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Abstract Strong limit theorems are established for weighted sums of widely orthant depen-

dent (WOD) random variables. As corollaries, the strong limit theorems for weighted sums
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extend and improve the related known works in the literature.
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1. Introduction

Let {Ω,=, P} be a probability space. In the following, all random variables are assumed
to be defined on {Ω,=, P}. Let {X, Xn, n ≥ 1} be a sequence of i.i.d. random variables with
EX = 0 and {kn, n ≥ 1} be a sequence of positive integers with kn ≤ Mn (where M is a positive
constant not depending on n) and let {bni, 1 ≤ i ≤ kn, n ≥ 1} be an array of real numbers. The
strong limit theorems of weighted sums Skn =

∑kn

i=1 bniXi were studied by many authors. For
instance, Thrum [1] obtained the following result

Theorem A If
∑n

i=1 b2
ni = 1, and E|X|p < ∞ for some p ≥ 2, then Sn/n1/p → 0 a.s. n →∞.

Li et al. [2] improved the above result into

Theorem B If E|X|p < ∞ for some p ≥ 2, supn,k |bnk| < ∞ and
∑kn

i=1 b2
ni = O(nδ) (0 < δ <

2/p), then Skn/n1/p → 0 a.s. n →∞.

Sung [3] improved Theorem B into

Theorem C Let p > 1, {bni, 1 ≤ i ≤ n} be an array of constants such that

(i) max1≤i≤n |bni| = O(1/n1/p),

(ii)

{ ∑n
i=1 |bni|τ = O(1/nτ/p−1+γ) for some τ > 0 and γ > 0, if 1 < p < 2,∑n
i=1 b2

ni = O(1/nγ) for some γ > 0, if p ≥ 2.

If E|X|p < ∞, then Sn → 0 a.s. n →∞.
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Bai and Cheng [4] proved that

Theorem D Suppose that 1 < α, β < ∞, 1 < p < 2, and 1/p = 1/α + 1/β. Let {bni, 1 ≤ i ≤
n, n ≥ 1} be an array of real constants such that

Aα =: lim sup
n→∞

(
1
n

n∑

k=1

|bnk|α)1/α < ∞.

If E|X|β < ∞, then Sn/n1/p → 0 a.s. n →∞.

Wang et al. [5] introduced the following dependence structure.

Definition 1.1 Random variables Y1, Y2, . . . are said to be widely upper orthant dependent

(WUOD) if for each n ≥ 1, there exists some finite positive number gU (n) such that, for all

yi ∈ (−∞,∞), i = 1, 2, . . . , n,

P (Y1 > y1, . . . , Yn > yn) ≤ gU (n)
n∏

i=1

P (Yi > yi); (1.1)

they are said to be widely lower orthant dependent (WLOD) if for each n ≥ 1, there exists some

finite positive number gL(n) such that, for all yi ∈ (−∞,∞), i = 1, 2, . . . , n,

P (Y1 ≤ y1, . . . , Yn ≤ yn) ≤ gL(n)
n∏

i=1

P (Yi ≤ yi) (1.2)

and they are said to be widely orthant dependent (WOD) if they are both WUOD and WLOD.

WUOD, WLOD and WOD random variables are called by a joint name widely dependent
random variables. Wang et al. [5] pointed out that the widely dependent random variables contain
common negatively dependent random variables, some positively dependent random variables
and some others by some interesting examples. In the case gU (n) = gL(n) = M for all n ≥ 1 and
some finite positive constant M ≥ 1, inequality (1.1) and (1.2) describe extended negatively upper
and lower orthant dependent (ENOUD/ENLOD), respectively. Random variables Y1, Y2, . . . are
said to be extended negatively orthant dependent (ENOD) if they are both ENUOD and ENLOD.
The concept of general negative dependence was proposed by Liu [6]. More especially, if M = 1
in both (1.1) and (1.2), then the random variables Y1, Y2, . . . are called negatively upper orthant
dependent (NUOD) and negatively lower orthant dependent (NLOD), respectively, and they are
called negatively orthant dependent (NOD) if they are both NUOD and NLOD (see, Block et
al. [7], Ebrahimi and Ghosh [8], Wu [9]). Negative association (NA, see, Jing and Liang [10]) is
the special case of NOD. A great number of articles for negatively dependent random variables
have appeared in literature. For further research on ENOD random variables, we refer to Liu
[6], Liu [11], Chen et al. [12], Chen et al. [13], Qiu et al. [14], Yang and Wang [15], and so on. For
further research on widely dependent random variables, we refer to Wang et al. [5], Wang and
Cheng [16], Liu et al. [17], He et al. [18], and so on.

