Journal of Mathematical Research with Applications Jan., 2014, Vol. 34, No. 1, pp. 97–104 DOI:10.3770/j.issn:2095-2651.2014.01.010 Http://jmre.dlut.edu.cn

Some Notes on Closed Sequence-Covering Maps

Fucai LIN^{1,*}, Shou LIN²

1. School of Mathematics and Statistics, Minnan Normal University, Fujian 363000, P. R. China;

2. Institute of Mathematics, Ningde Teachers' College, Fujian 352100, P. R. China

Abstract In this paper, we mainly discuss the images of certain spaces under closed sequencecovering maps. It is showed that the property with a locally countable weak base is preserved by closed sequence-covering maps. And the following question is discussed: Are the closed sequence-covering images of spaces with a point-countable *sn*-network *sn*-first countable?

Keywords closed maps; sequence-covering maps; weak bases; sn-networks; cs-networks; k-semistratifiable spaces.

MR(2010) Subject Classification 54C10; 54C99; 54D99; 54E99

1. Introduction

In this paper all spaces are T_1 and regular, all maps are continuous and onto. Yan, Lin and Jiang in [20] proved that metrizability is preserved by closed sequence-covering maps. Lin and Liu in [10] and [13] showed respectively that g-metrizability and sn-metrizability are also preserved by closed sequence-covering maps. In a recent paper, Liu, Lin and Ludwig [15] have proved that the property with a σ -compact-finite weak base is preserved by closed sequence-covering maps. Hence what kind of properties of spaces are preserved by closed sequence-covering mappings is an interesting problem. In this paper, we shall prove that some kinds of properties of spaces are preserved by closed sequence-covering maps, and also discuss the relation between spaces with a σ -point-discrete sn-network and spaces with a σ -point-discrete cs-network.

By \mathbb{N} , we denote the set of positive integers. Let $\tau(X)$ be the topology of a space X.

Let X be a space, and $P \subset X$. The set P is a sequential neighborhood of x in X if every sequence converging to x is eventually in P. The set P is a sequentially open subset of X if P is a sequential neighborhood of x in X for each $x \in P$. P is a sequentially closed subset of X if $X \setminus P$ is a sequentially open subset of X. The space X is said to be a sequential space [3] if each sequentially open subset is open in X.

Definition 1.1 Let $\mathcal{P} = \bigcup_{x \in X} \mathcal{P}_x$ be a cover of a space X such that for each $x \in X$, (a) if

Received October 2, 2012; Accepted June 4, 2013

Supported by National Natural Science Foundation of China (Grant Nos. 11201414; 10971185; 11171162), the Natural Science Foundation of Fujian Province (Grant No. 2012J05013) and Training Programme Foundation for Excellent Youth Researching Talents of Fujian's Universities (Grant No. JA13190). * Corresponding author

E-mail address: linfucai2008@aliyun.com; lfc19791001@163.com (Fucai LIN); shoulin60@163.com (Shou LIN)

 $U, V \in \mathcal{P}_x$, then $W \subset U \cap V$ for some $W \in \mathcal{P}_x$; (b) \mathcal{P}_x is a network of x in X, i.e., $x \in \bigcap \mathcal{P}_x$, and if $x \in U$ with U open in X, then $P \subset U$ for some $P \in \mathcal{P}_x$.

(1) The family \mathcal{P} is called an *sn*-network [7] for X if each element of \mathcal{P}_x is a sequential neighborhood of x in X for each $x \in X$. The space X is called *sn*-first countable [9], if X has an *sn*-network \mathcal{P} such that each \mathcal{P}_x is countable.

(2) The family \mathcal{P} is called a weak base [1] for X if whenever $G \subset X$ satisfying for each $x \in X$ there is $P \in \mathcal{P}_x$ with $P \subset G$, G is open in X. The space X is called weakly first countable [1] or g-first countable [19], if X has a weak base \mathcal{P} such that each \mathcal{P}_x is countable.

