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Abstract In this short note we discuss the GM property of some special linear transformation

pairs over infinite-dimensional vector spaces. In particular, it is proved that if R = End(VD)

is the endomorphism ring of an infinite-dimensional right vector space V over a division ring

D with |C(D)| > 3 and g ∈ R, then (a0 + a1g, g) is a GM pair for any a0, a1 ∈ C(D).

Furthermore, two existing results are obtained as immediate consequences.
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1. Introduction

Let R be a ring and U(R) the group of units in R. Recall that R is said to satisfy unit
1-stable range if whenever aR + bR = R, there exists u ∈ U(R) such that a + bu ∈ U(R). This
condition has been studied extensively by many authors. In particular, Menal and Mocasi [1]
proved that if R satisfies unit 1-stable range, then K1(R) = U(R)/V (R), where K1(R) is the K1

group of R and V (R) is the subgroup of U(R) generated by {(ab+1)(ba+1)−1 : ab+1 ∈ U(R)}.
A ring R satisfies unit 1-stable range provided that for any x, y ∈ R, there exists u ∈ U(R) such
that x−u, y−u−1 ∈ U(R) (see [2]). The latter condition is called the Goodearl-Menal condition
by Chen [3], and has been discussed in [2–7]. In the rest of the paper we will use the term GM
condition instead of the Goodearl-Menal condition for brevity.

In [7, Corollary 2.9], the authors proved that in general, the endomorphism ring of an infinite-
dimensional vector space over a division ring does not satisfy the GM condition. Precisely, they
proved that if R is the ring of linear transformations of a right vector space V over a division
ring D, then R satisfies the GM condition if and only if VD is finitely dimensional and VD is
not isomorphic to (Z2)Z2 or (Z3)Z3 or (Z2 ⊕ Z2)Z2 . But some elements in End(VD) do have
the GM property. In this paper we will discuss the GM property of a class of special linear
transformation pairs over an infinite-dimensional vector space VD. Furthermore, two existing
results (see [5, Theorem 5] and [8, Theorem 1(2),(3)]) are obtained as corollaries.

Throughout the paper, all rings are associative with identity and modules are unitary right
modules. For a right module M over a ring R, denote the endomorphism ring of MR by End(MR)
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or End(M). For a ring R, denote by C(R) the set of central elements in R. Write Zn for the
ring of integers modulo n and |X| for the cardinal of a set X.

2. Main results

Let R be a ring and x, y ∈ R. (x, y) is called a Goodearl-Menal (or GM) pair of R if
there exists u ∈ U(R) such that x − u, y − u−1 ∈ U(R). Obviously, the ring R satisfies the
GM condition if and only if for any x, y ∈ R, (x, y) is a GM pair. For a vector space VD, let
g ∈ End(VD) and a0, a1 ∈ C(D). Then f := a0 + a1g is an element of End(VD) which is defined
by f(v) = va0 + g(v)a1, v ∈ V . For a countably infinite-dimensional vector space VD, a linear
transformation f ∈ End(VD) is called a shift operator if there exists a basis {v1, v2, . . .} of V

such that f(vi) = vi+1 for all i.

Theorem 2.1 Let R = End(VD) and f, g ∈ R, where V is an infinite-dimensional right vector

space over a division ring D with |C(D)| > 3. If f = a0 + a1g, where a0, a1 ∈ C(D), then (f, g)
is a GM pair.

Proof Let S = {(W,u)|W is an f -and g-invariant subspace of V, u, f |W − u, g|W − u−1 ∈
U(End(W ))}. It is obvious that ((0), 1) ∈ S. Define (W ′, u′) ≤ (W,u) by W ′ ⊆ W and
u′ = u|W ′ . This gives a partial order on the set S, and under this order S is an inductive set.
Thus, by Zorn’s Lemma, there exists a maximal element (T, h) ∈ S. We need only to prove that
T = V . Suppose on the contrary that T 6= V .

