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Abstract In this paper, we mainly discuss the images of certain spaces under closed sequence-

covering maps. It is showed that the property with a locally countable weak base is preserved

by closed sequence-covering maps. And the following question is discussed: Are the closed

sequence-covering images of spaces with a point-countable sn-network sn-first countable?
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1. Introduction

In this paper all spaces are T1 and regular, all maps are continuous and onto. Yan, Lin and
Jiang in [20] proved that metrizability is preserved by closed sequence-covering maps. Lin and Liu
in [10] and [13] showed respectively that g-metrizability and sn-metrizability are also preserved
by closed sequence-covering maps. In a recent paper, Liu, Lin and Ludwig [15] have proved that
the property with a σ-compact-finite weak base is preserved by closed sequence-covering maps.
Hence what kind of properties of spaces are preserved by closed sequence-covering mappings is
an interesting problem. In this paper, we shall prove that some kinds of properties of spaces are
preserved by closed sequence-covering maps, and also discuss the relation between spaces with a
σ-point-discrete sn-network and spaces with a σ-point-discrete cs-network.

By N, we denote the set of positive integers. Let τ(X) be the topology of a space X.

Let X be a space, and P ⊂ X. The set P is a sequential neighborhood of x in X if every
sequence converging to x is eventually in P . The set P is a sequentially open subset of X if P

is a sequential neighborhood of x in X for each x ∈ P . P is a sequentially closed subset of X if
X \P is a sequentially open subset of X. The space X is said to be a sequential space [3] if each
sequentially open subset is open in X.

Definition 1.1 Let P =
⋃

x∈X Px be a cover of a space X such that for each x ∈ X, (a) if
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U, V ∈ Px, then W ⊂ U ∩ V for some W ∈ Px; (b) Px is a network of x in X, i.e., x ∈ ⋂Px,

and if x ∈ U with U open in X, then P ⊂ U for some P ∈ Px.

(1) The family P is called an sn-network [7] for X if each element of Px is a sequential

neighborhood of x in X for each x ∈ X. The space X is called sn-first countable [9], if X has

an sn-network P such that each Px is countable.

(2) The family P is called a weak base [1] for X if whenever G ⊂ X satisfying for each

x ∈ X there is P ∈ Px with P ⊂ G, G is open in X. The space X is called weakly first countable

[1] or g-first countable [19], if X has a weak base P such that each Px is countable.

A related concept for sn-networks is cs-networks.

Definition 1.2 Let P be a family of subsets of a space X.

(1) The family P is called a cs-network [5] for X if whenever a sequence {xn}n converges

to x ∈ U ∈ τ(X), there exist m ∈ N and P ∈ P such that {x} ∪ {xn : n > m} ⊂ P ⊂ U .

(2) The family P is called a k-network [17] for X if whenever K is a compact subset of X

and K ⊂ U ∈ τ(X), there is a finite P ′ ⊂ P such that K ⊂ ∪P ′ ⊂ U .

(3) The family P is called a wcs∗-network [11] for X if whenever sequence {xn}n converges

to x ∈ U ∈ τ(X), there are a P ∈ P and a subsequence {xni}i of {xn}n such that P ⊂ U and

xni ∈ P for each i ∈ N.

It is easy to see that [9]

(i) g-first countable spaces ⇔ sn-first countable spaces and sequential spaces;

(ii) For a space X, weak bases ⇒ sn-networks ⇒ cs-networks ⇒ wcs∗-networks, and
k-networks ⇒ wcs∗-networks;

(iii) For a sequential space X, sn-networks ⇒ weak bases.

Definition 1.3 Let f : X → Y be a map. Recall that f is a sequence-covering map [18] if

whenever {yn}n is a convergent sequence in Y , there is a convergent sequence {xn}n in X with

each xn ∈ f−1(yn).

Definition 1.4 Let (X, τ) be a topological space. We define a sequential closure-topology στ [3]

on X as follows: O ∈ στ if and only if O is a sequentially open subset in (X, τ). The topological

space (X, στ ) is denoted by σX.

Readers may refer to [2, 4] for unstated definitions and terminologies.

2. Spaces with locally countable weak bases

Firstly, we prove that the property with a locally countable weak base is preserved by closed
sequence-covering maps. A family P of subsets of a space X is called locally countable if each
point at X has a neighborhood which intersects at most countably many elements of P.

Let f : X → Y be a map. The map f is said to be boundary-compact if ∂f−1(y) is compact
in X for each y ∈ Y .

Lemma 2.1 The property with a locally countable k-network is preserved by closed boundary-
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compact maps.