A related concept for *sn*-networks is *cs*-networks.

Definition 1.2 Let \mathcal{P} be a family of subsets of a space X.

(1) The family \mathcal{P} is called a cs-network [5] for X if whenever a sequence $\{x_n\}_n$ converges to $x \in U \in \tau(X)$, there exist $m \in \mathbb{N}$ and $P \in \mathcal{P}$ such that $\{x\} \cup \{x_n : n \ge m\} \subset P \subset U$.

(2) The family \mathcal{P} is called a k-network [17] for X if whenever K is a compact subset of X and $K \subset U \in \tau(X)$, there is a finite $\mathcal{P}' \subset \mathcal{P}$ such that $K \subset \cup \mathcal{P}' \subset U$.

(3) The family \mathcal{P} is called a wcs^{*}-network [11] for X if whenever sequence $\{x_n\}_n$ converges to $x \in U \in \tau(X)$, there are a $P \in \mathcal{P}$ and a subsequence $\{x_{n_i}\}_i$ of $\{x_n\}_n$ such that $P \subset U$ and $x_{n_i} \in P$ for each $i \in \mathbb{N}$.

It is easy to see that [9]

(i) g-first countable spaces \Leftrightarrow sn-first countable spaces and sequential spaces;

(ii) For a space X, weak bases \Rightarrow sn-networks \Rightarrow cs-networks \Rightarrow wcs^{*}-networks, and k-networks \Rightarrow wcs^{*}-networks;

(iii) For a sequential space X, sn-networks \Rightarrow weak bases.

Definition 1.3 Let $f : X \to Y$ be a map. Recall that f is a sequence-covering map [18] if whenever $\{y_n\}_n$ is a convergent sequence in Y, there is a convergent sequence $\{x_n\}_n$ in X with each $x_n \in f^{-1}(y_n)$.

Definition 1.4 Let (X, τ) be a topological space. We define a sequential closure-topology σ_{τ} [3] on X as follows: $O \in \sigma_{\tau}$ if and only if O is a sequentially open subset in (X, τ) . The topological space (X, σ_{τ}) is denoted by σX .

Readers may refer to [2, 4] for unstated definitions and terminologies.

2. Spaces with locally countable weak bases

Firstly, we prove that the property with a locally countable weak base is preserved by closed sequence-covering maps. A family \mathcal{P} of subsets of a space X is called locally countable if each point at X has a neighborhood which intersects at most countably many elements of \mathcal{P} .

Let $f: X \to Y$ be a map. The map f is said to be boundary-compact if $\partial f^{-1}(y)$ is compact in X for each $y \in Y$.

Lemma 2.1 The property with a locally countable k-network is preserved by closed boundary-

compact maps.

Proof Let $f : X \to Y$ be a closed boundary-compact map, where X has a locally countable k-network \mathcal{P} . Since k-networks are hereditary with respect to closed subsets, we can suppose that f is a perfect map by [9, Lemma 1.3.2]. Thus $f(\mathcal{P}) = \{f(P) : P \in \mathcal{P}\}$ is a locally countable k-network for Y. \Box

The sequential fan S_{ω} is a space which is the quotient space by identifying all limit points of the topological sum of ω many convergent sequences. Every *sn*-first countable space contains no closed copy of S_{ω} .

Theorem 2.2 The property with a locally countable weak base is preserved by closed sequencecovering maps.

Proof Let $f : X \to Y$ be a closed sequence-covering map, where X has a locally countable weak base. By [12, Lemma 3.1], Y is g-first countable. Thus Y contains no closed copy of S_{ω} . So f is a boundary-compact map by [12, Lemma 3.2]. By Lemma 2.1, Y has a locally countable k-network. Therefore, Y has a locally countable weak base by [14, Theorem 2.1]. \Box

In the proof of Theorem 2.2, the space X is paracompact. In fact, since X has a locally countable weak base, X is a topological sum of spaces with countable weak bases [14], thus X is paracompact. So is Y.

