Journal of Mathematical Research with Applications Mar., 2014, Vol. 34, No. 2, pp. 168–174 DOI:10.3770/j.issn:2095-2651.2014.02.006 Http://jmre.dlut.edu.cn

Weighted Norm Inequalities for a Class of Multilinear Singular Integral Operators

Rongqian WANG

Basic Education and Scientific Department, Henan Polytechnic Institute, Henan 473000, P. R. China

Abstract In this paper, weighted estimates with general weights are established for the multilinear singular integral operator defined by

$$T_A f(x) = \text{p. v.} \int_{\mathbb{R}^n} \frac{\Omega(x-y)}{|x-y|^{n+1}} \big(A(x) - A(y) - \nabla A(y)(x-y) \big) f(y) \mathrm{d}y,$$

where Ω is homogeneous of degree zero, has vanishing moment of order one, and belongs to $\operatorname{Lip}_{\gamma}(S^{n-1})$ with $\gamma \in (0, 1]$, A has derivatives of order one in $\operatorname{BMO}(\mathbb{R}^n)$.

Keywords multilinear singular integral operator; weighted norm inequality; sharp function estimate; BMO.

MR(2010) Subject Classification 42B20

1. Introduction

We will work on \mathbb{R}^n , $n \ge 1$. For a point $x \in \mathbb{R}^n$, we denote by x_j the *j*-th variable of x. Let Ω be homogeneous of degree zero, integrable on the unit sphere S^{n-1} , and have vanishing moment of order one which means that for each j with $1 \le j \le n$,

$$\int_{S^{n-1}} \Omega(x') x'_j \mathrm{d}\sigma(x') = 0$$

Let A be a function on \mathbb{R}^n having derivatives of order one in BMO(\mathbb{R}^n). Define the multilinear singular integral operator T_A by

$$T_A f(x) = p. v. \int_{\mathbb{R}^n} \frac{\Omega(x-y)}{|x-y|^{n+1}} (A(x) - A(y) - \nabla A(y)(x-y)) f(y) dy.$$
(1.1)

This operator was first considered by Cohen [1] and is closely related to the Calderón commutator. A well known result of Cohen states that if $\Omega \in \operatorname{Lip}_{\gamma}(S^{n-1})$ with $\gamma \in (0, 1]$, then for $p \in (1, \infty)$ and $u \in A_p(\mathbb{R}^n)$, T_A is a bounded operator on $L^p(\mathbb{R}^n, u)$ with bound $C(n, p) \|\nabla A\|_{\operatorname{BMO}(\mathbb{R}^n)}$, here $A_p(\mathbb{R}^n)$ denotes the weight function class of Muckenhoupt [3]. Hofmann [4] proved that $\Omega \in \bigcup_{1 < q \le \infty} L^q(S^{n-1})$ is a sufficient condition such that T_A is a bounded operator on $L^p(\mathbb{R}^n)$ for $p \in (1, \infty)$. Hu and Yang [8] considered the weighted estimate with general weights for T_A , and proved that if $p \in (1, \infty)$, $\Omega \in \operatorname{Lip}_{\gamma}(S^{n-1})$ with $\gamma \in (0, 1]$, then for any $\delta > 0$, any weight w, bounded function f with compact support,

$$||T_A f||_{L^p(\mathbb{R}^n, w)} \lesssim ||f||_{L^p(\mathbb{R}^n, M_{L(\log L)^{2p-1+\delta}w})},$$
 (1.2)

Received January 16, 2013; Accepted July 9, 2013 E-mail address: 1923189387@qq.com

Weighted norm inequalities for a class of multilinear singular integral operators

and for any $\lambda > 0$,

$$w(\{x \in \mathbb{R}^n : |T_A f(x)| > \lambda\}) \lesssim \int_{\mathbb{R}^n} \frac{|f(x)|}{\lambda} \log\left(2 + \frac{|f(x)|}{\lambda}\right) M_{L(\log L)^{1+\delta}} w(x) \mathrm{d}x, \tag{1.3}$$

here and in the following, for a weight w, we mean w is nonnegative and locally integrable in \mathbb{R}^n . For other works about the operator T_A , see [5–7] and the reference therein.