Proof Let f : X → Y be a closed boundary-compact map, where X has a locally countable
k-network P. Since k-networks are hereditary with respect to closed subsets, we can suppose
that f is a perfect map by [9, Lemma 1.3.2]. Thus f(P) = {f(P ) : P ∈ P} is a locally countable
k-network for Y . ¤

The sequential fan Sω is a space which is the quotient space by identifying all limit points
of the topological sum of ω many convergent sequences. Every sn-first countable space contains
no closed copy of Sω.

Theorem 2.2 The property with a locally countable weak base is preserved by closed sequence-

covering maps.

Proof Let f : X → Y be a closed sequence-covering map, where X has a locally countable
weak base. By [12, Lemma 3.1], Y is g-first countable. Thus Y contains no closed copy of Sω.
So f is a boundary-compact map by [12, Lemma 3.2]. By Lemma 2.1, Y has a locally countable
k-network. Therefore, Y has a locally countable weak base by [14, Theorem 2.1]. ¤

In the proof of Theorem 2.2, the space X is paracompact. In fact, since X has a locally
countable weak base, X is a topological sum of spaces with countable weak bases [14], thus X is
paracompact. So is Y .

However, closed sequence-covering maps do not preserve the property with a locally count-
able sn-network.

Example 2.3 For each α < ω1, let Xα be a subspace {p}∪N of βN, where p ∈ βN\N. Since Xα

has no non-trivial convergent sequence, it has a countable sn-network. Put X =
⊕

α<ω1
Xα, and

let A be the set of all accumulative points of X. Obviously, the space X has a locally countable
sn-network, and A is a closed subset of X. Take Y = X/A and let f : X → Y be the natural
quotient map. It follows that f is a closed map. Since Y has no non-trivial convergent sequence,
the map f is also a sequence-covering map. It is easy to see that Y is not a locally countable
space. Hence Y does not have a locally countable sn-network.

Although closed sequence-covering maps do not preserve the property with a locally count-
able sn-network, we have the following Theorem 2.6.

Lemma 2.4 Let P be an sn-network for an sn-first countable space X. Then P is a weak base

for σX.

Proof Since σX is a sequential space, it suffices to prove that P is an sn-network for σX. Let
P =

⋃
x∈X Px as Definition 1.1, where each Px is countable. We prove that Px is a network at

point x ∈ σX. Without loss of generality, we can assume that Px = {Pi}i∈N be a decreasing
sequence. If x ∈ U with U sequentially open in X, then Pi ⊂ U for some i ∈ N. Otherwise,
there exists xi ∈ Pi \ U for each i ∈ N. Then xi → x as i → ∞ in X. This is a contradiction
with xi 6∈ U . It is easy to see that each P ∈ Px is a sequential neighborhood at point x in σX.
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Hence, the family P is an sn-network for σX. ¤

Lemma 2.5 Let f : X → Y be a closed sequence-covering map, where each singleton of X is a

Gδ-set. Then f : σX → σY is a closed sequence-covering map.

Proof (1) The map f is continuous from σX to σY .
Let U be sequentially open in Y . We claim that f−1(U) is sequentially open in X. Suppose

not, there exist a point x ∈ f−1(U) and a sequence {xn}n in X such that each xn 6∈ f−1(U) and
xn → x. Since f is continuous from X to Y , f(xn) → f(x) ∈ U . This is a contradiction.

(2) The map f is a closed map from σX to σY .
Let A be sequentially closed in X. If f(A) is not sequentially closed in Y , there exists a

sequence {yn}n ⊂ f(A) such that {yn}n converges to y 6∈ f(A). Without loss of generality,
we can assume yn 6= ym when n 6= m. Put K = {yn : n ∈ N} ∪ {y}. For each n ∈ N,
choose xn ∈ f−1(yn) ∩A, then {xn}n is a sequence in f−1(K). Hence there exists a convergent
subsequence {xnk

}k of {xn}n by [11, Lemma 2(b)], say xnk
→ x. Then x ∈ f−1(y), and x 6∈ A

by y 6∈ f(A). So {xnk
}k is eventually in X − A because A is sequentially closed. However, all

xn ∈ A. This is a contradiction.
(3) Since a space Z and its sequentially closure-space σZ have identically convergent se-

quence, it follows that f is a sequence-covering map from σX to σY . ¤
A family P of subsets of a space X is called star-countable if, for every P ∈ P, P intersects

at most countably many members of P.

Theorem 2.6 Let f : X → Y be a closed sequence-covering map, where X has a locally

countable sn-network and σX is a regular space. Then Y has a star-countable sn-network.