However, closed sequence-covering maps do not preserve the property with a locally countable sn-network.

Example 2.3 For each $\alpha < \omega_1$, let X_{α} be a subspace $\{p\} \cup \mathbb{N}$ of $\beta\mathbb{N}$, where $p \in \beta\mathbb{N} \setminus \mathbb{N}$. Since X_{α} has no non-trivial convergent sequence, it has a countable *sn*-network. Put $X = \bigoplus_{\alpha < \omega_1} X_{\alpha}$, and let A be the set of all accumulative points of X. Obviously, the space X has a locally countable *sn*-network, and A is a closed subset of X. Take Y = X/A and let $f : X \to Y$ be the natural quotient map. It follows that f is a closed map. Since Y has no non-trivial convergent sequence, the map f is also a sequence-covering map. It is easy to see that Y is not a locally countable space. Hence Y does not have a locally countable *sn*-network.

Although closed sequence-covering maps do not preserve the property with a locally countable sn-network, we have the following Theorem 2.6.

Lemma 2.4 Let \mathcal{P} be an *sn*-network for an *sn*-first countable space X. Then \mathcal{P} is a weak base for σX .

Proof Since σX is a sequential space, it suffices to prove that \mathcal{P} is an *sn*-network for σX . Let $\mathcal{P} = \bigcup_{x \in X} \mathcal{P}_x$ as Definition 1.1, where each \mathcal{P}_x is countable. We prove that \mathcal{P}_x is a network at point $x \in \sigma X$. Without loss of generality, we can assume that $\mathcal{P}_x = \{P_i\}_{i \in \mathbb{N}}$ be a decreasing sequence. If $x \in U$ with U sequentially open in X, then $P_i \subset U$ for some $i \in \mathbb{N}$. Otherwise, there exists $x_i \in P_i \setminus U$ for each $i \in \mathbb{N}$. Then $x_i \to x$ as $i \to \infty$ in X. This is a contradiction with $x_i \notin U$. It is easy to see that each $P \in \mathcal{P}_x$ is a sequential neighborhood at point x in σX .

Hence, the family \mathcal{P} is an *sn*-network for σX . \Box

Lemma 2.5 Let $f: X \to Y$ be a closed sequence-covering map, where each singleton of X is a G_{δ} -set. Then $f: \sigma X \to \sigma Y$ is a closed sequence-covering map.

Proof (1) The map f is continuous from σX to σY .

Let U be sequentially open in Y. We claim that $f^{-1}(U)$ is sequentially open in X. Suppose not, there exist a point $x \in f^{-1}(U)$ and a sequence $\{x_n\}_n$ in X such that each $x_n \notin f^{-1}(U)$ and $x_n \to x$. Since f is continuous from X to Y, $f(x_n) \to f(x) \in U$. This is a contradiction.

(2) The map f is a closed map from σX to σY .

Let A be sequentially closed in X. If f(A) is not sequentially closed in Y, there exists a sequence $\{y_n\}_n \subset f(A)$ such that $\{y_n\}_n$ converges to $y \notin f(A)$. Without loss of generality, we can assume $y_n \neq y_m$ when $n \neq m$. Put $K = \{y_n : n \in \mathbb{N}\} \cup \{y\}$. For each $n \in \mathbb{N}$, choose $x_n \in f^{-1}(y_n) \cap A$, then $\{x_n\}_n$ is a sequence in $f^{-1}(K)$. Hence there exists a convergent subsequence $\{x_{n_k}\}_k$ of $\{x_n\}_n$ by [11, Lemma 2(b)], say $x_{n_k} \to x$. Then $x \in f^{-1}(y)$, and $x \notin A$ by $y \notin f(A)$. So $\{x_{n_k}\}_k$ is eventually in X - A because A is sequentially closed. However, all $x_n \in A$. This is a contradiction.

