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1. Introduction

Let Ap denote the class of functions of the form

f(z) = zp +
∞∑

k=1

ak+pz
k+p, p ∈ N = {1, 2, . . .}, (1.1)

which are analytic and p-valent in the open unit disk

U = {z : z ∈ C and |z| < 1}.

Let f, g ∈ Ap, where f is given by (1.1) and g is defined by

g(z) = zp +
∞∑

k=1

bk+pz
k+p.

Then the Hadmard product (or convolution) f ∗ g of the functions f and g is defined by

(f ∗ g)(z) = zp +
∞∑

k=1

ak+pbk+pz
k+p = (g ∗ f)(z).
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For two functions f and g, analytic in U, we say that the function f is subordinate to g in
U, if there exists a Schwarz function ω, which is analytic in U with

ω(0) = 0 and |ω(z)| < 1, z ∈ U,

such that

f(z) = g(ω(z)), z ∈ U.

We denote this subordination by f(z) ≺ g(z). Furthermore, if the function g is univalent in U,
then we have the following equivalence (see [5, 8] for details, see also [17]):

f(z) ≺ g(z) (z ∈ U) ⇐⇒ f(0) = g(0) and f(U) ⊂ g(U).

Let M be the class of functions φ(z) which are analytic and univalent in U and for which
φ(U) is convex with φ(0) = 1 and Re[φ(z)] > 0 for z ∈ U.

By making use of the principle of subordination between analytic functions, Ma and Minda
[7] introduced the subclasses S∗p (φ),Kp(φ) and Cp(φ, ψ) of the class Ap for p ∈ N and φ, ψ ∈ M ,
which are defined by

S∗p (φ) =
{
f ∈ Ap :

zf ′(z)
pf(z)

≺ φ(z) in U
}
,

Kp(φ) =
{
f ∈ Ap :

1
p

+
zf ′′(z)
pf ′(z)

≺ φ(z) in U
}
,

and

Cp(φ, ψ) =
{
f ∈ Ap : ∃ g ∈ S∗p (φ) such that

zf ′(z)
pg(z)

≺ ψ(z) in U
}
.

In its special case when

p = 1 and φ(z) = ψ(z) =
1 + z

1− z
,

we have the familiar classes S∗, K and C of starlike, convex and close-to-convex function in U,
respectively. Also, for special choices for the functions φ and ψ involved in these definitions, we
can obtain other classes investigated many times earlier. For example, the classes

S∗p (
1 + Az

1 + Bz
) = S∗p (A,B) and Kp(

1 + Az

1 + Bz
) = Kp(A,B), −1 ≤ B < A ≤ 1,

introduced and studied by Janowski [6].
For parameters

a, b ∈ C and c ∈ C \ Z−0 , Z−0 = {0,−1,−2, . . .},
the Gauss hypergeometric function 2F1(a, b; c; z) is defined by

2F1(a, b; c; z) =
∞∑

k=0

(a)k(b)k

(c)k

zk

k!
, (1.2)

where (ν)k denotes the Pochhammer symbol defined, in terms of Gamma function, by

(ν)k =
Γ(ν + k)

Γ(ν)
=





1, k = 0; ν ∈ C \ {0},
ν(ν + 1) · · · (ν + k − 1), k ∈ N; ν ∈ C.
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The hypergeometric series in (1.2) converges absolutely for all z ∈ U, so that it represents an
analytic function in U. Dziok and Srivastava [2] (see [3, 4]) considered the generalized hypergeo-
metric function qFs (q, s ∈ N ∪ {0}), which is a certain generalization of (1.2).

