Journal of Mathematical Research with Applications Jan., 2014, Vol. 34, No. 1, pp. 73–83 DOI:10.3770/j.issn:2095-2651.2014.01.007 Http://jmre.dlut.edu.cn

Power Semigroups of a Class of Clifford Semigroups

Lanlan HU, Aiping GAN*

College of Mathematics and Information Science, Jiangxi Normal University, Jiangxi 330022, P. R. China

Abstract Let $S = \bigcup (G_{\alpha} : \alpha \in E)$ be a semilattice of groups (i.e., a Clifford semigroup) and n a natural number. E is called an n-element chain of groups if it is an n-element chain. Denote by C_n the set of all n-element chains of groups. In this paper we shall show that for any natural number n, the class of semigroups C_n satisfies the strong isomorphism property.

 $\label{eq:keywords} {\bf group; n-element \ chain \ of \ groups; \ closed \ subsemigroup; \ power \ semigroup.}$

MR(2010) Subject Classification 06A12; 20M17

1. Introduction

The power semigroup, or global, of a semigroup S is the semigroup $\mathcal{P}(S)$ of all nonempty subsets of S with respect to the operation \cdot defined by

 $A \cdot B = \{ab : a \in A, b \in B\}$ for all $A, B \in \mathcal{P}(S)$.

A class \mathcal{K} of semigroups is said to be globally determined if any two members of \mathcal{K} having isomorphic globals must themselves be isomorphic.

Tamura [4] asked in 1967 whether the class of all semigroups is globally determined? The question was negatively answered in the class of all semigroups by Mogiljanskaja [8] in 1973. Crvenković, Dolinka and Vinčić [9] proved that involution semigroups are not globally determined in 2001. But it is known that the following classes are globally determined: groups [5, 6]; rectangular groups [7]; completely 0-simple semigroups [14]; finite semigroups [15]; lattices and semilattices [11, 13], finite simple semigroups and semilattices of torsion groups in which semilattices are finite [10]; completely regular periodic monoid with irreducible identity [12]. However, for an important class, the class of Clifford semigroups, the problem has been left unsolved.

Recall that in [13], Kobayashi considered a stronger property: strong isomorphism property. That is, let \mathcal{K} be a class of semigroups. \mathcal{K} satisfies the strong isomorphism property if for every isomorphism φ from $\mathcal{P}(S)$ onto $\mathcal{P}(S')$, $\varphi|_S$ (the restriction φ to S) is an isomorphism from Sonto S' for any $S, S' \in \mathcal{K}$. In this statement S (resp., S') is considered to be a subset of $\mathcal{P}(S)$ (resp., $\mathcal{P}(S')$) by identifying an element x of S (resp., S') with the singleton $\{x\}$. He proved that the class of semilattices satisfies the strong isomorphism property.

Received May 31, 2012; Accepted October 12, 2013

Supported by National Natural Science Foundation of China (Grant No. 11261021) and the Natural Science Foundation of Jiangxi Province (Grant No. 2010GZS0093).

^{*} Corresponding author

E-mail address: hulanlan880920@163.com (Lanlan HU); ganaiping78@163.com (Aiping GAN)

A few words on notation and terminology are in order. \mathcal{N} denotes the set of natural numbers, <u>n</u> denotes the set $\{1, 2, \ldots, n\}$, E(S) stands for the set of idempotents of a semigroup S and |A|is the cardinal number (or cardinality) of a set A. For each $e \in E(S)$, the maximal subgroup (\mathcal{H} -class) of S containing e will be denoted by $H_e(S)$. A singleton member of $\mathcal{P}(S)$ will be identified with the element it contains. Let $a, b \in S$. $a \mathcal{H}_S b$ means $a \mathcal{H} b$ in S.

Let $S = \bigcup (G_{\alpha} : \alpha \in E)$ be a semilattice of groups (i.e., a Clifford semigroup) and n a natural number. E is called an n-element chain of groups if it is an n-element chain. Denote by C_n the set of all n-element chains of groups. It is clear that a 1-element chain of a group is a group. We follow the usual practice of abbreviating $\{g\}H$ where $g \in S$ and $H \in \mathcal{P}(S)$ by gH. Further, we make the notational convention that e_{α} denotes the idempotent of G_{α} , $\alpha \in E$ and also e_i denotes the idempotent of G_{α_i} , $i \in \mathcal{N}$. For $X \in \mathcal{P}(S)$ and $\alpha \in E$ put

$$X_{\alpha} = X \cap G_{\alpha}, \text{ supp } X = \{ \alpha \in E : X_{\alpha} \neq \emptyset \}$$

and

$$\max X = \max(\operatorname{supp} X), \quad \min X = \min(\operatorname{supp} X).$$

In this paper we shall show that for any natural number n, the class semigroups C_n satisfies the strong isomorphism property.

This paper is divided into four sections. The first section is introduction and preliminary; in the second section, we further characterize the closed subsemigroups of a Clifford semigroup S that will be instrumental in the proof of our main results; in the third section, we will prove that the class of semigroups C_2 satisfies the strong isomorphism property; and in the last section, we will verify that the class of semigroups C_n satisfies the strong isomorphism property.

The following lemma, which implies that the class of groups also satisfies the strong isomorphism property, is taken from Gould and Iskra [10].

Lemma 1.1 Let S be a semigroup and $e \in E(S)$. Then $H_e(\mathcal{P}(S)) = H_e(S)$.

We refer to the books [1–3] for all background information concerning semigroups and universal algebra.

