S that will be instrumental in the proof of our main results; in the third section, we will prove
that the class of semigroups C2 satisfies the strong isomorphism property; and in the last section,
we will verify that the class of semigroups Cn satisfies the strong isomorphism property.

The following lemma, which implies that the class of groups also satisfies the strong isomor-
phism property, is taken from Gould and Iskra [10].

Lemma 1.1 Let S be a semigroup and e ∈ E(S). Then He(P(S)) = He(S).
We refer to the books [1–3] for all background information concerning semigroups and

universal algebra.

2. The closed subsemigroups of a Clifford semigroup

Zhao in [16] introduced the notion of the closed subsemigroup of a semigroup S. A sub-
semigroup C of a semigroup S is said to be closed if

sat, sbt ∈ C ⇒ sabt ∈ C

holds for all a, b ∈ S, s, t ∈ S1, where S1 denotes the semigroup obtained from S by adjoining
an identity if necessary. It is easy to see that every subsemilattice of a semilattice is closed by
the definition of closed subsemigroup.

Let S be a semigroup and A a nonempty subset of S. A denotes the closed subsemigroup of
S generated by A, i.e., the smallest closed subsemigroup of S containing A. In [17], Zhao studied
the closed subsemigroups of a Clifford semigroup.
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In the remaining part of this section, unless otherwise stated, S always means the Clifford
semigroup

⋃
(Gα : α ∈ E) and we further characterize the closed subsemigroups of S that will

be instrumental in the proof of our main results.

Lemma 2.1 ([17, Theorem 2.3]) Let A ∈ P(S). Then A =
⋃

α∈supp A Gα.

Corollary 2.2 Let A ∈ P(S). Then SA = AS =
⋃

γ∈W Gγ is a closed subsemigroup of S,

where W = {γ ∈ E : (∃α ∈ suppA) γ ≤ α}.

Proof Let W = {γ ∈ E : (∃α ∈ suppA) γ ≤ α}. Then it is easy to see that W is a
subsemilattice of E and so

⋃
γ∈W Gγ is a closed subsemigroup of S by Lemma 2.1.

Next we will show that SA =
⋃

γ∈W Gγ . In fact, on the one hand, for any γ ∈ W and
gγ ∈ Gγ , there exists α ∈ suppA such that γ ≤ α. Fix an element aα in Aα. We have

gγ = gγeα = (gγa−1
α )aα ∈ SA.

This implies that
⋃

γ∈W Gγ ⊆ SA. On the other hand, for any s ∈ S and a ∈ A, we can
assume that s ∈ Gβ for some β ∈ E and a ∈ Aµ for some µ ∈ suppA. So we have that
sa ∈ GβGµ ⊆ Gβµ ⊆

⋃
γ∈W Gγ , which implies that SA ⊆ ⋃

γ∈W Gγ . Therefore, we have proved
that SA =

⋃
γ∈W Gγ .

Similarly, we can show that AS =
⋃

γ∈W Gγ . The proof is completed.

Lemma 2.3 Let A ∈ P(S) and A2 = A. Then the following statements are equivalent:

(1) aαA = bαA for any α ∈ suppA and aα, bα ∈ Gα;

(2) aαAα = bαAα for any α ∈ suppA and aα, bα ∈ Gα;

(3) Aα = Gα for any α ∈ suppA.

Proof (1) ⇒ (2). Suppose that (1) holds, that is, aαAα ⊆ aαA = bαA for any α ∈ suppA and
aα, bα ∈ Gα. Then for any cα ∈ Aα, there exists d ∈ A such that aαcα = bαd. Without loss of
generality, we can assume that d = dβ ∈ Aβ , where β ∈ suppA. Then

aαcα = bαd = bαdβ = bαeαdβ ,

and α = αβ ≤ β by the above equation.

In addition, choose and fix some gα ∈ Aα, we have that eαA = gαA ⊆ A. It follows that
eαdβ ∈ A and so eαdβ ∈ Aα for eαdβ ∈ GαGβ ⊆ Gαβ = Gα. Thus aαcα = bα(eαdβ) ∈ bαAα and
so aαAα ⊆ bαAα by the arbitrariness of cα.

Similarly, we can prove that bαAα ⊆ aαAα. So aαAα = bαAα and (2) holds.