We now introduce a function fµ,p(a, b, c)(z) defined by

fµ,p(a, b, c)(z) = (1− µ)zp · 2F1(a, b; c; z) + µz[zp · 2F1(a, b; c; z)]′, z ∈ U; µ ≥ 0. (1.3)

For p = 1, we have fµ,1(a, b, c)(z) = fµ(a, b, c)(z), which was studied by Skukla and Skukla [13],
and for µ = 0 and b = 1, we obtain

f0,p(a, 1, c)(z) = φp(a, c)(z) =
∞∑

k=0

(a)k

(c)k
zk+p,

which was introduced by Saitoh [12].
Next, we introduce the following family of linear operators Iλ

µ,p(a, b, c) : Ap → Ap, defined
by

Iλ
µ,p(a, b, c)f(z) = fλ

µ,p(a, b, c)(z) ∗ f(z), λ > −p; µ ≥ 0; z ∈ U, (1.4)

where fλ
µ,p(a, b, c)(z) is the function defined in terms of the Hadamard product (or convolution)

as follows:

fµ,p(a, b, c)(z) ∗ fλ
µ,p(a, b, c)(z) =

zp

(1− z)λ+p
, λ > −p; µ ≥ 0, (1.5)

where fµ,p(a, b, c)(z) is given by (1.3).
We also note that the operator Iλ

µ,p(a, b, c) generalizes several previously studied familiar
operators, and we will show some of the interesting particular cases as follows.

(i) Iλ
µ,1(a, b, c) = Iλ

µ(a, b, c), where Iλ
µ(a, b, c) is the Srivastava-Khairnar-More operator [16];

(ii) Iλ
0,1(a, b, c) = Iλ(a, b, c), where the operator Iλ(a, b, c) was introduced by Noor [10];

(iii) Iλ
0,p(a, 1, c) = Iλ

p (a, c), where Iλ
p (a, c) is the Cho-Kwon-Srivastava operator [1];

(iv) In
0,1(a, n + 1, a) = In, where In is the Noor integral operator [9].

Since
zp

(1− z)λ+p
=

∞∑

k=0

(λ + p)k

k!
zk+p λ > −p; z ∈ U, (1.6)

by using (1.2), (1.3) and (1.6) in (1.5), we get
( ∞∑

k=0

((1 + µ(k + p− 1))(a)k(b)k

(c)k

zk+p

k!

)
∗ fλ

µ,p(a, b, c)(z) =
∞∑

k=0

(λ + p)k

k!
zk+p.

Therefore, the function fλ
µ,p(a, b, c)(z) has the following explicit form

fλ
µ,p(a, b, c)(z) =

∞∑

k=0

(λ + p)k(c)k

((1 + µ(k + p− 1))(a)k(b)k
zk+p (z ∈ U). (1.7)

Combining (1.1), (1.4), together with (1.7), we have

Iλ
µ,p(a, b, c)f(z) = zp +

∞∑

k=1

(λ + p)k(c)k

((1 + µ(k + p− 1))(a)k(b)k
ak+pz

k+p (z ∈ U).
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In particular, we have

Iλ
0,p(a, λ + p, a)f(z) = f(z) and I1

0,p(a, p, a)f(z) =
zf ′(z)

p
.

By using the operator Iλ
µ,p(a, b, c) for λ > −p, µ ≥ 0 and φ, ψ ∈ M , we introduce the subclasses

of Ap as below:
Sλ

µ,p(a, b, c)(φ) =
{
f ∈ Ap : Iλ

µ,p(a, b, c)f(z) ∈ S∗p (φ)
}

,

Kλ
µ,p(a, b, c)(φ) =

{
f ∈ Ap : Iλ

µ,p(a, b, c)f(z) ∈ Kp(φ)
}

,

and
Cλ

µ,p(a, b, c)(φ, ψ) =
{
f ∈ Ap : Iλ

µ,p(a, b, c)f(z) ∈ Cp(φ, ψ)
}

.