Jing and Liang [10] extended and improved Theorems C and D to the NA setting, and Wu
[9] extended Theorem D to the NOD setting. In this paper, the main purpose is to establish
strong limit theorems for weighted sums of WOD random variables. As corollaries, the limit
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theorems for weighted sums of ENOD random variables are obtained, which extend and improve
Theorem C–Theorem D and extend the corresponding results of Jing and Liang [10], Wu [9].

Definition 1.2 A sequence of random variables {Xn, n ≥ 1} is said to be stochastically domi-

nated by a nonnegative random variable X, if there exists a positive constant D such that

P (|Xn| > x) ≤ DP (X > x) for all x > 0 and n ≥ 1.

In this case, we write {Xn, n ≥ 1} ≺ X.

In order to prove our main result, we need the following lemmas.

Lemma 1.3 ([5]) (1) Let {Xn, n ≥ 1} be WLOD (WUOD). If {fn, n ≥ 1} are nondecreasing, then

{fn(Xn), n ≥ 1} are still WLOD(WUOD); If {fn, n ≥ 1} are nonincreasing, then {fn(Xn), n ≥ 1}
are still WUOD (WLOD).

(2) If {Xn, n ≥ 1} are nonnegative WUOD, then for each n ≥ 1,

E(
n∏

j=1

Xj) ≤ gU (n)
n∏

j=1

EXj .

In particular, if {Xn, n ≥ 1} are WUOD, then for each n ≥ 1 and any s > 0,

E exp(s
n∑

i=j

Xj) ≤ gU (n)
n∏

j=1

E exp(sXj).

By (2) of Lemma 1.3, we have

Lemma 1.4 Let {Xn, n ≥ 1} be WUOD such that

|Xk| ≤ bk, 1 ≤ k ≤ n.

Then for each n ≥ 1 and any s > 0,

E exp(s
n∑

k=1

Xk) ≤ gU (n) exp{s
n∑

k=1

EXk +
s2

2

n∑

k=1

esbkEX2
k}.

Throughout this paper, {kn, n ≥ 1} will be a sequence of positive integers with kn ≤ Mn,
where M is a positive constant not depending on n. C will represent positive constant which
may change from one place to another, I(A) represent the indicator function of the set A.

2. Main results and proofs

Theorem 2.1 Let p > 2, {Xn, n ≥ 1} be a sequence of WOD random variables with EXn =
0, n ≥ 1, {Xn, n ≥ 1} ≺ X, and EXp < ∞. Let {ani, 1 ≤ i ≤ kn, n ≥ 1} be an array of constants

such that max1≤i≤kn |ani| = O(n−1/p). Let cn =
∑kn

i=1 a2
ni. If

∞∑
n=1

max{gU (n), gL(n)}n−θ < ∞ for some θ > 0, (2.1)
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∞∑
n=1

max{gU (n), gL(n)} exp (−u/cn) < ∞ for any u > 0. (2.2)

Then
n∑

i=1

aniXi → 0 a.s. n →∞. (2.3)

Proof From the proof of Theorem 3.1 of Li et al. [2], without loss of generality, we assume that
kn = n for every n ≥ 1. Since ani = a+

ni − a−ni, we assume that

0 < ani ≤ n−1/p, ∀ 1 ≤ i ≤ n, n ≥ 1. (2.4)

We note that EXp < ∞ is equivalent to
∑∞

n=1 P (X ≥ δn1/p) < ∞ for any δ > 0, hence we get
that

∑∞
n=1 P (|Xn| ≥ δn1/p) < ∞. Thus it is possible to construct a sequence {bn, n ≥ 1} of real

numbers such that 0 < bn ≤ 1, bn ↓ 0, and
∞∑

n=1

P (|Xn| > bnn1/p) < ∞.

We choose some small ρ > 0 (to be specialized later), and define d1 = b1, dn = max{n−ρ, bn,
dn−1(n−1

n )1/p} for n ≥ 2. Then 0 < dn ≤ 1, dn ↓ 0, and
∞∑

n=1

P (|Xn| > dnn1/p) < ∞. (2.5)

For ∀ 1 ≤ i ≤ n, n ≥ 1, define

X
(1)
ni = −n−ρI(aniXi < −n−ρ) + aniXiI(|aniXi| ≤ n−ρ) + n−ρI(aniXi > n−ρ),

X
(2)
ni = (aniXi + n−ρ)I(aniXi < −dn) + (aniXi − n−ρ)I(aniXi > dn),

X
(3)
ni = aniXi −X

(1)
ni −X

(2)
ni ,

T (l)
n =

n∑

i=1

X
(l)
ni , l = 1, 2, 3.