Let 0 6= x ∈ V \T and write K = span{x, g(x), g2(x), . . .}. Note that f = a0 + a1g. Then
K is an f and g-invariant subspace of V . Let V0 := T + K and write V0 = T ⊕ N for some
0 6= N ≤ V0. For v = t + n ∈ V0, t ∈ T , n ∈ N , we define the following homomorphisms:

f, g : V0/T → V0/T with f(v) = f(v), g(v) = g(v),

π : V0 → N with π(v) = n,

ϕ : V0/T → N with ϕ(v) = π(v),

θ1 := ϕfϕ−1 : N → N,

θ2 := ϕgϕ−1 : N → N.

It follows that V0/T = span{x, g(x), g2(x), . . .} and

N = span{ϕ(x), ϕ(g(x)), ϕ(g2(x)), . . .}
= span{ϕ(x), θ2ϕ(x), θ2

2ϕ(x), . . .}.

Claim In the endomorphsim ring End(ND) of ND, (θ1, θ2) is a GM pair.

Proof of Claim It suffices to find some α ∈ U(End(ND)) such that θ1 − α, θ2 − α−1 ∈
U(End(ND). Denote ωi = θi

2ϕ(x), i = 0, 1, 2, . . . . It can be seen that ND is finitely dimensional
or θ2 ∈ End(ND) is a shift operator.

If dimND < ∞, since D 6∼= Z2, Z3, there exists α ∈ U(End(ND)) such that θ1−α, θ2−α−1 ∈
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U(End(ND)) by [7, Corollary 2.9].
If dimND = ∞, then {ϕ(x), θ2ϕ(x), θ2

2ϕ(x), . . .} is a basis of N and hence θ2 is a shift
operator with respect to this basis. We discuss this situation by two cases.

Case 1 a1 = 0. Since |C(D)| > 3, we may take b ∈ C(D) such that b 6= 0 and b 6= a0. Note the
fact that θ1 = a0 + a1θ2 since f = a0 + a1g.

For k ≥ 1, define α : N → N by

α(ω2k−1) = ω2k−1b− ω2kb2, α(ω2k) = ω2kb.

Then α ∈ U(End(ND)) with

α−1(ω2k−1) = ω2k−1b
−1 + ω2k, α−1(ω2k) = ω2kb−1, k ≥ 1.

It follows that θ1 − α, θ2 − α−1 ∈ U(End(ND)). In fact, it can be computed that for k ≥ 1,

(θ1 − α)(ω2k−1) = ω2k−1(a0 − b) + ω2kb2,

(θ1 − α)(ω2k) = ω2k(a0 − b)

with

(θ1 − α)−1(ω2k−1) = ω2k−1(a0 − b)−1 − ω2k(a0 − b)−1b2(a0 − b)−1,

(θ1 − α)−1(ω2k) = ω2k(a0 − b)−1.

Also,

(θ2 − α−1)(ω2k−1) = −ω2k−1b
−1,

(θ2 − α−1)(ω2k) = −ω2kb−1 + ω2k+1

with

(θ2 − α−1)−1(ω2k−1) = −ω2k−1b,

(θ2 − α−1)−1(ω2k) = −ω2kb− ω2k+1b
2.

Case 2 a1 6= 0. Since |C(D)| > 3, we may take b ∈ C(D) such that b 6= 0, b 6= a0 and if in
addition a0 6= 0, let b 6= −a−1

0 a1. It follows that a1b
−1 6= 0 and a0 + a1b

−1 6= 0.
For k ≥ 1, define α : N → N by

α(ω2k−1) = ω2k−1b + ω2ka1, α(ω2k) = −ω2ka1b
−1.

Then α ∈ U(End(ND)) with

α−1(ω2k−1) = ω2k−1b
−1 + ω2k, α−1(ω2k) = −ω2kba−1

1 .

It follows that θ1 − α, θ2 − α−1 ∈ U(End(ND)). In fact, it can be computed that for k ≥ 1,

(θ1 − α)(ω2k−1) = ω2k−1(a0 − b),

(θ1 − α)(ω2k) = ω2k(a0 + a1b
−1) + ω2k+1a1

and

(θ1 − α)−1(ω2k−1) = ω2k−1(a0 − b)−1,
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(θ1 − α)−1(ω2k) = ω2k(a0 + a1b
−1)−1 − ω2k+1(a0 − b)−1a1(a0 + a1b

−1)−1.