(2) ⇒ (3). Suppose that (2) holds, that is, Aα = eαAα = aαAα for any α ∈ suppA and
aα, bα ∈ Gα. Choose and fix some cα ∈ Aα. We have that c−1

α Aα = Aα and so

eα = c−1
α cα ∈ c−1

α Aα = Aα.

Further, gα = gαeα ∈ gαAα = Aα for any gα ∈ Gα. Thus Gα ⊆ Aα. But it is clear that
Aα = A ∩Gα ⊆ Gα. Therefore, Aα = Gα and (3) holds.
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(3) ⇒ (1). Suppose that (3) holds. Then A is a closed subsemigroup of S by Lemma 2.1.
It is easy to prove that

aαA =
⋃

β∈supp A,β≤α

Gβ = bαA

for any α ∈ suppA and aα, bα ∈ Gα. (1) holds.

By Lemmas 2.1 and 2.3, we have

Theorem 2.4 Let A ∈ P(S). Then A is a closed subsemigroup of S if and only if A satisfies

the following two conditions:

(i) A2 = A,

(ii) eαA = gαA for any α ∈ suppA and gα ∈ Gα.

Lemma 2.5 Let A, B ∈ P(S) and A H B in P(S). Then SA = SB and AS = BS.

Proof Since A H B, there exist C, D, U, V ∈ P1(S) such that

A = CB, B = DA, A = BU, B = AV.

Thus

SA = SCB ⊆ SB, SB = SDA ⊆ SA

and so SA = SB. Similarly, we can show that AS = BS. ¤

Theorem 2.6 Let S′ =
⋃

(Gα′ : α′ ∈ E′) be a Clifford semigroup and ϕ an isomorphism from

P(S) onto P(S′). Then ϕ(S) (resp., ϕ−1(S′)) is a closed subsemigroup of S′ (resp., S).

Proof For any α′ ∈ E′ and eα′ , gα′ ∈ Gα′ , we have

eα′ HP(S′) gα′ =⇒ ϕ−1(eα′) HP(S) ϕ−1(gα′)

=⇒ ϕ−1(eα′)S = ϕ−1(gα′)S (by Lemma 2.5)

=⇒ eα′ϕ(S) = gα′ϕ(S).

In addition, it is obvious that ϕ(S) = ϕ(S2) = ϕ(S)2. Therefore, ϕ(S) is a closed subsemi-
group of S′ by Theorem 2.4.

Applying the above argument to the isomorphism ϕ−1, we can obtain that

eαϕ−1(S′) = gαϕ−1(S′)

for any α ∈ E, gα ∈ Gα. Also (ϕ−1(S′))2 = ϕ−1(S′2) = ϕ−1(S′), therefore, ϕ−1(S′) is a closed
subsemigroup of S by Theorem 2.4.

3. Power semigroups of semigroups in C2

In this section, we will show that the class of semigroups C2 satisfies the strong isomorphism
property. Let

S = Gα ∪Gβ (α < β), S′ = Gα′ ∪Gβ′ (α′ < β′)
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be both 2-element chains of groups and ϕ an isomorphism from P(S) onto P(S′). We shall show
that ϕ|S (the restriction of ϕ to S) is an isomorphism from S onto S′. The following two lemmas
are needed.

Lemma 3.1 Let S = Gα ∪Gβ (α < β) and S′ = Gα′ ∪Gβ′ (α′ < β′) be both 2-element chains

of groups and ϕ an isomorphism from P(S) onto P(S′). Then ϕ(eβ) = eβ′ and ϕ(Gα) = Gα′ .

Proof This follows from the fact that eβ (resp., Gα) is the identity (resp., zero) of P(S) and
eβ′ (resp., Gα′) is the identity (resp., zero) of P(S′).

Lemma 3.2 Let S = Gα ∪Gβ (α < β) and S′ = Gα′ ∪Gβ′ (α′ < β′) be both 2-element chains

of groups and ϕ an isomorphism from P(S) onto P(S′). Then ϕ(S) = S′.

Proof Suppose that A ∈ P(S) such that ϕ(A) = S′. Then by Theorem 2.6 and Lemma 3.1, we
have A = ϕ−1(S′) is a closed subsemigroup of S and β ∈ suppA. Thus AS = S and so

S′ϕ(S) = ϕ(A)ϕ(S) = ϕ(AS) = ϕ(S).

It follows from Corollary 2.2 that either ϕ(S) = Gα′ or ϕ(S) = S′.

