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Abstract Let Mi be a compact orientable 3-manifold, and Fi be an incompressible surface

on ∂Mi, i = 1, 2. Let f : F1 → F2 be a homeomorphism, and M = M1 ∪f M2. In this paper,

under certain assumptions for the attaching surface Fi, we show that if both M1 and M2 have

Heegaard splittings with distance at least 2(g(M1)+g(M2))+1, then g(M) = g(M1)+g(M2).
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1. Introduction

Let M = M1 ∪F M2 be a decomposition of M into two compact connected orientable 3-
manifolds along a connected incompressible separating surface F which is properly embedded
in M . A central topic in 3-manifold theory is to study how g(M) is related to χ(F ), g(M1)
and g(M2). Suppose F is a closed surface, and let Vi ∪Si Wi be a Heegaard splitting of Mi for
i=1,2. Then M has a natural Heegaard splitting V ∪S W which is called the amalgamation of
V1 ∪S1 W1 and V2 ∪S2 W2 (see [1]). From this point of view, g(M) ≤ g(M1) + g(M2)− g(F ), and
if the Heegaard genera of M1 and M2 are additive, then F must be a 2-sphere. Suppose F is
a bounded surface, by the so-called disk version of Haken’s lemma, the Heegaard genera of M1

and M2 are additive, and it has been shown that g(M) ≤ g(M1) + g(M2) always holds [2]. In
recent years, many papers have given sufficient conditions on the additivity of Heegaard genera
of 3-manifolds. For example, if F is an annulus, various results about if g(M) = g(M1) + g(M2)
holds or not have been given [2–4]. In general, if F is a bounded surface, g(M) is determined by
the Euler characteristic of F and the pattern of F on both ∂M1 and ∂M2.

The main results of this paper are the following:

Theorem 1.1 Let M = M1 ∪F M2, where Mi is an irreducible ∂-irreducible 3-manifold, and

F is an incompressible pants on one component Pi of ∂Mi, i = 1, 2. If both M1 and M2 have

Heegaard splittings with distance at least 2(g(M1) + g(M2)) + 1, then g(M) = g(M1) + g(M2).

Remark 1.1 Theorem 1.1 above and Theorem 4 in [2] show that the Heegaard genera of 3-
manifolds are additive under the annulus and pants sum of high distance Heegaard splitings, i.e.,
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the Heegaard genus of the surface sum of M1 and M2 has no relationship with the pattern of
the attaching surfaces F on both P1 and P2.

Theorem 1.2 Let M = M1 ∪F M2, where Mi is an irreducible ∂-irreducible 3-manifold, and

F is a bounded connected incompressible surface on one component Pi of ∂Mi, i = 1, 2. If

both M1 and M2 have Heegaard splittings with distance at least 2(g(M1) + g(M2)) + 1, and

F is non-separating on at least one of P1 and P2 and χ(F ) ≥ 1 − g(Pi) for i = 1, 2, then

g(M) = g(M1) + g(M2).

Theorem 1.3 Let M = M1∪F M2, where Mi is an irreducible ∂-irreducible 3-manifold, and F

is a bounded connected incompressible surface on one component Pi of ∂Mi, i = 1, 2. If both M1

and M2 have Heegaard splittings with distance at least 2(g(M1)+g(M2))+1, and F is complete

separating on both P1 and P2 and χ(F ) ≥ 2 − n, then g(M) = g(M1) + g(M2), where n is the

number of boundary components of F .

Theorem 1.4 Let M = M1 ∪F M2, where Mi is an irreducible ∂-irreducible 3-manifold, and

F is an incompressible pants on one component Pi of ∂Mi, i = 1, 2. If both M1 and M2 have

Heegaard splittings with distance at least 2(g(M1) + g(M2)) + 1, and F is non-separating on

both P1 and P2, then the length of any minimal Heegaard splitting is three.

2. Preliminaries

We are working in the PL category. All 3-manifolds M in this paper are assumed to be
compact and orientable. Furthermore, we assume that ∂M contains no spherical component.

Let F be either a properly embedded connected surface in a 3-manifold M or a connected
sub-surface of ∂M . If there is an essential simple closed curve on F which bounds a disk in M

or F is a 2–sphere which bounds a 3-ball in M , then we say F is compressible; otherwise, F is
said to be incompressible. If F is an incompressible surface not ∂-parallel to ∂M , then F is said
to be essential. If M contains an essential 2-sphere, then M is said to be reducible; otherwise,
M is said to be irreducible.