Also,

(θ2 − α−1)(ω2k−1) = −ω2k−1b
−1,

(θ2 − α−1)(ω2k) = ω2kba−1
1 + ω2k+1

with

(θ2 − α−1)−1(ω2k−1) = −ω2k−1b,

(θ2 − α−1)−1(ω2k) = ω2ka1b
−1 + ω2k+1ba1b

−1.

Thus the claim is proved. ¤
Let s : V0 → V0 be given by s(t + n) = h(t) + α(n), t ∈ T , n ∈ N , where α is given as

in the proof of Claim accordingly. Then s ∈ U(End(V0)). We next show that f − s, g − s−1 ∈
U(End(V0)).

For t ∈ T , n ∈ N , (f − s)(t + n) = (f − s)(t) + [f(n)− α(n)]. Applying π to both sides of
the equation, we get

π(f − s)(t + n) = π[f(n)− α(n)] = πf(n)− πα(n)

= ϕ(f(n))− α(n) = ϕf(n)− α(n)

= θ1ϕ(n)− α(n) = θ1π(n)− α(n)

= (θ1 − α)(n).

We now prove that f − s is an isomorphism of V0.

To see that f − s is a monomorphism, let (f − s)(t + n) = 0. Then (θ1 − α)(n) = 0. Since
θ1 − α ∈ U(End(N)), n = 0. This gives (f − s)(t) = 0, and hence t = 0 since (f − s)|T =
f |T − h ∈ U(End(T )).

To see that f − s is an epimorphism, note that T ⊆ Im(f − s). For any ω ∈ N , there exists
n ∈ N such that ω = (θ1 − α)(n) = π(f − s)(t + n) ∈ Im(f − s) since T ⊆ Im(f − s). Thus
V0 = T ⊕N ⊆ Im(f − s).

Hence f − s is an isomorphism.

Similarly, we have

(g − s−1)(t + n) = (g − s−1)(t) + [g(n)− α−1(n)],

π(g − s−1)(t + n) = (θ2 − α−1)(n),

and we can prove that g − s−1 ∈ U(End(V0)).

Thus, (V0, s) ∈ S, (T, h) ≤ (V0, s) and (T, h) 6= (V0, s), which is a contradiction. This
implies that V = T and hence the proof is complete. ¤

Following [8], a ring R is said to satisfy condition (P) if for any a ∈ R, there exists u ∈ U(R)
such that a + u, a− u−1 ∈ U(R). Let a0 = 0 and a1 = −1, that is, let f = −g in Theorem 2.1.
Since −1 ∈ C(D), by letting b = −1 in the proof of Case 2 in Theorem 2.1, we get that (f, g) is a
GM pair. In this situation, we need only to assume that D 6∼= Z2 or Z3 rather than |C(D)| > 3.
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Thus, we have [5, Theorem 5] and [8, Theorem 1(2)] as corollaries.

Corollary 2.2 Let R = End(VD), where V is a vector space over a division ring D with D 6∼= Z2

or Z3. Then R satisfies condition (P).
Following [8], a ring R is said to satisfy condition (Q) if for any a ∈ R, there exists u ∈ U(R)

such that a − u, a − u−1 ∈ U(R). Let a0 = 0 and a1 = 1, that is, let f = g in Theorem 2.1.
Since 1 ∈ C(D), by letting b = 1 in the proof of Case 2 in Theorem 2.1, we get that (f, g) is
a GM pair. In this situation, we need only to assume that D 6∼= Z2 rather than |C(D)| > 3.
In fact, if dimND < ∞ in the proof of Claim in Theorem 2.1 and D 6∼= Z2, then there exists
α ∈ U(End(ND)) such that θ1 − α, θ2 − α−1 ∈ U(End(ND)) by [7, Proposition 4.2]. Thus, we
have [8, Theorem 1(3)] as a corollary.

Corollary 2.3 Let R = End(VD), where V is a vector space over a division ring D with D 6∼= Z2.

Then R satisfies condition (Q).
A ring R is called 2-good [9] if every element of R can be written as a sum of two units. By

Corollary 2.3, the following result is obvious.

Corollary 2.4 Let R = End(VD), where V is a vector space over a division ring D with D 6∼= Z2.

Then R is a 2-good ring.