But ϕ(S) 6= Gα′ by Lemma 3.1, so we have ϕ(S) = S′. ¤

Theorem 3.3 The class semigroups C2 satisfies the strong isomorphism property. Moreover,

ϕ|Gα
(resp., ϕ|Gβ

) is an isomorphism from Gα onto Gα′ (resp., Gβ onto Gβ′).

Proof By Lemmas 1.1 and 3.1, we have ϕ|Gβ
is an isomorphism from Gβ onto Gβ′ . To show

that ϕ|S is an isomorphism from S onto S′, it suffices to prove that ϕ|Gα
is also an isomorphism

from Gα onto Gα′ .

To see that this is so, let A ∈ P(Gα). Then AS = Gα, which implies by Lemmas 3.1 and
3.2 that

ϕ(A)S′ = ϕ(A)ϕ(S) = ϕ(AS) = ϕ(Gα) = Gα′

and so ϕ(A) ∈ P(Gα′).

Hence ϕ|P(Gα) is an isomorphism from P(Gα) onto P(Gα′) and so ϕ|Gα
is also an isomor-

phism from Gα onto Gα′ . The proof is completed. ¤

4. Power semigroups of semigroups in Cn

In this section, our goal is to show that the class of semigroups Cn (n ≥ 3) satisfies the
strong isomorphism property:

In the following, unless otherwise stated,

S =
⋃

i∈n

Gi, S′ =
⋃

i∈n

G′i

are both n-Clifford semigroups, ei (resp., e′i) denotes the idempotent of Gi (resp., G′i) and
e1 < e2 < · · · < en, e′1 < e′2 < · · · < e′n.
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Let ψ be an isomorphism from P(S) onto P(S′). We shall show that ψ|S is an isomorphism
from S onto S′.

Lemma 4.1 Let S =
⋃

i∈n Gi and S′ =
⋃

i∈n G′i are both n-Clifford semigroups, ei (resp., e′i)

denotes the idempotent of Gi (resp., G′i) and e1 < e2 < · · · < en, e′1 < e′2 < · · · < e′n. Let ψ be

an isomorphism from P(S) onto P(S′). Then ψ(en) = e′n and ψ(G1) = G′1.

Proof This follows from the fact that en (resp., G1) is the identity (resp., zero) of P(S) and e′n
(resp., G′1) is the identity (resp., zero) of P(S′). ¤

Lemma 4.2 Let S =
⋃

i∈n Gi and S′ =
⋃

i∈n G′i are both n-Clifford semigroups, ei (resp., e′i)

denotes the idempotent of Gi (resp., G′i) and e1 < e2 < · · · < en, e′1 < e′2 < · · · < e′n. Let ψ be

an isomorphism from P(S) onto P(S′). Then ψ(S) = S′.

Proof Suppose that A ∈ P(S) such that ψ(A) = S′. Then by Theorem 2.6 and Lemma 4.1, we
have A = ψ−1(S′) is a closed subsemigroup of S and suppA 6= {1}. Let r = max A, t = min A

and k = max ψ(S), l = min ψ(S). Then 2 ≤ r ≤ n and 2 ≤ k ≤ n.

Claim 1 We have r = k and ψ(
⋃

i∈j Gi) =
⋃

i∈j G′i for any j = 1, 2, . . . , r.
Indeed, for any j = 1, 2, . . . , r, we have

(
⋃

i∈j

Gi)A =
⋃

i∈j

Gi =⇒ ψ(
⋃

i∈j

Gi)ψ(A) = ψ(
⋃

i∈j

Gi)

=⇒ ψ(
⋃

i∈j

Gi)S′ = ψ(
⋃

i∈j

Gi)

=⇒ ψ(
⋃

i∈j

Gi) ∈ {
⋃

i∈m

G′i : m = 1, 2, . . . , n}

and

(
⋃

i∈j

Gi)S =
⋃

i∈j

Gi =⇒ ψ(
⋃

i∈j

Gi)ψ(S) = ψ(
⋃

i∈j

Gi)

=⇒ max ψ(
⋃

i∈j

Gi) ≤ max ψ(S) = k,

which shows that

{ψ(
⋃

i∈j

Gi) : j = 1, 2, . . . , r} ⊆ {
⋃

i∈m

G′i : m = 1, 2, . . . , k}.