A compression body V is a 3-manifold obtained by attaching 2–handles to F × I, along a
collection of pairwise disjoint simple closed curves on F ×{0}, then capping off resulting 2-sphere
boundary components with 3-balls, where F is a connected closed surface. Let ∂+V = F × {1}
and ∂−V = ∂V − ∂+V . Note that if ∂−V = ∅, then V is called a handlebody. In particular, if
V = F × I, then V is called a trivial compression body.

Let M be a 3-manifold. If there is a closed surface S which cuts M into two compression
bodies V and W with S = ∂+V = ∂+W , then we say M has a Heegaard splitting, denoted by
M = V ∪S W ; and S is called a Heegaard surface of M . Moreover, if the genus g(S) of S is
minimal among all the Heegaard surfaces of M , then g(S) is called the genus of M , denoted by
g(M).

If there are essential disks B ⊂ V and D ⊂ W such that ∂D = ∂B (resp., ∂B ∩ ∂D = ∅),
then V ∪S W is said to be reducible (resp., weakly reducible); otherwise, it is said to be irreducible
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(resp., strongly irreducible), see [5].

Let M = V ∪S W be a Heegaard splitting. Then V ∪S W has a thin position as

V ∪S W = (V ′
1 ∪S′1 W ′

1) ∪H1 · · · ∪Hn−1 (V ′
n ∪S′n W ′

n)

where n ≥ 2, each component of H1, . . . , Hn−1 is an essential closed surface in M and V ′
i ∪S′i W ′

i

is a strongly irreducible Heegaard splitting for 1 ≤ i ≤ n. We call n the length of the thin
position [6].

Let V ∪S W be a Heegaard splitting of M . The distance between two essential simple closed
curves α and β in S, denoted by d(α, β), is the smallest integer n ≥ 0 so that there is a sequence
of essential simple closed curves α = α0, α1, . . . , αn = β in S such that αi is disjoint from αi−1

for 1 ≤ i ≤ n. The distance of the Heegaard splitting V ∪S W is d(S) = Min{d(α, β)}, where α

bounds a disk in V and β bounds a disk in W . For more details, see [7].

Let M be a 3-manifold. If M is homeomorphic to S × I, where S is a connected closed
surface, then M is called a product I-bundle of closed surface S.

Let P be a connected closed surface, F be a bounded sub-surface on P . If P − intF is
connected, then F is said to be non-separating on P ; otherwise, F is said to be separating on
P . If F is separating on P and each boundary component of F is also separating on P , then F

is called complete separating on P ; otherwise, F is called non-complete separating on P .

Let M1 and M2 be two 3-manifolds, Pi be one component of ∂Mi and Fi be a bounded
connected incompressible sub-surface on Pi for i = 1, 2. Let f : F1 → F2 be a homeomorphism.
Then the manifold M obtained by gluing M1 and M2 along F1 and F2 via f is called the surface
sum of M1 and M2 along the bounded surface F1 and F2, and we denote it by M = M1 ∪f M2

or M = M1 ∪F M2. Let Pi × [0, 1] be a regular neighborhood of Pi in Mi, denote Pi = Pi ×{0},
P i = Pi × {1}, M i = Mi − Pi × [0, 1) for i = 1, 2, and M∗ = (P1 × I) ∪F (P2 × I). Then
M = M1 ∪P 1 M∗ ∪P 2 M2, where M∗ is called the surface sum of product I-bundle of closed
surfaces P1 and P2 along F .

Lemma 2.1 ([2]) Let M be the surface sum of two irreducible, ∂-irreducible 3-manifolds M1

and M2 along a bounded connected surface F , and let ∂i be the component of ∂Mi containing

F . If both M1 and M2 have Heegaard splittings with distance at least 2(g(M1) + g(M2)) + 1,

then any minimal Heegaard splitting of M is the amalgamation of Heegaard splittings of M1,

M2 and M∗ along P 1 and P 2.

Let M = M1 ∪F M2 be the surface sum of two irreducible, ∂-irreducible 3-manifolds M1

and M2 along a bounded connected surface F . Let Mi = Vi ∪Si
Wi be a Heegaard splitting of

Mi such that F ⊂ Pi ⊂ ∂−Wi and Pi × I is disjoint from Si (i = 1, 2). Now let γi be a vertical
arc in Wi such that the endpoints e1(γi) ⊂ ∂+Wi and e2(γ1) = e2(γ2) ⊂ intF . Let N(γ1 ∪ γ2)
be a regular neighborhood of γ1 ∪ γ2 in W1 ∪W2. Let V = V1 ∪N(γ1 ∪ γ2) ∪ V2, and let W be
the closure of (W1 ∪W2)−N(γ1 ∪ γ2).