3. Discussion for D with C(D) ∼= Z2 or Z3

For D with C(D) ∼= Z2, we do not know if Theorem 2.1 is true. But if V is a countably
infinite-dimensional right vector space over D and g is a shift operator, Theorem 2.1 is true (See
Proposition 3.1). Thus, if C(D) ∼= Z2 and dimN ≥ 3, Theorem 2.1 holds by the above statement
and [7, Corollary 2.9].

Proposition 3.1 Let R = End(V ) and g ∈ R be a shift operator, where V is a countably

infinite-dimensional right vector space over a division ring D with C(D) ∼= Z2. If f = a0 + a1g,

where a0, a1 ∈ C(D), (f, g) is a GM pair.

Proof Let {ω1, ω2, . . .} be a basis of V . Since 2 = 0 in C(D) ∼= Z2, the proof of Theorem 2.1 is
not working. We discuss this situation by three cases. If f = 1, for k ≥ 1, define α ∈ U(End(V ))
as

α(ω3k−2) = ω3k−1 + ω3k,

α(ω3k−1) = ω3k−2 + ω3k−1 + ω3k,

α(ω3k) = ω3k−2 + ω3k

with its inverse defined by

α−1(ω3k−2) = ω3k−2 + ω3k−1,

α−1(ω3k−1) = ω3k−1 + ω3k,

α−1(ω3k) = ω3k−2 + ω3k−1 + ω3k.



166 Chunna LI

It follows that

(θ1 − α)(ω3k−2) = ω3k−2 + ω3k−1 + ω3k,

(θ1 − α)(ω3k−1) = ω3k−2 + ω3k,

(θ1 − α)(ω3k) = ω3k−2

with its inverse given by

(θ1 − α)−1(ω3k−2) = ω3k,

(θ1 − α)−1(ω3k−1) = ω3k−2 + ω3k−1,

(θ1 − α)−1(ω3k) = ω3k−1 + ω3k

and

(θ2 − α−1)(ω3k−2) = ω3k−2,

(θ2 − α−1)(ω3k−1) = ω3k−1,

(θ2 − α−1)(ω3k) = ω3k−2 + ω3k−1 + ω3k + ω3k+1

with its inverse given by

(θ2 − α−1)−1 = θ2 − α−1.

Similarly, define α as α(ω2k−1) = ω2k−1 + ω2k, α(ω2k) = ω2k with its inverse given by α−1 =
α for k ≥ 1 when f = g and define α as α(ω3k−2) = ω3k−2, α(ω3k−1) = ω3k−2 + ω3k−1 +
ω3k, α(ω3k) = ω3k−2 + ω3k−1 with its inverse given by α−1(ω3k−2) = ω3k−2, α−1(ω3k−1) =
ω3k−2 + ω3k, α−1(ω3k) = ω3k−1 + ω3k for k ≥ 1 when f = 1 + g. ¤

For D with C(D) ∼= Z3, we do not know if Theorem 2.1 is true. But if V is a countably
infinite-dimensional right vector space over D and g is a shift operator, then Theorem 2.1 is true
(see Proposition 3.2). Thus, if C(D) ∼= Z3 and dimN ≥ 2, Theorem 2.1 holds by the above
statement and [7, Corollary 2.9].

Proposition 3.2 Let R = End(V ) and g ∈ R be a shift operator, where V is a countably

infinite-dimensional right vector space over a division ring D with C(D) ∼= Z3. If f = a0 + a1g,

where a0, a1 ∈ C(D), (f, g) is a GM pair.

Proof Let {ω1, ω2, . . .} be a basis of V . Without loss of generality, we may assume that
C(D) = Z3. By the proof of Theorem 2.1, we need only to prove the situation when a0 = 1 or 2
and a1 = 1, that is, f = 1 + g or f = 2 + g. Take α ∈ U(End(V )) given by

α(ω3k−2) = ω3k−2,

α(ω3k−1) = ω3k−2 + ω3k−1 + ω3k,

α(ω3k) = ω3k−2 + ω3k−1

with its inverse given by

α−1(ω3k−2) = ω3k−2,
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α−1(ω3k−1) = 2ω3k−2 + ω3k,

α−1(ω3k) = ω3k−1 + 2ω3k.

Then it can be verified that f − α and g − α−1 are units of End(N), and hence (f, g) is a GM
pair. ¤
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