2. The closed subsemigroups of a Clifford semigroup

Zhao in [16] introduced the notion of the closed subsemigroup of a semigroup S. A subsemigroup C of a semigroup S is said to be closed if

sat,
$$sbt \in C \Rightarrow sabt \in C$$

holds for all $a, b \in S$, $s, t \in S^1$, where S^1 denotes the semigroup obtained from S by adjoining an identity if necessary. It is easy to see that every subsemilattice of a semilattice is closed by the definition of closed subsemigroup.

Let S be a semigroup and A a nonempty subset of S. \overline{A} denotes the closed subsemigroup of S generated by A, i.e., the smallest closed subsemigroup of S containing A. In [17], Zhao studied the closed subsemigroups of a Clifford semigroup.

In the remaining part of this section, unless otherwise stated, S always means the Clifford semigroup $\bigcup(G_{\alpha} : \alpha \in E)$ and we further characterize the closed subsemigroups of S that will be instrumental in the proof of our main results.

Lemma 2.1 ([17, Theorem 2.3]) Let $A \in \mathcal{P}(S)$. Then $\overline{A} = \bigcup_{\alpha \in \overline{\operatorname{supp} A}} G_{\alpha}$.

Corollary 2.2 Let $A \in \mathcal{P}(S)$. Then $SA = AS = \bigcup_{\gamma \in W} G_{\gamma}$ is a closed subsemigroup of S, where $W = \{\gamma \in E : (\exists \alpha \in \text{supp } A) | \gamma \leq \alpha\}$.

Proof Let $W = \{\gamma \in E : (\exists \alpha \in \operatorname{supp} A) | \gamma \leq \alpha\}$. Then it is easy to see that W is a subsemilattice of E and so $\bigcup_{\gamma \in W} G_{\gamma}$ is a closed subsemigroup of S by Lemma 2.1.

Next we will show that $SA = \bigcup_{\gamma \in W} G_{\gamma}$. In fact, on the one hand, for any $\gamma \in W$ and $g_{\gamma} \in G_{\gamma}$, there exists $\alpha \in \text{supp } A$ such that $\gamma \leq \alpha$. Fix an element a_{α} in A_{α} . We have

$$g_{\gamma} = g_{\gamma} e_{\alpha} = (g_{\gamma} a_{\alpha}^{-1}) a_{\alpha} \in SA$$

This implies that $\bigcup_{\gamma \in W} G_{\gamma} \subseteq SA$. On the other hand, for any $s \in S$ and $a \in A$, we can assume that $s \in G_{\beta}$ for some $\beta \in E$ and $a \in A_{\mu}$ for some $\mu \in \text{supp } A$. So we have that $sa \in G_{\beta}G_{\mu} \subseteq G_{\beta\mu} \subseteq \bigcup_{\gamma \in W} G_{\gamma}$, which implies that $SA \subseteq \bigcup_{\gamma \in W} G_{\gamma}$. Therefore, we have proved that $SA = \bigcup_{\gamma \in W} G_{\gamma}$.

Similarly, we can show that $AS = \bigcup_{\gamma \in W} G_{\gamma}$. The proof is completed.

Lemma 2.3 Let $A \in \mathcal{P}(S)$ and $A^2 = A$. Then the following statements are equivalent:

- (1) $a_{\alpha}A = b_{\alpha}A$ for any $\alpha \in \text{supp } A$ and $a_{\alpha}, b_{\alpha} \in G_{\alpha}$;
- (2) $a_{\alpha}A_{\alpha} = b_{\alpha}A_{\alpha}$ for any $\alpha \in \operatorname{supp} A$ and $a_{\alpha}, b_{\alpha} \in G_{\alpha}$;
- (3) $A_{\alpha} = G_{\alpha}$ for any $\alpha \in \operatorname{supp} A$.

Proof (1) \Rightarrow (2). Suppose that (1) holds, that is, $a_{\alpha}A_{\alpha} \subseteq a_{\alpha}A = b_{\alpha}A$ for any $\alpha \in \text{supp } A$ and $a_{\alpha}, b_{\alpha} \in G_{\alpha}$. Then for any $c_{\alpha} \in A_{\alpha}$, there exists $d \in A$ such that $a_{\alpha}c_{\alpha} = b_{\alpha}d$. Without loss of generality, we can assume that $d = d_{\beta} \in A_{\beta}$, where $\beta \in \text{supp } A$. Then

$$a_{\alpha}c_{\alpha} = b_{\alpha}d = b_{\alpha}d_{\beta} = b_{\alpha}e_{\alpha}d_{\beta},$$

and $\alpha = \alpha \beta \leq \beta$ by the above equation.

In addition, choose and fix some $g_{\alpha} \in A_{\alpha}$, we have that $e_{\alpha}A = g_{\alpha}A \subseteq A$. It follows that $e_{\alpha}d_{\beta} \in A$ and so $e_{\alpha}d_{\beta} \in A_{\alpha}$ for $e_{\alpha}d_{\beta} \in G_{\alpha}G_{\beta} \subseteq G_{\alpha\beta} = G_{\alpha}$. Thus $a_{\alpha}c_{\alpha} = b_{\alpha}(e_{\alpha}d_{\beta}) \in b_{\alpha}A_{\alpha}$ and so $a_{\alpha}A_{\alpha} \subseteq b_{\alpha}A_{\alpha}$ by the arbitrariness of c_{α} .