It is easy to verify that

f ∈ Kλ
µ,p(a, b, c)(φ) ⇐⇒ zf ′(z)

p
∈ Sλ

µ,p(a, b, c)(φ). (1.8)

As a special case, when p = 1, we obtain

Sλ
µ,1(a, b, c)(φ) = Sλ

µ(a, b, c)(φ), Kλ
µ,1(a, b, c)(φ) = Kλ

µ(a, b, c)(φ),

and
Cλ

µ,1(a, b, c)(φ, ψ) = Cλ
µ(a, b, c)(φ, ψ),

which were introduced and investigated recently by Srivastava et al. [16].
For the sake of convenience, we write

Sλ
µ,p(a, b, c)(

1 + Az

1 + Bz
) = Sλ

µ,p(a, b, c;A,B), −1 ≤ B < A ≤ 1,

Kλ
µ,p(a, b, c)(

1 + Az

1 + Bz
) = Kλ

µ,p(a, b, c;A,B) − 1 ≤ B < A ≤ 1,

and
Cλ

µ,p(a, b, c)(
1 + Az

1 + Bz
;
1 + Az

1 + Bz
) = Cλ

µ,p(a, b, c;A,B) − 1 ≤ B < A ≤ 1.

In this paper, we investigate several inclusion properties of the classes Sλ
µ,p(a, b, c)(φ),

Kλ
µ,p(a, b, c)(φ) and Cλ

µ,p(a, b, c)(φ, ψ) associated with the operator Iλ
µ,p(a, b, c). Also, we point

out some new or known consequences of our main results.

2. Preliminary results

In order to establish our main results, we shall require the following lemmas.

Lemma 2.1 Let fλi
µ,p(a, b, c)(z), fλ

µ,p(ai, b, c)(z), fλ
µ,p(a, bi, c)(z) and fλ

µ,p(a, b, ci)(z) be defined

by (1.7). Then, for λi > −p; ai, bi, ci ∈ R \ Z−0 (Z−0 = {0,−1,−2, · · · }) (i = 1, 2) and µ ≥ 0,

fλ2
µ,p(a, b, c)(z) = fλ1

µ,p(a, b, c)(z) ∗ φp(λ2 + p, λ1 + p)(z), (2.1)

fλ
µ,p(a1, b, c)(z) = fλ

µ,p(a2, b, c)(z) ∗ φp(a2, a1)(z), (2.2)

fλ
µ,p(a, b1, c)(z) = fλ

µ,p(a, b2, c)(z) ∗ φp(b2, b1)(z), (2.3)
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and

fλ
µ,p(a, b, c1)(z) = fλ

µ,p(a, b, c2)(z) ∗ φp(c1, c2)(z), (2.4)

where

φp(α, β)(z) =
∞∑

k=0

(α)k

(β)k
zk+p, z ∈ U.

Proof From (1.7), we have

fλ2
µ,p(a, b, c)(z) =

∞∑

k=0

(λ2 + p)k(c)k

((1 + µ(k + p− 1))(a)k(b)k
zk+p

=
∞∑

k=0

(λ1 + p)k(c)k

((1 + µ(k + p− 1))(a)k(b)k
· (λ2 + p)k

(λ1 + p)k
zk+p

= fλ1
µ,p(a, b, c)(z) ∗ φp(λ2 + p, λ1 + p)(z)

and the assertion (2.1) is proved. The proof of (2.2)–(2.4) is similar to that of (2.1) and the
details involved may be omitted.

Lemma 2.2 ([11]) Let f ∈ K and g ∈ S∗. Then, for every analytic function W in U,

(f ∗Wg)(U)
(f ∗ g)(U)

⊂ co[W (U)],

where co[W (U)] denotes the closed convex hull of W (U).

Lemma 2.3 ([15]) Let 0 < α ≤ β. If β ≥ 2 or α + β ≥ 3, then the function

φ1(α, β)(z) =
∞∑

k=0

(α)k

(β)k
zk+1, z ∈ U

belongs to the class K of convex functions.

3. Main results

Our first main result is contained in Theorem 3.1 as follows.