As it is well known, for a standard Calderón-Zygmund T, Pérez proved that if $p \in (1, \infty)$, then for any $\delta > 0$, any bounded function f with compact support and any weight w,

$$||Tf||_{L^p(\mathbb{R}^n,w)} \lesssim ||f||_{L^p(\mathbb{R}^n,M_{L(\log L)^{p-1+\delta}w)}),$$
 (1.4)

and for any $\lambda > 0$,

$$w(\{x \in \mathbb{R}^n : |Tf(x)| > \lambda\}) \lesssim \lambda^{-1} \int_{\mathbb{R}^n} |f(x)| M_{L(\log L)^{\delta}} w(x) \mathrm{d}x.$$
(1.5)

Comparing the inequalities (1.2) and (1.4) ((1.3) and (1.5), respectively), we may ask if the weight $M_{L(\log L)^{2p-1+\delta}w}$ in the right hand side of the inequality (1.2) can be replaced by $M_{L(\log L)^{p-1+\delta}w}$, and the weight $M_{L(\log L)^{1+\delta}w}$ in the right hand side of the inequality (1.3) can be replaced by $M_{L(\log L)^{\delta}w}$. The purpose of this paper is to consider this question. Our main result can be stated as follows.

Theorem 1.1 Let Ω be homogeneous of degree zero, have vanishing moment of order one and belong to $\operatorname{Lip}_{\gamma}(S^{n-1})$ with $\gamma \in (0, 1]$. Let A be a function on \mathbb{R}^n with derivatives of order one in BMO(\mathbb{R}^n) and T_A be the operator defined by (1.1). Then

(i) For $p \in (1, \infty)$, any weight w and bounded function f with compact support,

$$||T_A f||_{L^p(\mathbb{R}^n, w)} \lesssim ||\nabla A||_{BMO(\mathbb{R}^n)} ||f||_{L^p(\mathbb{R}^n, M_{L(\log L)^{p-1}+\delta}w)};$$
 (1.6)

(ii) For any weight w and bounded function f with compact support,

$$w(\{x \in \mathbb{R}^n : |T_A f(x)| > \lambda\})$$

$$\lesssim \Phi(\|\nabla A\|_{BMO(\mathbb{R}^n)}) \int_{\mathbb{R}^n} \frac{|f(x)|}{\lambda} \log\left(e + \frac{|f(x)|}{\lambda}\right) M_{L(\log L)^{\delta}} w(x) dx$$

where $\Phi(t) = t \log(e+t)$ for t > 0.

Remark 1.2 In [8], to obtain the estimate (1.2), the authors first established a variant sharp function estimate for T_A , from which they deduced that for 0 and bounded function <math>f,

$$\|T_A f\|_{L^p(\mathbb{R}^n, u)} \lesssim \|\nabla A\|_{\mathrm{BMO}(\mathbb{R}^n)} \|M^2 f\|_{L^p(\mathbb{R}^n, u)}$$

provided that $u \in A_{\infty}(\mathbb{R}^n)$, where and in the following, $A_{\infty}(\mathbb{R}^n) = \bigcup_{p \ge 1} A_p(\mathbb{R}^n)$. This, via a duality argument and the weighted estimates with general weights for the commutator of the Calderón-Zygmund operator [10], leads to (1.2). The argument in this paper is somewhat different from that used in [8]. We will first establish a variant estimate for the operator T_A^* , defined by

$$T_A^* f(x) = p. v. \int_{\mathbb{R}^n} \frac{\Omega(x-y)}{|x-y|^{n+1}} \big(A(x) - A(y) - \nabla A(x)(x-y) \big) f(y) \mathrm{d}y.$$
(1.7)

This, together with the relation of the operator T_A and some Calderón-Zygmund operators, and the ideas used in [9], leads to our result (1.6). For details, see Section 2.