Similarly, we can prove that $b_{\alpha}A_{\alpha} \subseteq a_{\alpha}A_{\alpha}$. So $a_{\alpha}A_{\alpha} = b_{\alpha}A_{\alpha}$ and (2) holds.

(2) \Rightarrow (3). Suppose that (2) holds, that is, $A_{\alpha} = e_{\alpha}A_{\alpha} = a_{\alpha}A_{\alpha}$ for any $\alpha \in \text{supp} A$ and $a_{\alpha}, b_{\alpha} \in G_{\alpha}$. Choose and fix some $c_{\alpha} \in A_{\alpha}$. We have that $c_{\alpha}^{-1}A_{\alpha} = A_{\alpha}$ and so

$$e_{\alpha} = c_{\alpha}^{-1} c_{\alpha} \in c_{\alpha}^{-1} A_{\alpha} = A_{\alpha}$$

Further, $g_{\alpha} = g_{\alpha}e_{\alpha} \in g_{\alpha}A_{\alpha} = A_{\alpha}$ for any $g_{\alpha} \in G_{\alpha}$. Thus $G_{\alpha} \subseteq A_{\alpha}$. But it is clear that $A_{\alpha} = A \cap G_{\alpha} \subseteq G_{\alpha}$. Therefore, $A_{\alpha} = G_{\alpha}$ and (3) holds.

 $(3) \Rightarrow (1)$. Suppose that (3) holds. Then A is a closed subsemigroup of S by Lemma 2.1. It is easy to prove that

$$a_{\alpha}A = \bigcup_{\beta \in \operatorname{supp} A, \beta \le \alpha} G_{\beta} = b_{\alpha}A$$

for any $\alpha \in \operatorname{supp} A$ and $a_{\alpha}, b_{\alpha} \in G_{\alpha}$. (1) holds.

By Lemmas 2.1 and 2.3, we have

Theorem 2.4 Let $A \in \mathcal{P}(S)$. Then A is a closed subsemigroup of S if and only if A satisfies the following two conditions:

- (*i*) $A^2 = A$,
- (ii) $e_{\alpha}A = g_{\alpha}A$ for any $\alpha \in \operatorname{supp} A$ and $g_{\alpha} \in G_{\alpha}$.

Lemma 2.5 Let $A, B \in \mathcal{P}(S)$ and $A \mathcal{H} B$ in $\mathcal{P}(S)$. Then SA = SB and AS = BS.

Proof Since $A \mathcal{H} B$, there exist $C, D, U, V \in \mathcal{P}^1(S)$ such that

$$A = CB, B = DA, A = BU, B = AV.$$

Thus

$$SA = SCB \subseteq SB, SB = SDA \subseteq SA$$

and so SA = SB. Similarly, we can show that AS = BS. \Box

Theorem 2.6 Let $S' = \bigcup (G_{\alpha'} : \alpha' \in E')$ be a Clifford semigroup and φ an isomorphism from $\mathcal{P}(S)$ onto $\mathcal{P}(S')$. Then $\varphi(S)$ (resp., $\varphi^{-1}(S')$) is a closed subsemigroup of S' (resp., S).

Proof For any $\alpha' \in E'$ and $e_{\alpha'}, g_{\alpha'} \in G_{\alpha'}$, we have

$$e_{\alpha'} \mathcal{H}_{\mathcal{P}(S')} g_{\alpha'} \Longrightarrow \varphi^{-1}(e_{\alpha'}) \mathcal{H}_{\mathcal{P}(S)} \varphi^{-1}(g_{\alpha'})$$
$$\Longrightarrow \varphi^{-1}(e_{\alpha'})S = \varphi^{-1}(g_{\alpha'})S \quad \text{(by Lemma 2.5)}$$
$$\Longrightarrow e_{\alpha'}\varphi(S) = g_{\alpha'}\varphi(S).$$

In addition, it is obvious that $\varphi(S) = \varphi(S^2) = \varphi(S)^2$. Therefore, $\varphi(S)$ is a closed subsemigroup of S' by Theorem 2.4.

Applying the above argument to the isomorphism φ^{-1} , we can obtain that

$$e_{\alpha}\varphi^{-1}(S') = g_{\alpha}\varphi^{-1}(S')$$

for any $\alpha \in E$, $g_{\alpha} \in G_{\alpha}$. Also $(\varphi^{-1}(S'))^2 = \varphi^{-1}(S'^2) = \varphi^{-1}(S')$, therefore, $\varphi^{-1}(S')$ is a closed subsemigroup of S by Theorem 2.4.

3. Power semigroups of semigroups in C_2

In this section, we will show that the class of semigroups C_2 satisfies the strong isomorphism property. Let

$$S = G_{\alpha} \cup G_{\beta} \ (\alpha < \beta), \ S' = G_{\alpha'} \cup G_{\beta'} \ (\alpha' < \beta')$$

76

be both 2-element chains of groups and φ an isomorphism from $\mathcal{P}(S)$ onto $\mathcal{P}(S')$. We shall show that $\varphi|_S$ (the restriction of φ to S) is an isomorphism from S onto S'. The following two lemmas are needed.

Lemma 3.1 Let $S = G_{\alpha} \cup G_{\beta}$ ($\alpha < \beta$) and $S' = G_{\alpha'} \cup G_{\beta'}$ ($\alpha' < \beta'$) be both 2-element chains of groups and φ an isomorphism from $\mathcal{P}(S)$ onto $\mathcal{P}(S')$. Then $\varphi(e_{\beta}) = e_{\beta'}$ and $\varphi(G_{\alpha}) = G_{\alpha'}$.