Theorem 3.1 Let −p < λ2 ≤ λ1, µ ≥ 0 and φ ∈ M with

Re(φ(z)) >
p− 1

p
, p ∈ N; z ∈ U. (3.1)

If λ1 ≥ 2− p or λ1 + λ2 ≥ 3− 2p, then

Sλ1
µ,p(a, b, c)(φ) ⊂ Sλ2

µ,p(a, b, c)(φ). (3.2)

Proof Let f ∈ Sλ1
µ,p(a, b, c)(φ). Then, by the definition of the class Sλ1

µ,p(a, b, c)(φ), we have

z[Iλ1
µ,p(a, b, c)f(z)]′

pIλ1
µ,p(a, b, c)f(z)

= φ[ω(z)], z ∈ U, (3.3)

where φ is convex univalent with Re[φ(z)] > 0 and |ω(z)| < 1 in U with ω(0) = 0 = φ(0) − 1.
Therefore,

z[z1−p(Iλ1
µ,p(a, b, c)f(z))]′

z1−p(Iλ1
µ,p(a, b, c)f(z))

= p[φ(ω(z))− 1] + 1 ≺ 1 + z

1− z
. (3.4)
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Applying (1.4), (2.1), (3.3) and the properties of convolution, we get

z[Iλ2
µ,p(a, b, c)f(z)]′

pIλ2
µ,p(a, b, c)f(z)

=
z[(fλ2

µ,p(a, b, c) ∗ f)(z)]′

p[(fλ2
µ,p(a, b, c) ∗ f)(z)]

=
z[(fλ1

µ,p(a, b, c) ∗ φp(λ2 + p, λ1 + p) ∗ f)(z)]′

p[(fλ1
µ,p(a, b, c) ∗ φp(λ2 + p, λ1 + p) ∗ f)(z)]

=
φp(λ2 + p, λ1 + p)(z) ∗ z[Iλ1

µ,p(a, b, c)f(z)]′

p[φp(λ2 + p, λ1 + p)(z) ∗ Iλ1
µ,p(a, b, c)f(z)]

=
φp(λ2 + p, λ1 + p)(z) ∗ pφ[ω(z)]Iλ1

µ,p(a, b, c)f(z)

pφp(λ2 + p, λ1 + p)(z) ∗ Iλ1
µ,p(a, b, c)f(z)

. (3.5)

It follows from (3.4) that z1−pIλ1
µ,p(a, b, c)f(z) ∈ S∗. Also, by Lemma 2.3, we see that z1−pφp(λ2+

p, λ1 + p)(z) ∈ K. Thus, an application of Lemma 1 to (3.5) yields

{[z1−pφp(λ2 + p, λ1 + p)] ∗ φ[ω(z)]z1−pIλ1
µ,p(a, b, c)f}(U)

{[z1−pφp(λ2 + p, λ1 + p)] ∗ z1−pIλ1
µ,p(a, b, c)f}(U)

⊂ coφ[ω(U)], (3.6)

because φ is convex univalent function.
Thus, from the definition of subordination and (3.6), we have

z[Iλ2
µ,p(a, b, c)f(z)]′

pIλ2
µ,p(a, b, c)f(z)

≺ φ(z) (z ∈ U),

and so f ∈ Sλ2
µ,p(a, b, c)(φ). The proof of Theorem 3.1 is completed. ¤

Theorem 3.2 Let 0 < a2 ≤ a1, λ > −p, µ ≥ 0 and φ ∈ M with (3.1) holding. If a1 ≥ 2 or

a1 + a2 ≥ 3, then

Sλ
µ,p(a2, b, c)(φ) ⊂ Sλ

µ,p(a1, b, c)(φ).