In order to prove (2.3), it suffices to show that T
(l)
n → 0 a.s. n →∞ for l = 1, 2, 3.

For T
(1)
n , in order to show that T

(1)
n → 0 a.s. n → ∞, by the Borel-Cantelli Lemma, it

suffices to show that ∞∑
n=1

P (|T (1)
n | > ε) < ∞, ∀ ε > 0. (2.6)

First, we show that
∞∑

n=1

P (T (1)
n > ε) < ∞, ∀ ε > 0. (2.7)

By Lemma 1.3, it is clear that for every n ≥ 1, {X(1)
ni , i = 1, . . . , n} is still a sequence of WOD

random variables. Since |X(1)
ni | ≤ n−ρ, by Lemma 1.4 and the Markov inequality, we have that

P (T (1)
n > ε) ≤ exp(−unε)E exp(unT (1)

n )

≤ gU (n) exp
(
− unε + un

n∑

i=1

EX
(1)
ni +

u2
n

2
eunn−ρ

n∑

i=1

E(X(1)
ni )2

)
, ∀un > 0. (2.8)
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By (1.1) and (1.2), we get gU (n) ≥ 1 and gL(n) ≥ 1 for all n ≥ 1, thus, by (2.2), we obtain

lim
n→∞

cn = 0. (2.9)

In view of EXn = 0 (n ≥ 1), EXp < ∞, p > 2, (2.4), and (2.9), choose ρ small enough such that
1− 2/p− ρp > 0, we get that

∣∣∣∣∣
n∑

i=1

EX
(1)
ni

∣∣∣∣∣ ≤
n∑

i=1

{
E|aniXi|I(|aniXi| > n−ρ) + n−ρP (|aniXi| > n−ρ)

}

≤ 2
n∑

i=1

nρ(p−1)E|aniXi|p

≤ Cnρ(p−1)( max
1≤i≤n

ani)p−2
n∑

i=1

a2
ni

≤ Cnρ(p−1)−1+2/pcn → 0, n →∞. (2.10)

We note that EXp < ∞ and p > 2 imply that EX2 < ∞. So
n∑

i=1

E(X(1)
ni )2 ≤

n∑

i=1

a2
niEX2

i ≤ Ccn. (2.11)

Let un ∈ (0, nρ], from (2.8), (2.10) and (2.11), for sufficiently large n, we have that

P (T (1)
n > ε) ≤ gU (n) exp(− ε

2
un + Cu2

ncn). (2.12)

Let un = min{ε/(4Ccn), nρ}. If ε/(4Ccn) ≥ nρ, for sufficiently large n, from (2.12), we get that
P (T (1)

n > ε) ≤ gU (n) exp(−εnρ/4). If ε/(4Ccn) < nρ, then P (T (1)
n > ε) ≤ gU (n) exp(−ε2/(16Ccn)).

Thus, from (2.1) and (2.2), (2.7) holds. In a similar way, we have
∑∞

n=1 P (−T
(1)
n > ε) < ∞.

Therefore, (2.6) holds, we have proved that T
(1)
n → 0 a.s. n →∞.

For T
(3)
n , choose positive integer N such that (1 − 2/p − pρ)N > θ. For any fixed ε > 0,

and for sufficiently large n such that n−ρ ≤ dn < ε/N , from the definition of X
(3)
ni , we get that:

if aniXi ≤ n−ρ, then X
(3)
ni ≤ 0; if aniXi > n−ρ, then X

(3)
ni ≤ dn < ε/N . So we have that

P (T (3)
n > ε) ≤ P (there are at least N values of i such that aniXi > n−ρ)

≤
∑

1≤i1<···<iN≤n

P (ani1Xi1 > n−ρ, · · · , aniN
XiN

> n−ρ)

≤
∑

1≤i1<···<iN≤n

gU (n)P (ani1Xi1 > n−ρ) · · ·P (aniN
XiN

> n−ρ)

≤ gU (n)
( n∑

i=1

P (aniXi > n−ρ)
)N

≤ gU (n)
(
nρp

n∑

i=1

ap
niE|Xi|p

)N

≤ gU (n)
(
nρp max

1≤i≤n
ap−2

ni

n∑

i=1

a2
ni

)N

≤ gU (n)n−(1−2/p−pρ)N (cn)N . (2.13)

Therefore, we get
∑∞

n=1 P (T (3)
n > ε) < ∞ by (2.1) and (2.13). In a similar way, we have∑∞

n=1 P (−T
(3)
n > ε) < ∞. Thus

∑∞
n=1 P (|T (3)

n | > ε) < ∞, which implies T
(3)
n → 0 a.s. n →∞.
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For T
(2)
n , by (2.5) and the Borel-Cantelli Lemma, we have P (|Xn| > dnn1/p i.o. ) = 0.