Proof This follows from the fact that e_{β} (resp., G_{α}) is the identity (resp., zero) of $\mathcal{P}(S)$ and $e_{\beta'}$ (resp., $G_{\alpha'}$) is the identity (resp., zero) of $\mathcal{P}(S')$.

Lemma 3.2 Let $S = G_{\alpha} \cup G_{\beta}$ ($\alpha < \beta$) and $S' = G_{\alpha'} \cup G_{\beta'}$ ($\alpha' < \beta'$) be both 2-element chains of groups and φ an isomorphism from $\mathcal{P}(S)$ onto $\mathcal{P}(S')$. Then $\varphi(S) = S'$.

Proof Suppose that $A \in \mathcal{P}(S)$ such that $\varphi(A) = S'$. Then by Theorem 2.6 and Lemma 3.1, we have $A = \varphi^{-1}(S')$ is a closed subsemigroup of S and $\beta \in \text{supp } A$. Thus AS = S and so

$$S'\varphi(S) = \varphi(A)\varphi(S) = \varphi(AS) = \varphi(S)$$

It follows from Corollary 2.2 that either $\varphi(S) = G_{\alpha'}$ or $\varphi(S) = S'$. But $\varphi(S) \neq G_{\alpha'}$ by Lemma 3.1, so we have $\varphi(S) = S'$. \Box

Theorem 3.3 The class semigroups C_2 satisfies the strong isomorphism property. Moreover, $\varphi|_{G_{\alpha}}$ (resp., $\varphi|_{G_{\beta}}$) is an isomorphism from G_{α} onto $G_{\alpha'}$ (resp., G_{β} onto $G_{\beta'}$).

Proof By Lemmas 1.1 and 3.1, we have $\varphi|_{G_{\beta}}$ is an isomorphism from G_{β} onto $G_{\beta'}$. To show that $\varphi|_{S}$ is an isomorphism from S onto S', it suffices to prove that $\varphi|_{G_{\alpha}}$ is also an isomorphism from G_{α} onto $G_{\alpha'}$.

To see that this is so, let $A \in \mathcal{P}(G_{\alpha})$. Then $AS = G_{\alpha}$, which implies by Lemmas 3.1 and 3.2 that

$$\varphi(A)S' = \varphi(A)\varphi(S) = \varphi(AS) = \varphi(G_{\alpha}) = G_{\alpha'}$$

and so $\varphi(A) \in \mathcal{P}(G_{\alpha'})$.

Hence $\varphi|_{\mathcal{P}(G_{\alpha})}$ is an isomorphism from $\mathcal{P}(G_{\alpha})$ onto $\mathcal{P}(G_{\alpha'})$ and so $\varphi|_{G_{\alpha}}$ is also an isomorphism from G_{α} onto $G_{\alpha'}$. The proof is completed. \Box

4. Power semigroups of semigroups in C_n

In this section, our goal is to show that the class of semigroups C_n $(n \ge 3)$ satisfies the strong isomorphism property:

In the following, unless otherwise stated,

$$S = \bigcup_{i \in \underline{n}} G_i, \quad S' = \bigcup_{i \in \underline{n}} G'_i$$

are both *n*-Clifford semigroups, e_i (resp., e'_i) denotes the idempotent of G_i (resp., G'_i) and $e_1 < e_2 < \cdots < e_n, e'_1 < e'_2 < \cdots < e'_n$.

Let ψ be an isomorphism from $\mathcal{P}(S)$ onto $\mathcal{P}(S')$. We shall show that $\psi|_S$ is an isomorphism from S onto S'.

Lemma 4.1 Let $S = \bigcup_{i \in \underline{n}} G_i$ and $S' = \bigcup_{i \in \underline{n}} G'_i$ are both *n*-Clifford semigroups, e_i (resp., e'_i) denotes the idempotent of G_i (resp., G'_i) and $e_1 < e_2 < \cdots < e_n$, $e'_1 < e'_2 < \cdots < e'_n$. Let ψ be an isomorphism from $\mathcal{P}(S)$ onto $\mathcal{P}(S')$. Then $\psi(e_n) = e'_n$ and $\psi(G_1) = G'_1$.

Proof This follows from the fact that e_n (resp., G_1) is the identity (resp., zero) of $\mathcal{P}(S)$ and e'_n (resp., G'_1) is the identity (resp., zero) of $\mathcal{P}(S')$. \Box

Lemma 4.2 Let $S = \bigcup_{i \in \underline{n}} G_i$ and $S' = \bigcup_{i \in \underline{n}} G'_i$ are both *n*-Clifford semigroups, e_i (resp., e'_i) denotes the idempotent of G_i (resp., G'_i) and $e_1 < e_2 < \cdots < e_n$, $e'_1 < e'_2 < \cdots < e'_n$. Let ψ be an isomorphism from $\mathcal{P}(S)$ onto $\mathcal{P}(S')$. Then $\psi(S) = S'$.

Proof Suppose that $A \in \mathcal{P}(S)$ such that $\psi(A) = S'$. Then by Theorem 2.6 and Lemma 4.1, we have $A = \psi^{-1}(S')$ is a closed subsemigroup of S and $\sup A \neq \{1\}$. Let $r = \max A$, $t = \min A$ and $k = \max \psi(S)$, $l = \min \psi(S)$. Then $2 \leq r \leq n$ and $2 \leq k \leq n$.