Thus r ≤ k. Similarly, applying the above argument to the isomorphism ψ−1, we can show that
k ≤ r. Therefore, r = k and

{ψ(
⋃

i∈j

Gi) : j = 1, 2, . . . , r} = {
⋃

i∈m

G′i : m = 1, 2, . . . , r}. (*)

Since ψ is an isomorphism, from the above equation (∗), it is easy to see that ψ(
⋃

i∈j Gi) =⋃
i∈j G′i for any j = 1, 2, . . . , r. The claim is proved.

Next, consider the following cases:
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Case 1 r = n. By Claim 1, we have ψ(S) = S′.

Case 2 r ≤ n− 1, t ≥ 2.
We have

G2A = G2 =⇒ ψ(G2)S′ = ψ(G2)ψ(A) = ψ(G2)

=⇒ ψ(G2) =
⋃

i∈j

G′i for some r + 1 ≤ j ≤ n

and

G2S = G1 ∪G2 =⇒ ψ(G2)ψ(S) = ψ(G1 ∪G2)

=⇒ ψ(G2)ψ(S) = G′1 ∪G′2 (by Claim 1)

=⇒ r = 2,

which shows that A = G2. Also ψ(S) = G′2 by Claim 1. Now we have

ψ(G2) = S′, ψ(S) = G′2 and ψ(G1 ∪G2) = G′1 ∪G′2.

Claim 2 We have ψ(B) ⊆ G′2 for any B ∈ P(S) satisfying suppB = {1, n}.
In fact, by the proof of Theorem 2.6, we have e1G2 = e1ψ

−1(S′) = g1ψ
−1(S′) = g1G2 for

any g1 ∈ G1, which implies that for any C ∈ P(G1),

CG2 = e1G2 = G1G2 = G1.

So for any B ∈ P(S) satisfying suppB = {1, n}, we have

G2B = G1 ∪G2 =⇒ ψ(G2)ψ(B) = ψ(G1 ∪G2) =⇒ S′ψ(B) = G′1 ∪G′2

=⇒ suppψ(B) ⊆ {1, 2}
and

SB = S =⇒ ψ(S)ψ(B) = ψ(S) =⇒ G2ψ(B) = G′2 =⇒ 1 6∈ suppψ(B).

Thus suppψ(B) = {2} and so ψ(B) ⊆ G′2, the Claim is proved.

Claim 3 We have ψ−1(e′2)B = B for any B ∈ P(S) satisfying suppB = {1, n}.
In fact, by Claim 2, we have e′2ψ(B) = ψ(B) and so ψ−1(e′2)B = B.

Claim 4 suppψ−1(e′2) = {1, n}.
Indeed,

G′2e
′
2 = G′2 =⇒ ψ−1(G′2)ψ

−1(e′2) = ψ−1(G′2) =⇒ Sψ−1(e′2) = S

=⇒ n ∈ suppψ−1(e′2)

and

S′e′2 = G′1 ∪G′2 =⇒ ψ−1(S′)ψ−1(e′2) = ψ−1(G′1 ∪G′2)

=⇒ G2ψ
−1(e′2) = G1 ∪G2

=⇒ 1 ∈ suppψ−1(e′2).
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Also, by Claim 3, we have ψ−1(e′2)(G1 ∪ Gn) = G1 ∪ Gn. It follows that suppψ−1(e′2) =
{1, n}. The Claim is proved.

Claim 5 ψ({e1, en}) = e′2.

Indeed, for any an ∈ ψ−1(e′2) ∩Gn, by Claims 3 and 4, we have

an = anen ∈ ψ−1(e′2)({e1, en}) = {e1, en}

and so an = en.

Similarly, we can prove that a1 = e1 for any a1 ∈ ψ−1(e′2) ∩G1. Thus ψ−1(e′2) = {e1, en},
that is ψ({e1, en}) = e′2. The Claim is proved.

Claim 6 |G1| = 1.

Suppose by way of contradiction that |G1| ≥ 2. Choose and fix some b1 ∈ G1 such that
b1 6= e1, then

ψ−1(e′2){en, b1} = {e1, en}{en, b1} = {e1, b1, en} 6= {en, b1},

contradicting Claim 3.

Similarly, applying the entire argument above to the isomorhism ψ−1, we can claim that
ψ−1({e′1, e′n}) = e2, i.e., ψ(e2) = {e′1, e′n} and |G′1| = 1. Thus by Lemma 4.1, we have
ψ(e1) = e′1. Also, since

ψ({e2, en}) ⊆ ψ({e2, en}){e′1, e′n} = ψ({e2, en}e2) = ψ(e2) = {e′1, e′n},

we have

ψ({e2, en}) = {e′1} or {e′n} or {e′1, e′n}.