Proof Since each singleton of X is a Gδ-set, it follows that f : σX → σY is a closed sequence-
covering map by Lemma 2.5. Then σX has a locally countable weak base by Lemma 2.4. Since
σX is regular, it follows from Theorem 2.2 that σY has a locally countable weak base. It is easy
to see that σY has a star-countable sn-network P. Obviously, the family P is an sn-network of
Y . ¤

It is well known that spaces with a locally countable sn-network have a star-countable sn-
network. However, there is a compact space with a star-countable sn-network, which has no
locally countable sn-network. In fact, let X be the Stone-Čech compactification βN of N. It
is easy to see that X has a star-countable sn-network {{x} : x ∈ X}. But X does not have a
locally countable sn-network.

3. Spaces with point-countable sn-networks

Liu has proved that the closed sequence-covering images of spaces with a point-countable
weak base are g-first countable [12]. The following question is interesting.

Question 3.1 Let f : X → Y be a closed sequence-covering map, where X has a point-countable
sn-network. Is Y sn-first countable?
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Theorem 2.6 is a partial answer to this question. In this section we shall give other partial
answers to the question.

Definition 3.2 A space X is said to be a k-semistratifiable space [16] if for every U ∈ τ(X)
there exists a sequence {F (n,U)}n∈N of closed subsets of X such that

(1) U =
⋃

n∈N F (n,U);

(2) If V ⊂ U , then F (n, V ) ⊂ F (n,U);

(3) If a compact subset K ⊂ U , then K ⊂ F (m,U) for some m ∈ N.

Let P be a family of subsets of space X. The family P is s-closure-preserving [10] in X if
∪P ′ is a sequentially closed subset in X for every P ′ ⊂ P. The family P is s-discrete [10] in X

if P is disjoint and s-closure-preserving in X. A subset D of X is s-discrete if {{x} : x ∈ D} is
s-discrete in X.

Theorem 3.3 Let f : X → Y be a closed sequence-covering map, where X has a point-countable

sn-network. If X satisfies one of the following conditions, then Y is an sn-first countable space.

(1) Each singleton of X is a Gδ-set and σX is regular;

(2) X is a k-semistratifiable space.

Proof The space σX has a point-countable weak base by Lemma 2.4. We only need to prove
that σY is g-first countable by Definition 1.1.

(1) If X satisfies the conditions (1), then f : σX → σY is a closed sequence-covering map
by Lemma 2.5. Hence σY is g-first countable by [12, Lemma 3.1].

(2) If X is a k-semistratifiable space, then each singleton of X is a Gδ-set, thus f : σX → σY

is also a closed sequence-covering map. By [9, Lemma 2.1.6 and Theorem 2.2.5], the space Y has
a point-countable k-network. Suppose σY is not g-first countable, then σY contains a closed
copy of Sω by [9, Theorem 2.1.9]. Let {y} ∪ {yi(n) : i ∈ N, n ∈ N} be a closed copy of Sω in σY ,
here yi(n) → y as i → ∞. For every k ∈ N, put Lk = ∪{yi(n) : i ∈ N, n ≤ k}. Hence Lk is
a sequence converging to y. Let Mk be a sequence of σX converging to uk ∈ f−1(y) such that
f(Mk) = Lk, we rewrite Mk = ∪{xi(n, k) : i ∈ N, n ≤ k} with each f(xi(n, k)) = yi(n).

Case 1 The set {uk : k ∈ N} is finite.

There are a k0 ∈ N and an infinite subset N1 ⊂ N such that Mk → uk0 for every k ∈ N1,
then σX contains a closed copy of Sω. Hence σX is not g-first countable. This is a contradiction.

Case 2 The set {uk : k ∈ N} has a non-trivial convergent sequence in σX.

Without loss of generality, we suppose that uk → u as k → ∞. Since each singleton of X

is a Gδ-set, let {Um}m be a sequence of open subsets of X with Um+1 ⊂ Um, and
⋂

m∈N Um =
{u}. Fix n, pick xim(n, km) ∈ Um ∩ {xi(n, km)}i∈N. We can suppose that im < im+1. Then
{f(xim(n, km))}m is a subsequence of {yi(n)}i. Since f is closed, {xim(n, km)}m is not discrete
in σX. Then there is a sequence of {xim(n, km)}m converging to a point b ∈ X because σX is
a sequential space. It is easy to see that b = u by xim(n, km) ∈ Um for every m ∈ N. Hence
xim(n, km) → u as m → ∞. Then {u} ∪ {xim(n, km) : n ∈ N,m ∈ N} is a closed copy of Sω in
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σX. Thus, σX is not g-first countable. This is a contradiction.

Case 3 The set {uk : k ∈ N} is discrete in σX.