Claim 1 We have r = k and $\psi(\bigcup_{i \in j} G_i) = \bigcup_{i \in j} G'_i$ for any $j = 1, 2, \ldots, r$.

Indeed, for any $j = 1, 2, \ldots, r$, we have

$$\begin{split} (\bigcup_{i \in \underline{j}} G_i)A &= \bigcup_{i \in \underline{j}} G_i \Longrightarrow \psi(\bigcup_{i \in \underline{j}} G_i)\psi(A) = \psi(\bigcup_{i \in \underline{j}} G_i) \\ &\implies \psi(\bigcup_{i \in \underline{j}} G_i)S' = \psi(\bigcup_{i \in \underline{j}} G_i) \\ &\implies \psi(\bigcup_{i \in \underline{j}} G_i) \in \{\bigcup_{i \in \underline{m}} G'_i : m = 1, 2, \dots, n\} \end{split}$$

and

$$(\bigcup_{i \in \underline{j}} G_i)S = \bigcup_{i \in \underline{j}} G_i \Longrightarrow \psi(\bigcup_{i \in \underline{j}} G_i)\psi(S) = \psi(\bigcup_{i \in \underline{j}} G_i)$$
$$\Longrightarrow \max \psi(\bigcup_{i \in \underline{j}} G_i) \le \max \psi(S) = k,$$

which shows that

$$\{\psi(\bigcup_{i\in\underline{j}}G_i): j=1,2,\ldots,r\}\subseteq \{\bigcup_{i\in\underline{m}}G'_i: m=1,2,\ldots,k\}.$$

Thus $r \leq k$. Similarly, applying the above argument to the isomorphism ψ^{-1} , we can show that $k \leq r$. Therefore, r = k and

$$\{\psi(\bigcup_{i \in \underline{j}} G_i) : j = 1, 2, \dots, r\} = \{\bigcup_{i \in \underline{m}} G'_i : m = 1, 2, \dots, r\}.$$
 (*)

Since ψ is an isomorphism, from the above equation (*), it is easy to see that $\psi(\bigcup_{i \in \underline{j}} G_i) = \bigcup_{i \in j} G'_i$ for any $j = 1, 2, \ldots, r$. The claim is proved.

Next, consider the following cases:

Case 1 r = n. By Claim 1, we have $\psi(S) = S'$.

Case 2 $r \le n - 1, t \ge 2.$

We have

$$G_2 A = G_2 \Longrightarrow \psi(G_2) S' = \psi(G_2) \psi(A) = \psi(G_2)$$
$$\Longrightarrow \psi(G_2) = \bigcup_{i \in \underline{j}} G'_i \text{ for some } r+1 \le j \le n$$

 $\quad \text{and} \quad$

$$G_2 S = G_1 \cup G_2 \Longrightarrow \psi(G_2)\psi(S) = \psi(G_1 \cup G_2)$$
$$\Longrightarrow \psi(G_2)\psi(S) = G'_1 \cup G'_2 \quad \text{(by Claim 1)}$$
$$\Longrightarrow r = 2,$$

which shows that $A = G_2$. Also $\psi(S) = G'_2$ by Claim 1. Now we have

$$\psi(G_2) = S', \ \psi(S) = G'_2 \text{ and } \psi(G_1 \cup G_2) = G'_1 \cup G'_2.$$

Claim 2 We have $\psi(B) \subseteq G'_2$ for any $B \in \mathcal{P}(S)$ satisfying supp $B = \{1, n\}$.

In fact, by the proof of Theorem 2.6, we have $e_1G_2 = e_1\psi^{-1}(S') = g_1\psi^{-1}(S') = g_1G_2$ for any $g_1 \in G_1$, which implies that for any $C \in \mathcal{P}(G_1)$,

$$CG_2 = e_1G_2 = G_1G_2 = G_1.$$

So for any $B \in \mathcal{P}(S)$ satisfying supp $B = \{1, n\}$, we have

$$G_2B = G_1 \cup G_2 \Longrightarrow \psi(G_2)\psi(B) = \psi(G_1 \cup G_2) \Longrightarrow S'\psi(B) = G'_1 \cup G'_2$$
$$\Longrightarrow \operatorname{supp} \psi(B) \subseteq \{1, 2\}$$

and

$$SB = S \Longrightarrow \psi(S)\psi(B) = \psi(S) \Longrightarrow G_2\psi(B) = G'_2 \Longrightarrow 1 \notin \operatorname{supp} \psi(B).$$

Thus $\operatorname{supp} \psi(B) = \{2\}$ and so $\psi(B) \subseteq G'_2$, the Claim is proved.

Claim 3 We have $\psi^{-1}(e'_2)B = B$ for any $B \in \mathcal{P}(S)$ satisfying supp $B = \{1, n\}$. In fact, by Claim 2, we have $e'_2\psi(B) = \psi(B)$ and so $\psi^{-1}(e'_2)B = B$.

Claim 4 supp $\psi^{-1}(e'_2) = \{1, n\}.$

Indeed,

$$G'_2 e'_2 = G'_2 \Longrightarrow \psi^{-1}(G'_2)\psi^{-1}(e'_2) = \psi^{-1}(G'_2) \Longrightarrow S\psi^{-1}(e'_2) = S$$
$$\implies n \in \operatorname{supp} \psi^{-1}(e'_2)$$

and

$$S'e'_{2} = G'_{1} \cup G'_{2} \Longrightarrow \psi^{-1}(S')\psi^{-1}(e'_{2}) = \psi^{-1}(G'_{1} \cup G'_{2})$$
$$\Longrightarrow G_{2}\psi^{-1}(e'_{2}) = G_{1} \cup G_{2}$$
$$\Longrightarrow 1 \in \operatorname{supp} \psi^{-1}(e'_{2}).$$

Also, by Claim 3, we have $\psi^{-1}(e'_2)(G_1 \cup G_n) = G_1 \cup G_n$. It follows that $\operatorname{supp} \psi^{-1}(e'_2) = \{1, n\}$. The Claim is proved.