(3) Since a space Z and its sequentially closure-space σZ have identically convergent sequence, it follows that f is a sequence-covering map from σX to σY . \Box

A family \mathcal{P} of subsets of a space X is called star-countable if, for every $P \in \mathcal{P}$, P intersects at most countably many members of \mathcal{P} .

Theorem 2.6 Let $f : X \to Y$ be a closed sequence-covering map, where X has a locally countable *sn*-network and σX is a regular space. Then Y has a star-countable *sn*-network.

Proof Since each singleton of X is a G_{δ} -set, it follows that $f : \sigma X \to \sigma Y$ is a closed sequencecovering map by Lemma 2.5. Then σX has a locally countable weak base by Lemma 2.4. Since σX is regular, it follows from Theorem 2.2 that σY has a locally countable weak base. It is easy to see that σY has a star-countable *sn*-network \mathcal{P} . Obviously, the family \mathcal{P} is an *sn*-network of Y. \Box

It is well known that spaces with a locally countable *sn*-network have a star-countable *sn*-network. However, there is a compact space with a star-countable *sn*-network, which has no locally countable *sn*-network. In fact, let X be the Stone-Čech compactification $\beta \mathbb{N}$ of \mathbb{N} . It is easy to see that X has a star-countable *sn*-network $\{\{x\} : x \in X\}$. But X does not have a locally countable *sn*-network.

3. Spaces with point-countable *sn*-networks

Liu has proved that the closed sequence-covering images of spaces with a point-countable weak base are g-first countable [12]. The following question is interesting.

Question 3.1 Let $f: X \to Y$ be a closed sequence-covering map, where X has a point-countable *sn*-network. Is Y *sn*-first countable?

Theorem 2.6 is a partial answer to this question. In this section we shall give other partial answers to the question.

Definition 3.2 A space X is said to be a k-semistratifiable space [16] if for every $U \in \tau(X)$ there exists a sequence $\{F(n, U)\}_{n \in \mathbb{N}}$ of closed subsets of X such that

(1)
$$U = \bigcup_{n \in \mathbb{N}} F(n, U);$$

- (2) If $V \subset U$, then $F(n, V) \subset F(n, U)$;
- (3) If a compact subset $K \subset U$, then $K \subset F(m, U)$ for some $m \in \mathbb{N}$.

Let \mathcal{P} be a family of subsets of space X. The family \mathcal{P} is s-closure-preserving [10] in X if $\cup \mathcal{P}'$ is a sequentially closed subset in X for every $\mathcal{P}' \subset \mathcal{P}$. The family \mathcal{P} is s-discrete [10] in X if \mathcal{P} is disjoint and s-closure-preserving in X. A subset D of X is s-discrete if $\{\{x\} : x \in D\}$ is s-discrete in X.

Theorem 3.3 Let $f : X \to Y$ be a closed sequence-covering map, where X has a point-countable *sn-network*. If X satisfies one of the following conditions, then Y is an *sn*-first countable space.

- (1) Each singleton of X is a G_{δ} -set and σX is regular;
- (2) X is a k-semistratifiable space.

Proof The space σX has a point-countable weak base by Lemma 2.4. We only need to prove that σY is g-first countable by Definition 1.1.

(1) If X satisfies the conditions (1), then $f : \sigma X \to \sigma Y$ is a closed sequence-covering map by Lemma 2.5. Hence σY is g-first countable by [12, Lemma 3.1].