Remark 1.3 Theorem 1.1 is of interest since it implies that the singularity of T_A is the same as that of the classical Calderón-Zygmund operator.

We now make some conventions. Throughout this paper, we denote by C a positive constant which is independent of the main parameters, but may vary from line to line. The symbol $f \leq g$ means that there exists a positive constant C such that $f \leq Cg$. For any subset $E \subset \mathbb{R}^n$, χ_E denotes the characteristic function of E.

2. Proof of Theorem 1.1

We begin with a preliminary lemma.

Lemma 2.1 Let b be a function on \mathbb{R}^n with derivatives of order one in $L^q(\mathbb{R}^n)$ for some q with $n < q \leq \infty$. Then

$$|b(x) - b(y)| \lesssim |x - y| \sum_{k=1}^{n} \left(\frac{1}{|\widetilde{Q}(x, y)|} \int_{\widetilde{Q}(x, y)} |D_k b(z)|^q \mathrm{d}z \right)^{1/q},$$

where $\widetilde{Q}(x, y)$ is the cube centered at x and having side length $5\sqrt{n}|x-y|$.

For the proof of Lemma 2.1, see [1].

For each fixed k with $1 \le k \le n$, let T_k be the operator defined by

$$T_k f(x) = \text{p.v.} \int_{\mathbb{R}^n} \frac{\Omega(x-y)}{|x-y|^{n+1}} (x_k - y_k) f(y) \mathrm{d}y.$$
 (2.1)

Under the hypothesis of Theorem 1.1, T_k is a Calderón-Zygmund operator. For a function $b \in BMO(\mathbb{R}^n)$, define the commutator $[b, T_k]$ as

$$[b, T_k]f(x) = b(x)Tf(x) - T(bf)(x).$$

It is well known that

$$\|[b, T_k]f\|_{L^p(\mathbb{R}^n, u)} \lesssim \|b\|_{\text{BMO}(\mathbb{R}^n)} \|f\|_{L^p(\mathbb{R}^n, u)}, \ p \in (1, \infty), \ u \in A_p(\mathbb{R}^n).$$

Note that

$$T_A^* f(x) = T_A f(x) - \sum_{j=1}^n [D_j A, T_j] f(x),$$

where T_A^* is the operator defined by (1.7). Thus, under the hypothesis of Theorem 1.1,

$$\|T_A^* f\|_{L^p(\mathbb{R}^n, u)} \lesssim \|\nabla A\|_{\text{BMO}(\mathbb{R}^n)} \|f\|_{L^p(\mathbb{R}^n, u)}, \quad p \in (1, \infty), \ u \in A_p(\mathbb{R}^n).$$
(2.2)

Also, we have that

Lemma 2.2 Let $\Omega \in \operatorname{Lip}_{\gamma}(S^{n-1})$ for some $\gamma \in (0, 1)$. Then T_A^* is bounded from $L^1(\mathbb{R}^n)$ to $L^{1,\infty}(\mathbb{R}^n)$, namely, for any $\lambda > 0$,

$$|\{x \in \mathbb{R}^n : T_A^* f(x)| > \lambda\}| \lesssim \lambda^{-1} ||f||_{L^1(\mathbb{R}^n)}$$

Proof Without loss of generality, we assume that $\|\nabla A\|_{BMO(\mathbb{R}^n)} = 1$. For each fixed $\lambda > 0$ and $f \in L^1(\mathbb{R}^n)$, applying the Calderón-Zygmund decomposition to f at level λ , we then obtain a sequence of cubes $\{Q_j\}_j$ with disjoint interiors, such that

$$\lambda < \frac{1}{|Q_j|} \int_{Q_j} |f(y)| \mathrm{d}y \le 2^n \lambda$$

and

$$|f(x)| \leq \lambda$$
, a. e. $x \in \mathbb{R}^n \setminus (\cup_j Q_j)$.