Claim 5 $\psi(\{e_1, e_n\}) = e'_2$.

Indeed, for any $a_n \in \psi^{-1}(e'_2) \cap G_n$, by Claims 3 and 4, we have

$$a_n = a_n e_n \in \psi^{-1}(e'_2)(\{e_1, e_n\}) = \{e_1, e_n\}$$

and so $a_n = e_n$.

Similarly, we can prove that $a_1 = e_1$ for any $a_1 \in \psi^{-1}(e'_2) \cap G_1$. Thus $\psi^{-1}(e'_2) = \{e_1, e_n\}$, that is $\psi(\{e_1, e_n\}) = e'_2$. The Claim is proved.

Claim 6 $|G_1| = 1$.

Suppose by way of contradiction that $|G_1| \ge 2$. Choose and fix some $b_1 \in G_1$ such that $b_1 \neq e_1$, then

$$\psi^{-1}(e_2')\{e_n, b_1\} = \{e_1, e_n\}\{e_n, b_1\} = \{e_1, b_1, e_n\} \neq \{e_n, b_1\},\$$

contradicting Claim 3.

Similarly, applying the entire argument above to the isomorhism ψ^{-1} , we can claim that $\psi^{-1}(\{e'_1, e'_n\}) = e_2$, i.e., $\psi(e_2) = \{e'_1, e'_n\}$ and $|G'_1| = 1$. Thus by Lemma 4.1, we have $\psi(e_1) = e'_1$. Also, since

$$\psi(\{e_2, e_n\}) \subseteq \psi(\{e_2, e_n\})\{e_1', e_n'\} = \psi(\{e_2, e_n\}e_2) = \psi(e_2) = \{e_1', e_n'\},$$

we have

$$\psi(\{e_2, e_n\}) = \{e'_1\} \text{ or } \{e'_n\} \text{ or } \{e'_1, e'_n\}.$$

But then $\{e_2, e_n\} = \{e_1\}$ or $\{e_n\}$ or $\{e_2\}$, a contradiction.

Case 3 $r \le n-1, l \ge 2$. Applying the proof of Case 2 to the isomorphism ψ^{-1} also leads to a contradiction.

Case 4 $t = l = 1, r \le n - 1.$

Let $M = \{m \in \underline{n} : m \notin \text{supp } A\}$. Then $M \neq \emptyset$ since $n \in M$. Thus M contains a least element. Denote by u the least element of M. By Claim 1, it is easy to see that 1 < u < r. Thus $A = G_1 \cup G_2 \cup \cdots \cup G_{u-1} \cup G_{j_1} \cup \cdots \cup G_{j_s}$, for some $\{j_1, \ldots, j_s\} \subseteq \{u + 1, \ldots, r\}$.

Let $D = G_1 \cup G_2 \cup \cdots \cup G_{u-1} \cup G_{u+1}$. Then we have

$$DA = D \Longrightarrow \psi(D)\psi(A) = \psi(D) \Longrightarrow \psi(D)S' = \psi(D)$$
$$\Longrightarrow \psi(D) \in \{\bigcup_{i \in \underline{j}} G'_i : j = 1, 2, \dots, n\}.$$

In addition, by Claim 1, we have

$$\psi(D) = \bigcup_{i \in \underline{j}} G'_i$$
 for some $r+1 \le j \le n$.

Also since $DS = \bigcup_{i \in \underline{u+1}} G_i$, we have $\psi(D)\psi(S) = \bigcup_{i \in \underline{u+1}} G'_i$ by Claim 1. Note that max $\psi(S) = r$ and max $\psi(D) = j \ge r+1$, we have

$$\max(\psi(D)\psi(S)) = r = u + 1.$$

Therefore, $A = G_1 \cup G_2 \cup \cdots \cup G_{r-2} \cup G_r = D$.

Similarly, applying the entire argument above to the isomorphism ψ^{-1} , we can obtain $\psi(S) = G'_1 \cup G'_2 \cup \cdots \cup G'_{r-2} \cup G'_r$. Now, we have

$$\psi(G_1 \cup G_2 \cup \dots \cup G_{r-2} \cup G_r) = S', \ \psi(S) = G'_1 \cup G'_2 \cup \dots \cup G'_{r-2} \cup G'_r$$

and

$$\psi(\bigcup_{i \in \underline{j}} G_i) = \bigcup_{i \in \underline{j}} G'_i$$
 for any $j = 1, 2, \dots, r$.

Claim 7 We have $\operatorname{supp} \psi(H) \subseteq \{1, 2, \ldots, r-2, r\}$ for any $H \in \mathcal{P}(S)$ satisfying $\{r-1, n\} \subseteq \operatorname{supp} H$.