(2) If X is a k-semistratifiable space, then each singleton of X is a G_{δ} -set, thus $f: \sigma X \to \sigma Y$ is also a closed sequence-covering map. By [9, Lemma 2.1.6 and Theorem 2.2.5], the space Y has a point-countable k-network. Suppose σY is not g-first countable, then σY contains a closed copy of S_{ω} by [9, Theorem 2.1.9]. Let $\{y\} \cup \{y_i(n) : i \in \mathbb{N}, n \in \mathbb{N}\}$ be a closed copy of S_{ω} in σY , here $y_i(n) \to y$ as $i \to \infty$. For every $k \in \mathbb{N}$, put $L_k = \bigcup \{y_i(n) : i \in \mathbb{N}, n \leq k\}$. Hence L_k is a sequence converging to y. Let M_k be a sequence of σX converging to $u_k \in f^{-1}(y)$ such that $f(M_k) = L_k$, we rewrite $M_k = \bigcup \{x_i(n,k) : i \in \mathbb{N}, n \leq k\}$ with each $f(x_i(n,k)) = y_i(n)$.

Case 1 The set $\{u_k : k \in \mathbb{N}\}$ is finite.

There are a $k_0 \in \mathbb{N}$ and an infinite subset $\mathbb{N}_1 \subset \mathbb{N}$ such that $M_k \to u_{k_0}$ for every $k \in \mathbb{N}_1$, then σX contains a closed copy of S_{ω} . Hence σX is not g-first countable. This is a contradiction.

Case 2 The set $\{u_k : k \in \mathbb{N}\}$ has a non-trivial convergent sequence in σX .

Without loss of generality, we suppose that $u_k \to u$ as $k \to \infty$. Since each singleton of X is a G_{δ} -set, let $\{U_m\}_m$ be a sequence of open subsets of X with $\overline{U}_{m+1} \subset U_m$, and $\bigcap_{m \in \mathbb{N}} U_m = \{u\}$. Fix n, pick $x_{i_m}(n, k_m) \in U_m \cap \{x_i(n, k_m)\}_{i \in \mathbb{N}}$. We can suppose that $i_m < i_{m+1}$. Then $\{f(x_{i_m}(n, k_m))\}_m$ is a subsequence of $\{y_i(n)\}_i$. Since f is closed, $\{x_{i_m}(n, k_m)\}_m$ is not discrete in σX . Then there is a sequence of $\{x_{i_m}(n, k_m)\}_m$ converging to a point $b \in X$ because σX is a sequential space. It is easy to see that b = u by $x_{i_m}(n, k_m) \in U_m$ for every $m \in \mathbb{N}$. Hence $x_{i_m}(n, k_m) \to u$ as $m \to \infty$. Then $\{u\} \cup \{x_{i_m}(n, k_m) : n \in \mathbb{N}, m \in \mathbb{N}\}$ is a closed copy of S_{ω} in

 σX . Thus, σX is not g-first countable. This is a contradiction.

Case 3 The set $\{u_k : k \in \mathbb{N}\}$ is discrete in σX .

Since $\{u_k : k \in \mathbb{N}\}$ is discrete in σX , $\{u_k : k \in \mathbb{N}\}$ is s-discrete in X. By [10, Lemma 1.3], since X is a k-semistratifiable space, there exists an s-discrete extension of sequential neighborhoods $\{V_k\}_{k\in\mathbb{N}}$ in X such that $u_k \in V_k$ for each $k \in \mathbb{N}$. It is obvious that $\{V_k\}_k$ is discrete in σX . Pick $x_{i_k}(1,k) \in V_k \cap \{x_i(1,k)\}_i$ such that $\{f(x_{i_k}(1,k))\}_k$ is a subsequence of $\{y_i(n)\}_i$. Since $\{x_{i_k}(1,k)\}_k$ is discrete in σX , $\{f(x_{i_k}(1,k))\}_k$ is discrete in σY . This is a contradiction.

In a word, the space σY is g-first countable. Hence Y is an *sn*-first countable space. \Box Next, we discuss a special space with a point-countable *sn*-network.

Definition 3.4 Let $\mathcal{B} = \{B_{\alpha} : \alpha \in H\}$ be a family of subsets of a space X. The family \mathcal{B} is point-discrete if $\{x_{\alpha} : \alpha \in H\}$ is closed discrete in X, whenever $x_{\alpha} \in B_{\alpha}$ for each $\alpha \in H$. In [6], Lin and Shen posed the following question.