But then {e2, en} = {e1} or {en} or {e2}, a contradiction.

Case 3 r ≤ n− 1, l ≥ 2. Applying the proof of Case 2 to the isomorphism ψ−1 also leads to a
contradiction.

Case 4 t = l = 1, r ≤ n− 1.

Let M = {m ∈ n : m 6∈ suppA}. Then M 6= ∅ since n ∈ M . Thus M contains a least
element. Denote by u the least element of M . By Claim 1, it is easy to see that 1 < u < r. Thus
A = G1 ∪G2 ∪ · · · ∪Gu−1 ∪Gj1 ∪ · · · ∪Gjs, for some {j1, . . . , js} ⊆ {u + 1, . . . , r}.

Let D = G1 ∪G2 ∪ · · · ∪Gu−1 ∪Gu+1. Then we have

DA = D =⇒ ψ(D)ψ(A) = ψ(D) =⇒ ψ(D)S′ = ψ(D)

=⇒ ψ(D) ∈ {
⋃

i∈j

G′i : j = 1, 2, . . . , n}.

In addition, by Claim 1, we have

ψ(D) =
⋃

i∈j

G′i for some r + 1 ≤ j ≤ n.
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Also since DS =
⋃

i∈u+1 Gi, we have ψ(D)ψ(S) =
⋃

i∈u+1 G′i by Claim 1. Note that max ψ(S) =
r and max ψ(D) = j ≥ r + 1, we have

max(ψ(D)ψ(S)) = r = u + 1.

Therefore, A = G1 ∪G2 ∪ · · · ∪Gr−2 ∪Gr = D.

Similarly, applying the entire argument above to the isomorhism ψ−1, we can obtain ψ(S) =
G′1 ∪G′2 ∪ · · · ∪G′r−2 ∪G′r. Now, we have

ψ(G1 ∪G2 ∪ · · · ∪Gr−2 ∪Gr) = S′, ψ(S) = G′1 ∪G′2 ∪ · · · ∪G′r−2 ∪G′r

and

ψ(
⋃

i∈j

Gi) =
⋃

i∈j

G′i for any j = 1, 2, . . . , r.

Claim 7 We have suppψ(H) ⊆ {1, 2, . . . , r − 2, r} for any H ∈ P(S) satisfying {r − 1, n} ⊆
suppH.

In fact, by the proof of Theorem 2.6, we have er−1A = gr−1A for any gr−1 ∈ Gr−1 and so
er−1Gr = gr−1Gr, which implies that for any C ∈ P(Gr−1),

CGr = er−1Gr = Gr−1Gr = Gr−1.

So for any H ∈ P(S) satisfying {r − 1, n} ⊆ suppH, we have

HA =
⋃

i∈r

Gi =⇒ ψ(H)ψ(A) = ψ(
⋃

i∈r

Gi)

=⇒ ψ(H)S′ =
⋃

i∈r

G′i (by Claim 1)

=⇒ suppψ(H) ⊆ {1, 2, . . . , r}

and

SH = S =⇒ ψ(S)ψ(H) = ψ(S)

=⇒ (G′1 ∪ · · · ∪G′r−2 ∪G′r)ψ(H) = G′1 ∪ · · · ∪G′r−2 ∪G′r

=⇒ r − 1 6∈ suppψ(H).

Thus suppψ(H) ⊆ {1, 2, . . . , r − 2, r}, the Claim is proved.

Claim 8 We have ψ−1(e′r)H = H for any H ∈ P(S) satisfying {r − 1, n} ⊆ suppH.

In fact, by Claim 7, we have e′rψ(H) = ψ(H) and so ψ−1(e′r)H = H.

Claim 9 suppψ−1(e′r) = {r − 1, n}.
Indeed,

ψ(S)e′r = ψ(S) =⇒ Sψ−1(e′r) = S =⇒ n ∈ suppψ−1(e′r)

and

S′e′r =
⋃

i∈r

G′i =⇒ ψ−1(S′)ψ−1(e′r) = ψ−1(
⋃

i∈r

G′i)
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=⇒ (G1 ∪ · · · ∪Gr−2 ∪Gr)ψ−1(e′r) =
⋃

i∈r

Gi

=⇒ r − 1 ∈ suppψ−1(e′r).