Thus ∃ event Ω0 ⊂ Ω such that P (Ω0) = 1 and for ∀ ω ∈ Ω0,∃ positive interger N(ω) satisfying
|Xk| ≤ dkk1/p,∀ k > N(ω). So, from (2.4) and the definition of dn, we have that I(|ankXk| >

dn) ≤ I(|Xk| > dnn1/p) = 0 for ∀ ω ∈ Ω0, k ∈ (N(ω), n]. Then we have by the definition of X
(2)
ni

that

∣∣∣T (2)
n

∣∣∣ =

∣∣∣∣∣∣

N(ω)∑

i=1

X
(2)
ni

∣∣∣∣∣∣
≤

N(ω)∑

i=1

|aniXi|I(|aniXi| > dn)

≤ n−1/p

N(ω)∑

i=1

|Xi| → 0, n →∞, ω ∈ Ω0. (2.14)

Therefore, (2.3) holds. ¤

Corollary 2.2 Let p, {Xn, n ≥ 1} and {ani, 1 ≤ i ≤ kn, n ≥ 1} be as in Theorem 2.1. If (2.1)

holds and
kn∑

i=1

a2
ni = o

(
(log n)−1

)
, (2.15)

then (2.3) holds.

Proof Since (2.15) and (2.1) imply (2.2), the result follows from Theorem 2.1. ¤

Corollary 2.3 Let p > 2, {Xn, n ≥ 1} be a sequence of ENOD random variables with EXn =
0, n ≥ 1, {Xn, n ≥ 1} ≺ X, and EXp < ∞, {ani, 1 ≤ i ≤ kn, n ≥ 1} be as in Theorem 2.1. If

∞∑
n=1

exp (−u/cn) < ∞, ∀u > 0, (2.16)

then (2.3) holds.

Proof Since gU (n) = gL(n) = M for all n ≥ 1 and some finite positive constant M ≥ 1, (2.1) is
satisfied automatically for θ > 1 and (2.16) implies (2.2). Hence the result follows from Theorem
2.1. ¤

Corollary 2.4 Let p, {Xn, n ≥ 1} and {ani, 1 ≤ i ≤ kn, n ≥ 1} be as in Corollary 2.3. If (2.15)

holds, then (2.3) holds.

Theorem 2.5 Let 0 < p ≤ 2, {Xn, n ≥ 1} be a sequence of WOD random variables with

{Xn, n ≥ 1} ≺ X, and EXp < ∞. Let {ani, 1 ≤ i ≤ kn, n ≥ 1} be an array of constants such

that max1≤i≤kn
|ani| = O(n−1/p). If p > 1, moreover, we assume that EXn = 0, n ≥ 1. If (2.1)

holds and
kn∑

i=1

|ani|p = O(n−δ) for some δ > 0, (2.17)

then (2.3) holds.

Proof The proof is similar to that of Theorem 2.1. Define kn, ani, dn, X
(l)
ni (l = 1, 2, 3) as in
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Theorem 2.1. If 1 < p ≤ 2, in view of EXn = 0, we have that
∣∣∣∣∣

n∑

i=1

EX
(1)
ni

∣∣∣∣∣ ≤
n∑

i=1

{
E|aniXi|I(|aniXi| > n−ρ) + n−ρP (|aniXi| > n−ρ)

}

≤ 2nρ(p−1)
n∑

i=1

E|aniXi|p ≤ Cnρ(p−1)−δ.

Choose ρ small enough such that ρp− δ < 0, then
∑n

i=1 EX
(1)
ni → 0, n →∞. If 0 < p ≤ 1,

∣∣∣∣∣
n∑

i=1

EX
(1)
ni

∣∣∣∣∣ ≤
n∑

i=1

E|aniXi|I(|aniXi| ≤ n−ρ) + n−ρ
n∑

i=1

P (|aniXi| > n−ρ)

≤ 2nρ(p−1)
n∑

i=1

E|aniXi|p

≤ Cnρ(p−1)−δ → 0, n →∞, ∀ ρ > 0.

On the other hand, by the definition of X
(1)
ni and (2.17), we have

nρ
n∑

i=1

E(X(1)
ni )2 ≤ nρ

n∑

i=1

E
{
a2

niX
2
i I(|aniXi| ≤ n−ρ) + n−2ρI(|aniXi| > n−ρ)

}

≤ Cn−δ−ρ(1−p) → 0, n →∞.