Question 3.5 Is the property with a σ -point-discrete *sn*-network preserved by closed sequencecovering maps?

In [6], Lin and Shen have proved that a space X has a σ -point-discrete *sn*-network if and only if X is an *sn*-first countable space with a σ -point-discrete *cs*-network. Recently, Liu posed the following question in a private communication with the authors.

Question 3.6 If X is an α_4 -space with a σ -point-discrete *cs*-network, has X a σ -point discrete *sn*-network?

It is known [9] that for a space X, X is *sn*-first countable $\Rightarrow X$ is an α_4 -space $\Leftrightarrow \sigma X$ is an α_4 -space $\Rightarrow \sigma X$ contains no closed copy of $S_{\omega} \Rightarrow X$ contains no closed copy of S_{ω} . Next we shall give an affirmative answer to Question 3.6, and a partial answer to Question 3.5.

A family \mathcal{P} of subsets of a space X is called compact-finite if, each compact subset of X intersects at most finitely many members of \mathcal{P} .

Lemma 3.7 Every space with a σ -point-discrete wcs^* -network has a σ -compact-finite wcs^* -network.

Proof Let \mathcal{P} be a σ -point-discrete wcs^* -network. Denote \mathcal{P} by $\bigcup_{n \in \mathbb{N}} \mathcal{P}_n$, where each \mathcal{P}_n is point-discrete in X. For each $n \in \mathbb{N}$, put $D_n = \{x \in X : \mathcal{P}_n \text{ is not point-finite at } x\}$, and let $\mathcal{F}_n = \{P \setminus D_n : P \in \mathcal{P}_n\} \cup \{\{x\} : x \in D_n\}$. Then \mathcal{F}_n is compact-finite in X by [9, (3.1) in Lemma 4.1.3].

If a sequence $\{x_n\}_n$ converges to a point $x \in U \in \tau(X)$, there are a $P \in \mathcal{P}$ and a subsequence $\{x_{n_i}\}_i$ of $\{x_n\}_n$ such that $P \subset U$ and $x_{n_i} \in P$ for each $i \in \mathbb{N}$. Then $P \in \mathcal{P}_m$ for some $m \in \mathbb{N}$. We can assume the sequence $\{x_{n_i}\}_i$ is non-trivial. Since $\{x\} \cup \{x_{n_i} : i \in \mathbb{N}\}$ is compact, $D_m \cap (\{x\} \cup \{x_{n_i} : i \in \mathbb{N}\})$ is finite. There is $i_0 \in \mathbb{N}$ such that $x_{n_i} \notin D_m$ for each $i \geq i_0$, and $x_{n_i} \in P \setminus D_m \subset U$. Therefore, $\bigcup_{n \in \mathbb{N}} \mathcal{F}_n$ is a σ -compact-finite wcs^* -network for X. \Box **Theorem 3.8** The following are equivalent for a space X:

- (1) X has a σ -point-discrete sn-network;
- (2) X is an sn-first countable space with a σ -point-discrete cs-network;
- (3) X is an α_4 -space with a σ -point-discrete cs-network;
- (4) X has a σ -point-discrete cs-network and σX contains no closed copy of S_{ω} .

Proof (1) \Leftrightarrow (2) by [6, Theorem 2.2]. (2) \Rightarrow (3) \Rightarrow (4) is obvious [9]. Since a space X with a point-countable wcs^* -network is *sn*-first countable if σX contains no closed copy of S_{ω} [9, Theorem 2.1.9], (4) \Rightarrow (2) by Lemma 3.7. \Box

We cannot replace the condition " σX contains no closed copy of S_{ω} " by "X contains no closed copy of S_{ω} " in (4) of Theorem 3.8. In fact, the space T in [8, Example 3.19] has a countable cs-network and contains no copy of S_{ω} . But T is not sn-first countable.