Proof Let f ∈ Sλ
µ,p(a2, b, c)(φ). Then z1−pIλ

µ,p(a2, b, c)f(z) ∈ S∗. Using (2.2) and the same
techniques as in the proof of Theorem 3.1, we get

z[Iλ
µ,p(a1, b, c)f(z)]′

pIλ
µ,p(a1, b, c)f(z)

=
z[(fλ

µ,p(a1, b, c) ∗ f)(z)]′

p[(fλ
µ,p(a1, b, c) ∗ f)(z)]

=
z[(fλ

µ,p(a2, b, c) ∗ φp(a2, a1) ∗ f)(z)]′

p[(fλ
µ,p(a2, b, c) ∗ φp(a2, a1) ∗ f)(z)]

=
φp(a2, a1)(z) ∗ z[Iλ

µ,p(a2, b, c)f(z)]′

p[φp(a2, a1)(z) ∗ Iλ
µ,p(a2, b, c)f(z)]

=
φp(a2, a1)(z) ∗ pφ[ω(z)]Iλ

µ,p(a2, b, c)f(z)
p[φp(a2, a1)(z) ∗ Iλ

µ,p(a2, b, c)f(z)]

=
φp(a2, a1)(z) ∗ φ[ω(z)]Iλ

µ,p(a2, b, c)f(z)
φp(a2, a1)(z) ∗ Iλ

µ,p(a2, b, c)f(z)
. (3.7)

In view of Lemma 2.3, we have z1−pφp(a2, a1)(z) ∈ K, and by applying Lemma 2.2 to (3.7), we
conclude that f ∈ Sλ

µ,p(a1, b, c)(φ). ¤
By means of (2.3) and (2.4), and using the similar method of the proof of Theorem 3.2, we

get the following results.
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Theorem 3.3 (i) Let 0 < b2 ≤ b1, λ > −p, µ ≥ 0 and φ ∈ M with (3.1) holding. If b1 ≥ 2 or

b1 + b2 ≥ 3, then

Sλ
µ,p(a, b2, c)(φ) ⊂ Sλ

µ,p(a, b1, c)(φ).

(ii) Let 0 < c1 ≤ c2, λ > −p, µ ≥ 0 and φ ∈ M with (3.1) holding. If c2 ≥ 2 or c1 + c2 ≥ 3,

then

Sλ
µ,p(a, b, c2)(φ) ⊂ Sλ

µ,p(a, b, c1)(φ).

Theorem 3.4 (i) Let −p < λ2 ≤ λ1, µ ≥ 0 and φ ∈ M with (3.1) holding. If λ1 ≥ 2 − p or

λ1 + λ2 ≥ 3− 2p, then

Kλ1
µ,p(a, b, c)(φ) ⊂ Kλ2

µ,p(a, b, c)(φ). (3.8)

(ii) Let 0 < a2 ≤ a1, λ > −p, µ ≥ 0 and φ ∈ M with (3.1) holding. If a1 ≥ 2 or a1 +a2 ≥ 3,

then

Kλ
µ,p(a2, b, c)(φ) ⊂ Kλ

µ,p(a1, b, c)(φ).

Proof We first prove the part (i). Let f ∈ Kλ1
µ,p(a, b, c)(φ). Then from (1.8) and (3.2), we have

f ∈ Kλ1
µ,p(a, b, c)(φ) ⇐⇒ zf ′

p
∈ Sλ1

µ,p(a, b, c)(φ)

=⇒ zf ′

p
∈ Sλ2

µ,p(a, b, c)(φ)

⇐⇒ f ∈ Kλ2
µ,p(a, b, c)(φ).

Therefore, the assertion (3.8) of Theorem 3.4 holds true. Similarly, we can prove that the part
(ii) also holds true. ¤

Theorem 3.5 (i) Let 0 < b2 ≤ b1, λ > −p, µ ≥ 0 and φ ∈ M with (3.1) holding. If b1 ≥ 2 or

b1 + b2 ≥ 3, then

Kλ
µ,p(a, b2, c)(φ) ⊂ Kλ

µ,p(a, b1, c)(φ).

(ii) Let 0 < c1 ≤ c2, λ > −p, µ ≥ 0 and φ ∈ M with (3.1) holding. If c2 ≥ 2 or c1 + c2 ≥ 3,

then

Kλ
µ,p(a, b, c2)(φ) ⊂ Kλ

µ,p(a, b, c1)(φ).