In fact, by the proof of Theorem 2.6, we have $e_{r-1}A = g_{r-1}A$ for any $g_{r-1} \in G_{r-1}$ and so $e_{r-1}G_r = g_{r-1}G_r$, which implies that for any $C \in \mathcal{P}(G_{r-1})$,

$$CG_r = e_{r-1}G_r = G_{r-1}G_r = G_{r-1}.$$

So for any $H \in \mathcal{P}(S)$ satisfying $\{r-1, n\} \subseteq \operatorname{supp} H$, we have

$$\begin{split} HA = \bigcup_{i \in \underline{r}} G_i &\Longrightarrow \psi(H)\psi(A) = \psi(\bigcup_{i \in \underline{r}} G_i) \\ &\Longrightarrow \psi(H)S' = \bigcup_{i \in \underline{r}} G'_i \quad \text{(by Claim 1)} \\ &\Longrightarrow \operatorname{supp} \psi(H) \subseteq \{1, 2, \dots, r\} \end{split}$$

and

$$SH = S \Longrightarrow \psi(S)\psi(H) = \psi(S)$$
$$\Longrightarrow (G'_1 \cup \dots \cup G'_{r-2} \cup G'_r)\psi(H) = G'_1 \cup \dots \cup G'_{r-2} \cup G'_r$$
$$\Longrightarrow r - 1 \notin \operatorname{supp} \psi(H).$$

Thus supp $\psi(H) \subseteq \{1, 2, \dots, r-2, r\}$, the Claim is proved.

Claim 8 We have $\psi^{-1}(e'_r)H = H$ for any $H \in \mathcal{P}(S)$ satisfying $\{r-1, n\} \subseteq \operatorname{supp} H$. In fact, by Claim 7, we have $e'_r\psi(H) = \psi(H)$ and so $\psi^{-1}(e'_r)H = H$.

Claim 9 supp $\psi^{-1}(e'_r) = \{r - 1, n\}.$

Indeed,

$$\psi(S)e'_r = \psi(S) \Longrightarrow S\psi^{-1}(e'_r) = S \Longrightarrow n \in \operatorname{supp} \psi^{-1}(e'_r)$$

and

$$S'e'_r = \bigcup_{i \in \underline{r}} G'_i \Longrightarrow \psi^{-1}(S')\psi^{-1}(e'_r) = \psi^{-1}(\bigcup_{i \in \underline{r}} G'_i)$$

Lanlan HU and Aiping GAN

$$\implies (G_1 \cup \dots \cup G_{r-2} \cup G_r)\psi^{-1}(e'_r) = \bigcup_{i \in \underline{r}} G_i$$
$$\implies r-1 \in \operatorname{supp} \psi^{-1}(e'_r).$$

Also, by Claim 8, we have $\psi^{-1}(e'_r)(G_{r-1}\cup G_n) = G_{r-1}\cup G_n$. It follows that $\operatorname{supp} \psi^{-1}(e'_r) = \{r-1, n\}$. The Claim is proved.

Claim 10 $\psi(\{e_{r-1}, e_n\}) = e'_r$.

Indeed, for any $a_n \in \psi^{-1}(e'_r) \cap G_n$, by Claims 8 and 9, we have

$$a_n = a_n e_n \in \psi^{-1}(e'_r)(\{e_{r-1}, e_n\}) = \{e_{r-1}, e_n\}$$

and so $a_n = e_n$.

Similarly, we can prove that $a_{r-1} = e_{r-1}$ for any $a_{r-1} \in \psi^{-1}(e'_r) \cap G_{r-1}$. Thus $\psi^{-1}(e'_r) = \{e_{r-1}, e_n\}$, that is $\psi(\{e_{r-1}, e_n\}) = e'_r$. The Claim is proved.

In a similar way, applying the entire argument above to the isomorphism ψ^{-1} , we can claim that $\psi^{-1}(\{e'_{r-1}, e'_n\}) = e_r$, i.e., $\psi(e_r) = \{e'_{r-1}, e'_n\}$. Thus

$$\psi(\{e_r, e_n\}) \subseteq \psi(\{e_r, e_n\})\{e_{r-1}', \ e_n'\} = \psi(\{e_r, e_n\}e_r) = \psi(e_r) = \{e_{r-1}', \ e_n'\}$$

and so

$$\psi(\{e_r, e_n\}) = \{e'_{r-1}\} \text{ or } \{e'_n\} \text{ or } \{e'_{r-1}, e'_n\}.$$

But if $\psi(\{e_r, e_n\}) = \{e'_n\}$ or $\{e'_{r-1}, e'_n\}$, then $\{e_r, e_n\} = \{e_n\}$ or $\{e_r\}$, a contradiction. Thus we get the next Claim:

Claim 11 $\psi(\{e_r, e_n\}) = \{e'_{r-1}\}.$

However, by Claims 10 and 11, we have

$$\{e'_{r-1}\} = \{e'_r\} \cdot \{e'_{r-1}\} = \psi(\{e_{r-1}, e_n\}) \cdot \psi(\{e_r, e_n\}) = \psi(\{e_{r-1}, e_r, e_n\}),$$

contradicting Claim 11. This contradiction concludes the proof. \Box

By Lemma 4.2 and Claim 1 in Lemma 4.2, we have

Lemma 4.3 Let $S = \bigcup_{i \in \underline{n}} G_i$ and $S' = \bigcup_{i \in \underline{n}} G'_i$ are both *n*-Clifford semigroups, e_i (resp., e'_i) denotes the idempotent of G_i (resp., G'_i) and $e_1 < e_2 < \cdots < e_n$, $e'_1 < e'_2 < \cdots < e'_n$. Let ψ be an isomorphism from $\mathcal{P}(S)$ onto $\mathcal{P}(S')$. Then $\psi(\bigcup_{i \in j} G_i) = \bigcup_{i \in j} G'_i$ for any $j = 1, 2, \ldots, n$.