Since {uk : k ∈ N} is discrete in σX, {uk : k ∈ N} is s-discrete in X. By [10, Lemma
1.3], since X is a k-semistratifiable space, there exists an s-disctete extension of sequential
neighborhoods {Vk}k∈N in X such that uk ∈ Vk for each k ∈ N. It is obvious that {Vk}k is
discrete in σX. Pick xik

(1, k) ∈ Vk ∩ {xi(1, k)}i such that {f(xik
(1, k))}k is a subsequence

of {yi(n)}i. Since {xik
(1, k)}k is discrete in σX, {f(xik

(1, k))}k is discrete in σY . This is a
contradiction.

In a word, the space σY is g-first countable. Hence Y is an sn-first countable space. ¤
Next, we discuss a special space with a point-countable sn-network.

Definition 3.4 Let B = {Bα : α ∈ H} be a family of subsets of a space X. The family B is

point-discrete if {xα : α ∈ H} is closed discrete in X, whenever xα ∈ Bα for each α ∈ H.

In [6], Lin and Shen posed the following question.

Question 3.5 Is the property with a σ-point-discrete sn-network preserved by closed sequence-
covering maps?

In [6], Lin and Shen have proved that a space X has a σ-point-discrete sn-network if and
only if X is an sn-first countable space with a σ-point-discrete cs-network. Recently, Liu posed
the following question in a private communication with the authors.

Question 3.6 If X is an α4-space with a σ-point-discrete cs-network, has X a σ-point discrete
sn-network?

It is known [9] that for a space X, X is sn-first countable ⇒ X is an α4-space ⇔ σX is
an α4-space ⇒ σX contains no closed copy of Sω ⇒ X contains no closed copy of Sω. Next we
shall give an affirmative answer to Question 3.6, and a partial answer to Question 3.5.

A family P of subsets of a space X is called compact-finite if, each compact subset of X

intersects at most finitely many members of P.

Lemma 3.7 Every space with a σ-point-discrete wcs∗-network has a σ-compact-finite wcs∗-

network.

Proof Let P be a σ-point-discrete wcs∗-network. Denote P by
⋃

n∈N Pn, where each Pn is
point-discrete in X. For each n ∈ N, put Dn = {x ∈ X : Pn is not point-finite at x}, and let
Fn = {P \Dn : P ∈ Pn}∪{{x} : x ∈ Dn}. Then Fn is compact-finite in X by [9, (3.1) in Lemma
4.1.3].

If a sequence {xn}n converges to a point x ∈ U ∈ τ(X), there are a P ∈ P and a subsequence
{xni}i of {xn}n such that P ⊂ U and xni ∈ P for each i ∈ N. Then P ∈ Pm for some m ∈ N.
We can assume the sequence {xni}i is non-trivial. Since {x} ∪ {xni : i ∈ N} is compact,
Dm ∩ ({x} ∪ {xni : i ∈ N}) is finite. There is i0 ∈ N such that xni 6∈ Dm for each i ≥ i0, and
xni ∈ P \Dm ⊂ U . Therefore,

⋃
n∈N Fn is a σ-compact-finite wcs∗-network for X. ¤
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Theorem 3.8 The following are equivalent for a space X:

(1) X has a σ-point-discrete sn-network;

(2) X is an sn-first countable space with a σ-point-discrete cs-network;

(3) X is an α4-space with a σ-point-discrete cs-network;

(4) X has a σ-point-discrete cs-network and σX contains no closed copy of Sω.

Proof (1) ⇔ (2) by [6, Theorem 2.2]. (2) ⇒ (3) ⇒ (4) is obvious [9]. Since a space X

with a point-countable wcs∗-network is sn-first countable if σX contains no closed copy of Sω

[9, Theorem 2.1.9], (4) ⇒ (2) by Lemma 3.7. ¤
We cannot replace the condition “σX contains no closed copy of Sω” by “X contains no

closed copy of Sω” in (4) of Theorem 3.8. In fact, the space T in [8, Example 3.19] has a countable
cs-network and contains no copy of Sω. But T is not sn-first countable.

Finally, we shall give a partial answer to Question 3.5.

Theorem 3.9 Let f : X → Y be a closed sequence-covering map, where X has a σ-point-

discrete sn-network. If X satisfies one of the following conditions, then Y has a σ-point-discrete

sn-network.

(1) Each singleton of X is a Gδ-set and σX is regular;

(2) X is a k-semistratifiable space.

Proof Obviously, the property with a σ-point-discrete cs-network is preserved by closed sequence-
covering maps.

(1) If X satisfies the conditions (1), then Y is sn-first countable by Theorem 3.9 and
[6, Theorem 2.1]. Hence, the space Y has a σ-point-discrete sn-network by Theorem 3.8.

(2) Let X be a k-semistratifiable space. Since X is an α4-space, it follows that Y is an α4-
space by [10, Theorem 2.1]. Hence, the space Y has a σ-point-discrete sn-network by Theorem
3.8. ¤
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