Proof Applying the same techniques as in the proof of Theorem 3.4, and using (1.8) in con-
junction with Theorem 3.3, we obtain the results asserted by Theorem 3.5. ¤

Corollary 3.1 Let p ∈ N and

Re(
1 + Az

1 + Bz
) >

p− 1
p

, −1 ≤ B < A ≤ 1; z ∈ U.

If λi, ai, bi, and ci (i = 1, 2) satisfy the following conditions:

(1) −p < λ2 ≤ λ1 and λ1 ≥ min{2− p, 3− 2p− λ2},
(2) 0 < a2 ≤ a1 and a1 ≥ min{2, 3− a2},
(3) 0 < b2 ≤ b1 and b1 ≥ min{2, 3− b2},
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(4) 0 < c1 ≤ c2 and c2 ≥ min{2, 3− c1},
then for µ ≥ 0,

Sλ1
µ,p(a2, b2, c2;A,B) ⊂ Sλ2

µ,p(a2, b2, c2;A,B) ⊂ Sλ2
µ,p(a1, b2, c2;A,B)

⊂ Sλ2
µ,p(a1, b1, c2;A,B) ⊂ Sλ2

µ,p(a1, b1, c1;A,B) (3.9)

and

Kλ1
µ,p(a2, b2, c2;A,B) ⊂ Kλ2

µ,p(a2, b2, c2;A,B) ⊂ Kλ2
µ,p(a1, b2, c2;A,B)

⊂ Kλ2
µ,p(a1, b1, c2;A,B) ⊂ Kλ2

µ,p(a1, b1, c1;A,B). (3.10)

Proof Taking φ(z) = 1+Az
1+Bz (−1 ≤ B < A ≤ 1), we have φ ∈ M . Thus, by applying Theorems

3.1–3.3, we obtain (3.9), and using Theorems 3.4 and 3.5, we get (3.10). ¤
To prove next theorems, we will use the following lemma.

Lemma 3.1 Let p ∈ N and φ ∈ M with (3.1) holding. If f ∈ K and q ∈ S∗p (φ), then

(zp−1f) ∗ q ∈ S∗p (φ).

Proof If q ∈ S∗p (φ), then, from the definition of the class S∗p (φ), we know that

zq′(z) = pφ(ω(z))q(z),

where ω is a Schwarz function. Thus,

z[(zp−1f(z)) ∗ q(z)]′

p[(zp−1f(z)) ∗ q(z)]
=

(zp−1f(z)) ∗ zq′(z)
p[(zp−1f(z)) ∗ q(z)]

=
zp−1f(z) ∗ pφ(ω(z))q(z)

p[zp−1f(z) ∗ q(z)]
=

f(z) ∗ φ(ω(z))z1−pq(z)
f(z) ∗ z1−pq(z)

. (3.11)

By using similar method to those in the proof of Theorem 3.1, we deduce that (3.11) is subordi-
nate to φ in U, and hence (zp−1f) ∗ q ∈ S∗p (φ). ¤

Lemma 4 in [14] is a special case of the above Lemma 3.1.

Theorem 3.6 Let p ∈ N, −p < λ2 ≤ λ1, µ ≥ 0 and φ, ψ ∈ M , and let φ, ψ satisfy (3.1). If

λ1 ≥ 2− p or λ1 + λ2 ≥ 3− 2p, then

Cλ1
µ,p(a, b, c)(φ, ψ) ⊂ Cλ2

µ,p(a, b, c)(φ, ψ).

Proof Let f ∈ Cλ1
µ,p(a, b, c)(φ, ψ). Then there exists a function q1 ∈ S∗p (φ) such that

z[Iλ1
µ,p(a, b, c)f(z)]′

pq1(z)
≺ ψ(z), z ∈ U,

which implies that

z[Iλ1
µ,p(a, b, c)f(z)]′ = pq1(z)ψ[ω(z)],

where ω is a Schwarz function.