Finally, we shall give a partial answer to Question 3.5.

Theorem 3.9 Let $f : X \to Y$ be a closed sequence-covering map, where X has a σ -point-discrete sn-network. If X satisfies one of the following conditions, then Y has a σ -point-discrete sn-network.

- (1) Each singleton of X is a G_{δ} -set and σX is regular;
- (2) X is a k-semistratifiable space.

Proof Obviously, the property with a σ -point-discrete *cs*-network is preserved by closed sequencecovering maps.

(1) If X satisfies the conditions (1), then Y is *sn*-first countable by Theorem 3.9 and [6, Theorem 2.1]. Hence, the space Y has a σ -point-discrete *sn*-network by Theorem 3.8.

(2) Let X be a k-semistratifiable space. Since X is an α_4 -space, it follows that Y is an α_4 -space by [10, Theorem 2.1]. Hence, the space Y has a σ -point-discrete sn-network by Theorem 3.8. \Box

Acknowledgements We wish to thank the reviewers for the detailed list of corrections, suggestions to the paper, and all her/his efforts to improve the paper.

References

- [1] A. V. ARHANFWL'SKII. Mappings and spaces. Russian Math. Surveys, 1966, 21: 115-162.
- [2] R. ENGELKING. General Topology (revised and completed edition). Heldermann Verlag, Berlin, 1989.
- [3] S. P. FRANKLIN. Spaces in which sequences suffice. Fund. Math., 1965, 57: 107–115.
- [4] G. GRUENHAGE. Generalized Metric Spaces, North-Holland, Amsterdam, 1984.
- [5] J. A. GUTHRIE. A characterization of \aleph_0 -spaces. General Topology and Appl., 1971, 1(2): 105–110.
- [6] Fucai LIN, Rongxin SHEN. Some notes on σ -point disctere sn-networks. Adv. Math. (China), 2010, **39**(2): 212–216.
- [7] Shou LIN. On sequence-covering s-maps. Adv. Math. (China), 1996, 25(6): 548–551. (in Chinese)
- [8] Shou LIN. A note on the Arens' space and sequential fan. Topology Appl., 1997, **81**(3): 185–196.
- [9] Shou LIN. Point-countable Covers and Sequence-Covering Mappings. Science Press, Beijing, 2002. (in Chinese)
- [10] Shou LIN. A mapping theorem on sn-metrizable spaces. Adv. Math. (China), 2006, 35(5): 615–620.
- Shou LIN, Y. TANAKA. Point-countable k-networks, closed maps, and related results. Topology Appl., 1994, 59(1): 79–86.

- [12] Chuan LIU. On weak bases. Topology Appl., 2005, **150**(1-3): 91–99.
- [13] Chuan LIU. Notes on closed mappings. Houston J. Math., 2007, 33(1): 249–259.
- [14] Chuan LIU, Mumin DAI. Spaces with a locally countable weak base. Math. Japon., 1995, 41(2): 261–267.
- [15] Chuan LIU, Shou LIN, L. D. LUDWIG. Spaces with a σ -point-discrete weak base. Tsukuba J. Math., 2008, **32**(1): 165–177.
- [16] D. J. LUTZER. Semimetrizable and stratifiable spaces. General Topology and Appl., 1971, 1(1): 43–48.
- [17] P. O'MEARA. On paracompactness in function spaces with the compact-open topology. Proc. Amer. Math. Soc., 1971, 29: 183–189.
- [18] F. SIWIEC. Sequence-covering and countably bi-quotient mappings. General Topology and Appl., 1971, 1(2): 143–154.
- [19] F. SIWIEC. On defining a space by a weak base. Pacific J. Math., 1974, 52: 233–245.
- [20] Pengfei YAN, Shou LIN, Shouli JIANG. Metrizability preserved by sequence-covering closed maps. Acta Math. Sinica (Chin. Ser.), 2004, 47(1): 87–90. (in Chinese)