Then, take un = nρ, from (2.8), for sufficiently large n, we obtain

P (T (1)
n > ε) ≤ gU (n) exp(−nρε/2).

Therefore, (2.7) remains true. Similarly
∑∞

n=1 P (−T
(1)
n > ε) < ∞. Hence T

(1)
n → 0 a.s. n →∞.

Similarly to (2.13) and (2.14), we have T
(l)
n → 0 a.s. n →∞, l = 2, 3. ¤

Corollary 2.6 Let 0 < p ≤ 2, {Xn, n ≥ 1} be a sequence of ENOD random variables with

{Xn, n ≥ 1} ≺ X, and EXp < ∞. Let {ani, 1 ≤ i ≤ kn, n ≥ 1} be as in Theorem 2.5. If p > 1,

moreover, we assume that EXn = 0, n ≥ 1. If (2.17) holds, then (2.3) holds.

Remark 2.7 When p > 2, the condition (2.15) is weaker than the condition in Theorem C.
When 1 < p ≤ 2, from Lemma 1.4 of Sung [3], the condition (2.17) is equivalent to the condition
in Theorem C. Therefore Corollaries 2.4 and 2.6 not only extend the Theorem C from i.i.d. to
ENOD random variables, but also extend the corresponding results of Jing and Liang [10] from
NA to ENOD random variables.

Theorem 2.8 Let 0 < p < 2, 1/p = 1/α + 1/β for 0 < α, β < ∞, and let {Xn, n ≥ 1} be a

sequence of WOD random variables with {Xn, n ≥ 1} ≺ X, and EXn = 0, n ≥ 1, EXβ < ∞.

Let {bni, 1 ≤ i ≤ n, n ≥ 1} be an array of constants such that

n∑

i=1

|bni|α = O(n). (2.18)
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If (2.1) holds, then

n−1/p
n∑

i=1

bniXi → 0 a.s. n →∞. (2.19)

Proof We shall apply Corollary 2.2 and Theorem 2.5 to prove Theorem 2.8. Define ani =
bni/n1/p for 1 ≤ i ≤ n and n ≥ 1. Since max1≤i≤n |bni| ≤ n1/α( 1

n

∑n
i=1 |bni|α)1/α, assumption

(2.18) implies that
max

1≤i≤n
|ani| = O(n−1/β).

By (2.18) and the Hölder’s inequality and the Cr-inequality, respectively, we have that
n∑

i=1

|bni|γ =
( n∑

i=1

|bni|α
)γ/α( n∑

i=1

1
)1−γ/α

≤ Cn, ∀0 < γ < α; (2.20)

n∑

i=1

|bni|γ ≤
n∑

i=1

(|bni|α)γ/α ≤
( n∑

i=1

|bni|α
)γ/α

≤ Cnγ/α, ∀γ ≥ α. (2.21)

For the case β > 2, we show that the condition (2.15) of Corollary 2.2 holds. If 0 < α ≤ 2,
by (2.21), we have that

n∑

i=1

|ani|2 ≤ Cn2/αn−2/p = Cn−2/β . (2.22)

If α > 2, by (2.20), we have that
n∑

i=1

|ani|2 ≤ Cn1−2/p. (2.23)

From (2.22), (2.23) and 0 < p < 2, we obtain (2.15).
For the case 0 < β ≤ 2, we prove that condition (2.17) of Theorem 2.5 holds. If β < α, by

(2.20), we have that
n∑

i=1

|ani|β ≤ Cnn−β/p = Cn−β/α. (2.24)

If β ≥ α, by (2.21), we have
n∑

i=1

|ani|β ≤ Cnβ/αn−β/p = Cn−1. (2.25)

Hence, from (2.24) and (2.25), (2.17) holds. Thus, (2.19) holds by Corollary 2.2 and Theorem
2.5. ¤

Corollary 2.9 Let 0 < p < 2, 1/p = 1/α + 1/β for 0 < α, β < ∞, and let {Xn, n ≥ 1} be a

sequence of ENOD random variables with {Xn, n ≥ 1} ≺ X, and EXn = 0, n ≥ 1, EXβ < ∞.

Let {bni, 1 ≤ i ≤ n, n ≥ 1} be as in Theorem 2.8. Then (2.19) holds.

Remark 2.10 Corollary 2.9 extends Theorem D (see also Corollary 3 of Sung [3]) on i.i.d. case
to ENOD random variables, and extends the corresponding results of Jing and Liang [10] and
Wu [9].
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