From Lemma 3.1, we easily find that

q2(z) = φp(λ2 + p, λ1 + p)(z) ∗ q1(z) ∈ S∗p (φ).
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Then, by using the same method of the proof of Theorem 3.1, we have

z[Iλ2
µ,p(a, b, c)f(z)]′

pq2(z)
=

φp(λ2 + p, λ1 + p)(z) ∗ z[Iλ1
µ,p(a, b, c)f(z)]′

pφp(λ2 + p, λ1 + p)(z) ∗ q1(z)

=
φp(λ2 + p, λ1 + p)(z) ∗ pq1(z)ψ[ω(z)]

pφp(λ2 + p, λ1 + p)(z) ∗ q1(z)

=
z1−pφp(λ2 + p, λ1 + p)(z) ∗ z1−pq1(z)ψ[ω(z)]

z1−pφp(λ2 + p, λ1 + p)(z) ∗ z1−pq1(z)
≺ ψ(z) (z ∈ U).

Therefore we have f ∈ Cλ2
µ,p(a, b, c)(φ, ψ). ¤

Finally, by using arguments similar to those in the proof of Theorem 3.6, we easily derive
the following results. Here, we choose to omit the details involved.

Theorem 3.7 Let 0 < a2 ≤ a1, λ > −p, µ ≥ 0 and φ, ψ ∈ M , and let φ, ψ satisfy (3.1). If

a1 ≥ 2 or a1 + a2 ≥ 3, then

Cλ
µ,p(a2, b, c)(φ, ψ) ⊂ Cλ

µ,p(a1, b, c)(φ, ψ).

Theorem 3.8 (i) Let 0 < b2 ≤ b1, λ > −p, µ ≥ 0 and φ, ψ ∈ M , and let φ, ψ satisfy (3.1). If

b1 ≥ 2 or b1 + b2 ≥ 3, then

Cλ
µ,p(a, b2, c)(φ, ψ) ⊂ Cλ

µ,p(a, b1, c)(φ, ψ).

(ii) Let 0 < c1 ≤ c2, λ > −p, µ ≥ 0 and φ, ψ ∈ M , and let φ, ψ satisfy (3.1). If c2 ≥ 2 or

c1 + c2 ≥ 3, then

Cλ
µ,p(a, b, c2)(φ, ψ) ⊂ Cλ

µ,p(a, b, c1)(φ, ψ).

Upon setting

φ(z) = ψ(z) =
1 + Az

1 + Bz
, −1 ≤ B < A ≤ 1; z ∈ U

in Theorems 3.6–3.8, we get the following result.

Corollary 3.2 Under the conditions of Corollary 3.1, we have

Cλ1
µ,p(a2, b2, c2;A,B) ⊂ Cλ2

µ,p(a2, b2, c2;A,B) ⊂ Cλ2
µ,p(a1, b2, c2;A,B)

⊂ Cλ2
µ,p(a1, b1, c2;A,B) ⊂ Cλ2

µ,p(a1, b1, c1;A,B).

Remark 3.1 (i) Putting p = 1 and λ = λ2 = λ1−1 (λ ≥ 0) in Theorems 3.1 and 3.6, respectively,
we have the results obtained by Srivastava et al. [16, Theorems 1 and 4, respectively].

(ii) Taking p = 1 and a = a2 = a1 − 1 (a ≥ 1) in Theorems 3.2 and 3.7, respectively, we
get the results obtained by Srivastava et al. [16, Theorems 2 and 5, respectively].

(iii) Setting p = 1, λ = λ2 = λ1 − 1 (λ ≥ 0) and a = a2 = a1 − 1 (a ≥ 1) in the assertions
(i) and (ii) of Theorems 3.4, respectively, we obtain the results obtained by Srivastava et al. [16,
Corollary 3].
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