Set

$$g(x) = f(x)\chi_{\mathbb{R}^n \setminus \bigcup_j Q_j}(x) + \sum_j m_{Q_j}(f)\chi_{Q_j}(x),$$
$$h(x) = \sum_j (f - m_{Q_j}(f))\chi_{Q_j}(x) = \sum_j h_j(x).$$

By the $L^2(\mathbb{R}^n)$ boundedness of T^*_A , we know that

$$|\{x \in \mathbb{R}^n : |T_A^*g(x)| > \lambda\}| \lesssim \lambda^{-2} ||T_A^*g||_{L^2(\mathbb{R}^n)} \lesssim \lambda^{-1} ||f||_{L^1(\mathbb{R}^n)}.$$

Set $E_{\lambda} = \bigcup_j 2\sqrt{n}Q_j$. It is obvious that $|E_{\lambda}| \leq \lambda^{-1} ||f||_{L^1(\mathbb{R}^n)}$. Thus, the proof of Lemma 2.2 is now reduced to proving that

$$|\{x \in \mathbb{R}^n \setminus E_{\lambda} : |T_A^* h(x)| > \lambda\}| \lesssim \lambda^{-1}.$$
(2.3)

We now prove (2.3). For each fixed j, set $A_j(y) = A(y) - m_{Q_j}(\nabla A)y$. It is obvious that for $x, y \in \mathbb{R}^n$,

$$A_{j}(x) - A_{j}(y) - \nabla A_{j}(x)(x - y) = A(x) - A(y) - \nabla A(y)(x - y)$$

and so

$$\begin{split} T_A^*h(x) &= \sum_j \int_{\mathbb{R}^n} \frac{\Omega(x-y)}{|x-y|^{n+1}} (A_j(x) - A_j(y)) h_j(y) \mathrm{d}y + \\ &\sum_j \sum_{k=1}^n \left(D_k A(x) - m_{Q_j}(D_k A) \right) \int_{\mathbb{R}^n} \frac{\Omega(x-y)}{|x-y|^{n+1}} (x_k - y_k) h_j(y) \mathrm{d}y \\ &:= T_A^{*,\mathrm{I}} h(x) + \sum_j T_A^{*,\mathrm{II}} h_j(x). \end{split}$$

As pointed out in [8, p. 765],

$$|\{x \in \mathbb{R}^n \setminus E_{\lambda} : |T_A^{*, \mathbf{I}} h(x)| > \lambda/2\}| \lesssim \lambda^{-1} ||f||_{L^1(\mathbb{R}^n)}.$$

For each fixed j and k with $1 \le k \le n$, and each fixed $x \in \mathbb{R}^n \setminus E_{\lambda}$, by the vanishing moment of h_j and the regularity condition of Ω , we have

$$|T_A^{*, \mathrm{II}} h_j(x)| \lesssim \sum_{k=1}^n |D_k A(x) - m_{Q_j}(D_k A)| \frac{|y - y_j^0|^{\gamma}}{|x - y_j^0|^{n+\gamma}} ||h_j||_{L^1(\mathbb{R}^n)},$$

where y_j^0 is the center of Q_j . On the other hand, a straightforward computation leads to that

$$\int_{\mathbb{R}^n \setminus 2\sqrt{n}Q_j} |D_k A(x) - m_{Q_j} (D_k A)| \frac{\{\ell(Q_j)\}^{\gamma}}{|x - y_j^0|^{n+\gamma}} \mathrm{d}x$$