Also, by Claim 8, we have ψ−1(e′r)(Gr−1∪Gn) = Gr−1∪Gn. It follows that suppψ−1(e′r) =
{r − 1, n}. The Claim is proved.

Claim 10 ψ({er−1, en}) = e′r.

Indeed, for any an ∈ ψ−1(e′r) ∩Gn, by Claims 8 and 9, we have

an = anen ∈ ψ−1(e′r)({er−1, en}) = {er−1, en}

and so an = en.

Similarly, we can prove that ar−1 = er−1 for any ar−1 ∈ ψ−1(e′r) ∩Gr−1. Thus ψ−1(e′r) =
{er−1, en}, that is ψ({er−1, en}) = e′r. The Claim is proved.

In a similar way, applying the entire argument above to the isomorhism ψ−1, we can claim
that ψ−1({e′r−1, e′n}) = er, i.e., ψ(er) = {e′r−1, e′n}. Thus

ψ({er, en}) ⊆ ψ({er, en}){e′r−1, e′n} = ψ({er, en}er) = ψ(er) = {e′r−1, e′n}
and so

ψ({er, en}) = {e′r−1} or {e′n} or {e′r−1, e′n}.

But if ψ({er, en}) = {e′n} or {e′r−1, e′n}, then {er, en} = {en} or {er}, a contradiction. Thus we
get the next Claim:

Claim 11 ψ({er, en}) = {e′r−1}.
However, by Claims 10 and 11, we have

{e′r−1} = {e′r} · {e′r−1} = ψ({er−1, en}) · ψ({er, en}) = ψ({er−1, er, en}),
contradicting Claim 11. This contradiction concludes the proof. ¤

By Lemma 4.2 and Claim 1 in Lemma 4.2, we have

Lemma 4.3 Let S =
⋃

i∈n Gi and S′ =
⋃

i∈n G′i are both n-Clifford semigroups, ei (resp., e′i)

denotes the idempotent of Gi (resp., G′i) and e1 < e2 < · · · < en, e′1 < e′2 < · · · < e′n. Let ψ be

an isomorphism from P(S) onto P(S′). Then ψ(
⋃

i∈j Gi) =
⋃

i∈j G′i for any j = 1, 2, . . . , n.

Lemma 4.4 Let S =
⋃

i∈n Gi and S′ =
⋃

i∈n G′i are both n-Clifford semigroups, ei (resp., e′i)

denotes the idempotent of Gi (resp., G′i) and e1 < e2 < · · · < en, e′1 < e′2 < · · · < e′n. Let ψ be an

isomorphism from P(S) onto P(S′). Then ψ|P(
⋃

i∈n−1 Gi) is an isomorphism from P(
⋃

i∈n−1 Gi)
to P(

⋃
i∈n−1 G′i).

Proof Indeed, for any K ∈ P(
⋃

i∈n−1 Gi), let j = max K. Then j ≤ n− 1. Also, by Corollary
2.2 and Lemma 4.3, we have

KS =
⋃

i∈j

Gi =⇒ ψ(K)S′ = ψ(K)ψ(S) =
⋃

i∈j

G′i
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=⇒ max ψ(K) = j ≤ n− 1

=⇒ ψ(K) ∈ P(
⋃

i∈n−1

Gi).

The Lemma is proved. ¤

Theorem 4.5 For any n ∈ N , the class of semigroups Cn satisfies the strong isomorphism

property.

Proof We prove it by induction on n. First the result is true for n = 1 since the class of groups
satisfies the strong isomorphism property. For n = 2, Theorem 3.3 shows that the result is true.

Next, assume that n ≥ 3 and the result is true for n−1. We shall show that the result is true
for n. In fact, by Lemma 4.4, we have ψ|P(

⋃
i∈n−1 Gi) is an isomorphism from P(

⋃
i∈n−1 Gi) to

P(
⋃

i∈n−1 G′i). By the hypothesis, ψ|⋃
i∈n−1 Gi

is an isomorphism from
⋃

i∈n−1 Gi to
⋃

i∈n−1 G′i.
Also, by Lemmas 1.1 and 4.1, ψ|Gn

is an isomorphism from Gn to G′n. Therefore, ψ|S is an
isomorphism from S to S′. The proof is completed. ¤
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