Lemma 4.4 Let $S = \bigcup_{i \in \underline{n}} G_i$ and $S' = \bigcup_{i \in \underline{n}} G'_i$ are both *n*-Clifford semigroups, e_i (resp., e'_i) denotes the idempotent of G_i (resp., G'_i) and $e_1 < e_2 < \cdots < e_n$, $e'_1 < e'_2 < \cdots < e'_n$. Let ψ be an isomorphism from $\mathcal{P}(S)$ onto $\mathcal{P}(S')$. Then $\psi|_{\mathcal{P}(\bigcup_{i \in \underline{n-1}} G_i)}$ is an isomorphism from $\mathcal{P}(\bigcup_{i \in \underline{n-1}} G_i)$ to $\mathcal{P}(\bigcup_{i \in n-1} G'_i)$.

Proof Indeed, for any $K \in \mathcal{P}(\bigcup_{i \in \underline{n-1}} G_i)$, let $j = \max K$. Then $j \leq n-1$. Also, by Corollary 2.2 and Lemma 4.3, we have

$$KS = \bigcup_{i \in \underline{j}} G_i \Longrightarrow \psi(K)S' = \psi(K)\psi(S) = \bigcup_{i \in \underline{j}} G'_i$$

82

$$\implies \max \psi(K) = j \le n - 1$$
$$\implies \psi(K) \in \mathcal{P}(\bigcup_{i \in \underline{n-1}} G_i).$$

The Lemma is proved. \Box

Theorem 4.5 For any $n \in \mathcal{N}$, the class of semigroups \mathcal{C}_n satisfies the strong isomorphism property.

Proof We prove it by induction on n. First the result is true for n = 1 since the class of groups satisfies the strong isomorphism property. For n = 2, Theorem 3.3 shows that the result is true.

Next, assume that $n \ge 3$ and the result is true for n-1. We shall show that the result is true for n. In fact, by Lemma 4.4, we have $\psi|_{\mathcal{P}(\bigcup_{i\in n-1}G_i)} G_i)$ is an isomorphism from $\mathcal{P}(\bigcup_{i\in n-1}G_i)$ to $\mathcal{P}(\bigcup_{i\in n-1}G'_i)$. By the hypothesis, $\psi|_{\bigcup_{i\in n-1}G_i}$ is an isomorphism from $\bigcup_{i\in n-1}G_i$ to $\bigcup_{i\in n-1}G'_i$.

Also, by Lemmas 1.1 and 4.1, $\psi|_{G_n}$ is an isomorphism from G_n to G'_n . Therefore, $\psi|_S$ is an isomorphism from S to S'. The proof is completed. \Box

Acknowledgements The authors are particularly grateful to Professor Xianzhong ZHAO for his helpful suggestions contributed to this paper.

References

- S. BURRIS, H. P. SANKAPPANAVAR. A Course in Universal Algebra. Springer-Verlag, New York-Berlin, 2012.
- [2] J. M. HOWIE. Fundamentals of Semigroup Theory. The Clarendon Press, Oxford University Press, New York, 1995.
- [3] J. Almeida Finite Semigroup and Universal Algebra. Series in Algebra, Vol.3, World Scientific, Singapore, 1994.
- [4] T. TAMURA. Unsolved problems on semigroups. Kokyuroku, Kyoto Univ., 1967, 31: 33–35.
- [5] T. TAMURA, J. SHAFER. Power semigroups. Math. Japon., 1967, 12: 25-32.
- [6] D. J. MCCARTHY, D. L. HAYES. Subgroups of the power semigroup of a group. J. Combinatorial Theory Ser. A, 1973, 14: 173–186.
- [7] T. TAKAYUKI. Power semigroups of rectangular groups. Math. Japon., 1984, 29(4): 671-678.
- [8] E. M. MOGILJANSKAJA. Non-isomorphic semigroups with isomorphic semigroups of subsets. Semigroup Forum, 1973, 6(4): 330–333.
- S. CRVENKOVIČ, I. DOLINKA, M. VINČIĆ. Involution semigroups are not globally determined. Semigroup Forum, 2001, 62(3): 477–481.
- [10] M. GOULD, J. A. ISKRA. Globally determined classes of semigroups. Semigroup Forum, 1984, 28(1-3): 1–11.
- M. GOULD, J. A. ISKRA, C. TSINAKIS. Globally determined lattices and semilattices. Algebra Universalis, 1984, 19(2): 137–141.
- [12] M. GOULD, J. A. ISKRA. Globals of completely regular periodic semigroups. Semigroup Forum, 1984, 29(3): 365–374.
- [13] Y. KOBAYASHI. Semilattices are globally determined. Semigroup Forum, 1984, 29(1-2): 217-222.
- [14] T. TAKAYUKI. Isomorphism problem of power semigroups of completely 0-simple semigroups. J. Algebra, 1986, 98(2): 319–361.
- [15] T. TAMURA. On the Recent Results in the Study of Power Semigroups. Semigroups and Their Applications, Reidel, Dordrecht, 1987.
- [16] Xianzhong ZHAO. Idempotent semirings with a commutative additive reduct. Semigroup Forum, 2002, 64(2): 289–296.
- [17] Yinyin FU, Xianzhong ZHAO. The closed subsemigroups of a Clifford semigroup. Communications in Mathematical Research. (in Press)