Rongqian WANG

$$\lesssim \sum_{l=1}^{\infty} \frac{\{\ell(Q_j)\}^{\gamma}}{\{2^{l}\ell(Q_j)\}^{n+\gamma}} \int_{2^{l+1}\sqrt{n}Q_j} |D_k A(x) - m_{2^{l+1}Q_j}(D_k A)| \mathrm{d}x + \sum_{l=1}^{\infty} \frac{\{\ell(Q_j)\}^{\gamma}}{\{2^{l}\ell(Q_j)\}^{\gamma}} |m_{Q_j}(D_k A) - m_{2^{l+1}Q_j}(D_k A)| \\ \lesssim 1,$$

where $\ell(Q_j)$ denotes the side length of Q_j . Therefore,

$$\begin{split} |\{x \in \mathbb{R}^n \setminus E_{\lambda} : \sum_j |T_A^{*,1} h_j(x)| > \lambda/2\}| \\ \lesssim \lambda^{-1} \sum_j \|h_j\|_{L^1(\mathbb{R}^n)} \sum_{k=1}^n \int_{\mathbb{R}^n \setminus 2\sqrt{n}Q_j} |D_k A(x) - m_{Q_j}(D_k A)| \frac{\{\ell(Q_j)\}^{\gamma}}{|x - y_j^0|^{n+\gamma}} \mathrm{d}x \\ \lesssim \lambda^{-1} \|f\|_{L^1(\mathbb{R}^n)}. \end{split}$$

This lead to (2.3) and then completes the proof of Lemma 2.2. \Box

To prove Theorem 1.1, we will also use a sharp function estimate for T_A^* . Let $r \in (0, \infty)$. Define the operator M_r^{\sharp} for by

$$M_r^{\sharp}f(x) = \sup_{Q \ni x} \inf_{c \in \mathbb{C}} \left(\frac{1}{|Q|} \int_Q |f(y) - c|^r \mathrm{d}y \right)^{1/r},$$

where the sup is taken over all cube containing x. Obviously, for the case of $r \in (0, 1]$,

 $\{M^{\sharp}(|f|^r)(x)\}^{1/r} \lesssim M_r^{\sharp}f(x).$

Also, M_1^{\sharp} , which will be denoted by M^{\sharp} for simplicity, is just the sharp maximal operator of Fefferman-Stein.

Lemma 2.3 Let 0 < r < s < 1. Under the hypothesis of Theorem 2.1, for any bounded function f with compact support,

$$M_r^{\sharp}(T_A^*f)(x) \lesssim \|\nabla A\|_{\mathrm{BMO}(\mathbb{R}^n)} \Big(\sum_{k=1}^n M_s(T_k f)(x) + Mf(x)\Big),$$

where T_k is the operator defined by (2.1).

Proof Let f be a bounded function with compact support. For each fixed $x \in \mathbb{R}^n$ and each cube Q containing x, decompose f as

$$f(y) = f(y)\chi_{3Q}(y) + f(y)\chi_{\mathbb{R}^n \setminus 3Q}(y) := f_1(y) + f_2(y).$$

Let

$$A_Q(y) = A(y) - m_Q(\nabla A)y$$

and for $y \in Q$,

$$R_Q(y) = \int_{\mathbb{R}^n} \frac{\Omega(y-z)}{|y-z|^{n+1}} \big(A_Q(y) - A_Q(z) \big) f_2(z) \mathrm{d}z.$$

Observe that for any k with $1 \le k \le n$,

$$\int_{3Q} |D_k A(y) - m_Q(D_k A)| |T_k f_2(y)| \mathrm{d}y$$

172

Weighted norm inequalities for a class of multilinear singular integral operators

$$\lesssim \Big(\int_{3Q} |D_k A(y) - m_Q (D_k A)|^2 \mathrm{d}y\Big)^{1/2} \|T_k f_2\|_{L^2(\mathbb{R}^n)}$$

Thus, by the fact that $T_A^* f_2(y)$ is finite for a.e. $y \in 3Q$, we can choose $y_Q \in 3Q \setminus 2Q$ such that $R_Q(y_Q)$ is finite. Write

$$\begin{split} & \left(\frac{1}{|Q|} \int_{Q} |T_{A}^{*}f(y) - R_{Q}(y_{Q})|^{r} \mathrm{d}y\right)^{1/r} \\ & \lesssim \left(\frac{1}{|Q|} \int_{Q} |T_{A}^{*}f_{1}(y)|^{r} \mathrm{d}y\right)^{1/r} + \left(\frac{1}{|Q|} \int_{Q} |R_{Q}(y) - R_{Q}(y_{Q})|^{r} \mathrm{d}y\right)^{1/r} + \\ & \sum_{k=1}^{n} \left(\frac{1}{|Q|} \int_{Q} |D_{k}A(y) - m_{Q}(D_{k}A)|^{r} |T_{k}f_{2}(y)|^{r} \mathrm{d}y\right)^{1/r} \\ & \coloneqq \sum_{l=1}^{3} \mathrm{I}_{l}. \end{split}$$

By Lemma 2.2 and the Kolmogrov inequality, we can verify that

$$I_1 \lesssim \frac{1}{|3Q|} \int_{3Q} |f(y)| dy \lesssim M f(x).$$

Recall that T_k is bounded from $L^1(\mathbb{R}^n)$ to $L^{1,\infty}(\mathbb{R}^n)$. The Hölder inequality together with the Kolmogrov inequality, tells us that

$$\begin{split} \mathbf{I}_{3} &\lesssim \sum_{k=1}^{n} \left\{ \left(\frac{1}{|Q|} \int_{Q} |T_{k}f(y)|^{s} \mathrm{d}y \right)^{1/s} + \left(\frac{1}{|Q|} \int_{Q} |T_{k}f_{1}(y)|^{s} \mathrm{d}y \right)^{1/s} \right\} \\ &\lesssim \sum_{k=1}^{n} M_{s}(T_{k}f)(x) + \frac{1}{|3Q|} \int_{3Q} |f(y)| \mathrm{d}y \\ &\lesssim \sum_{k=1}^{n} M_{s}(T_{k}f)(x) + Mf(x). \end{split}$$

It remains to consider the term I₂. Let $\ell(Q)$ be the side length of Q. By the regularity of Ω , it follows that for each fixed $y \in Q$ and $z \in \mathbb{R}^n \setminus 2\sqrt{nQ}$,

$$\Big|\frac{\Omega(y-z)}{|y-z|^{n+1}} - \frac{\Omega(y_Q-z)}{|y_Q-z|^{n+1}}\Big| \lesssim \frac{\{\ell(Q)\}^{\gamma}}{|y-z|^{n+1+\gamma}}.$$

On the other hand, for $y \in Q$ and $z \in 2^{j+1}\sqrt{n}Q \setminus 2^j \sqrt{n}Q$ with j a positive integer, it follows from Lemma 2.1 that

$$|A_Q(y) - A_Q(z)| \lesssim |y - z| \sum_{k=1}^n \left(\frac{1}{|\tilde{Q}(y, z)|} \int_{\tilde{Q}(y, z)} |D_k A(z) - m_Q(D_k A)|^q \mathrm{d}z \right)^{1/q} \\ \lesssim j|y - z|.$$

Also, we deduce from Lemma 2.1 that for $y \in Q$,

$$|A_Q(y) - A_Q(y_Q)| \lesssim \ell(Q).$$

Therefore, for each $y \in Q$,

$$|R_Q(y) - R_Q(y_Q)| \lesssim \int_{\mathbb{R}^n} \Big| \frac{\Omega(y-z)}{|y-z|^{n+1}} - \frac{\Omega(y_Q-z)}{|y_Q-z|^{n+1}} \Big| \Big| A_Q(y) - A_Q(z) \Big| |f_2(z)| \mathrm{d}z$$

173

Ronggian WANG

$$\begin{split} &+ \int_{\mathbb{R}^n} \frac{1}{|y-z|^{n+1}} \big| A_Q(y) - A_Q(z) \big| |f_2(z)| \mathrm{d}z \\ \lesssim \{\ell(Q)\}^{\gamma} \sum_{j=1}^{\infty} j \int_{2^{j+1}\sqrt{n}Q \setminus 2^j \sqrt{n}Q} \frac{1}{|y-z|^{n+\gamma}} |f_2(z)| \mathrm{d}z \\ &+ \ell(Q) \int_{\mathbb{R}^n \setminus 2\sqrt{n}Q} \frac{1}{|y-z|^{n+1}} f(y)| \mathrm{d}y \\ \lesssim Mf(x), \end{split}$$

and so $I_2 \leq Mf(x)$. Combining the estimates for the terms I_1 , I_2 and I_3 leads to our desired conclusion.

Proof of Theorem 1.1 Employing the argument used in [8], conclusion (ii) can be deduced from conclusion (i). We omit the details. Note that we may view T_A^* as the dual operator of T_A . As pointed out in [9, p. 300], it suffices to prove that for $p \in (1, \infty)$ and $u \in A_{\infty}(\mathbb{R}^n)$,

$$||T_A^*f||_{p,u} \lesssim ||\nabla A||_{\mathrm{BMO}(\mathbb{R}^n)} ||Mf||_{p,u}.$$

For a fixed $u \in A_{\infty}(\mathbb{R}^n)$ and $p \in (1, \infty)$, we can choose r, s such that 0 < r < s < 1, and $u \in A_{p/r}(\mathbb{R}^n)$. For any bounded function f with compact support, we know from the inequality (2.2) that $M_r(T_A^*f) \in L^p(\mathbb{R}^n, u)$. It then follows from Lemma 2.3, the Coifman-Fefferman inequality [2] and the inequality (2.2), that

$$\begin{aligned} \|T_{A}^{*}f\|_{L^{p}(\mathbb{R}^{n}, u)} &\lesssim \|M_{r}^{\sharp}(T_{A}^{*}f)\|_{L^{p}(\mathbb{R}^{n}, u)} \\ &\lesssim \|M_{s}(T_{k}f)\|_{L^{p}(\mathbb{R}^{n}, u)} + \|Mf\|_{L^{p}(\mathbb{R}^{n}, u)} \\ &\lesssim \|Mf\|_{L^{p}(\mathbb{R}^{n}, u)}, \end{aligned}$$

where the last inequality follows from the fact that

$$||T_k f||_{L^p(\mathbb{R}^n, u)} \lesssim ||f||_{L^p(\mathbb{R}^n, u)}, \ 1$$

which is just the inequality (16) in [9].

References

- [1] J. COHEN. A sharp estimate for a multilinear singular integral on \mathbb{R}^n . Indiana Univ. Math. J., 1981, **30**: 693–702.
- R. COIFMAN, C. FEFFERMAN. Weighted norm inequalities for maximal functions and singular integrals. Studia Math., 1974, 51: 241–250.
- [3] L. GRAFAKOS. Modern Fourier Analysis. Graduate Texts in Mathematics, 250, Springer, New York, 2008.
- [4] S. HOFMANN. On certain nonstandard Calderón-Zygmund operators. Studia Math., 1994, 109(2): 105–131.
- [5] Guoen HU. L^p and endpoint estimates for multi-linear singular integral operators. Proc. Roy. Soc. Edinburgh Sect. A, 2004, 134(3): 501–514.
- [6] Guoen HU. L²(Rⁿ) boundedness for a class of multilinear singular integrals. Acta Math. Sin. (Engl. Ser.), 2003, 19(2): 397–404.
- [7] Guoen HU, Dengfeng LI. A Cotlar type inequality for the multilinear singular integral operators and its applications. J. Math. Anal. Appl., 2004, 290(2): 639–653.
- [8] Guoen HU, Dachun YANG. Sharp function estimates and weighted norm inequalities for multilinear singular integral operators. Bull. London Math. Soc., 2003, 35(6): 759–769.
- [9] C. PÉREZ. Weighted norm inequalities for singular integral operators. J. London Math. Soc. (2), 1994, 49(2): 296–308.
- [10] C. PÉREZ. Sharp estimates for commutators of singular integrals via iterations of the Hardy-Littlewood maximal function. J. Fourier Anal. Appl., 1997, 3(6): 743–756.

174