The following Lemma 2.2 indicates that V ∪S W is a Heegaard splitting of M . We call it
the surface sum of Heegaard splittings M1 = V1 ∪S1 W1 and M2 = V2 ∪S2 W2 along F .
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Lemma 2.2 ([2]) V ∪S W is a Heegaard splitting of M , where S = ∂+V = ∂+W .

Remark 2.1 By Lemma 2.2, g(M) ≤ g(M1) + g(M2).

Lemma 2.3 ([8]) Let M be a Haken 3-manifold containing an orientable incompressible surface

of genus g. Then any Heegaard splitting of M has distance at most 2g.

Lemma 2.4 ([9]) Let M0 = (P 1 × I)∪ F (P 2 × I), where Pi (i = 1, 2) is a connected orientable

closed surface with genus at least two, and F is an incompressible pants on both P1 × {0} and

P2 × {0}. If F is non-separating on P1 × {0} (resp., P2 × {0}). Then

(1) M0 contains no essential closed surface, if F is non-separating on P2 × {0} (resp.,

P1 × {0}).
(2) M0 contains six types of essential closed surfaces up to isotopy, if F is complete sepa-

rating on P2 × {0} (resp., P1 × {0}).
(3) M0 contains two types of essential closed surfaces up to isotopy, if F is non-complete

separating on P2 × {0} (resp., P1 × {0}).
Definitions and terms which are not defined here are standard [10, 11].

3. Heegaard genus of the surface sum of product I-bundle of closed
surfaces

Proposition 3.1 Let M∗ = (P 1 × I) ∪ F (P 2 × I), where Pi (i = 1, 2) is a connected closed

surface, and F is a bounded connected incompressible surface on both P1×{0} and P2×{0}. If

F is non-separating on at least one of P1 × {0} and P2 × {0}, and χ(F ) ≥ 1− g(Pi) for i = 1, 2,

then g(M∗) = g(P1) + g(P2).

Proof Let Pi×{0} = Pi, and Pi×{1} = P i, i = 1, 2. Since F is non-separating on at least one of
P1 and P2, M∗ contains three boundary components P 1, P 2 and P ∗ = (P1− intF )∪(P2− intF ).

Let M∗ = V ∪S W be a minimal Heegaard splitting of M∗. Then g(S) = g(M∗). Since any
Heegaard splitting of M∗ has to have at least two of P 1, P 2 and P ∗ on one side, it follows

g(S) ≥ g(P 1) + g(P 2) or g(S) ≥ g(P 1) + g(P ∗) or g(S) ≥ g(P 2) + g(P ∗).

Since χ(P ∗) = χ(P1) + χ(P2) − 2χ(F ), we have g(P ∗) = g(P1) + g(P2) + χ(F ) − 1. Note that
χ(F ) ≥ 1− g(Pi) for i = 1, 2, thus

g(P ∗) = g(P1) + g(P2) + χ(F )− 1 ≥ g(P1),

g(P ∗) = g(P1) + g(P2) + χ(F )− 1 ≥ g(P2).

By the above assumption, g(Pi) = g(P i) for i = 1, 2. Hence g(S) ≥ g(P1) + g(P2). Clearly,
g(Pi × I) = g(Pi), i = 1, 2. By Lemma 2.2, g(S) ≤ g(P1) + g(P2). Therefore, g(M∗) =
g(P1) + g(P2). ¤

Proposition 3.2 Let M∗ = (P 1 × I)∪ F (P 2 × I), where Pi (i = 1, 2) is a connected orientable

closed surface, and F is a bounded connected incompressible surface on both P1 × {0} and
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P2 × {0}. If F is complete separating on both P1 × {0} and P2 × {0}, and χ(F ) ≥ 2 − n, then

g(M∗) = g(P1) + g(P2), where n is the number of boundary components of F .

Proof Let Pi × {0} = Pi, and Pi × {1} = P i, i = 1, 2. Since F is complete separating
on both P1 and P2, without loss of generality, we assume P1 − intF = P 1

1 ∪ P 2
1 ∪ · · · ∪ Pn

1 ,
P2− intF = P 1

2 ∪P 2
2 ∪ · · · ∪Pn

2 , and ∂P j
i = ∂P j

3−i for i = 1, 2, 1 ≤ j ≤ n, where n is the number
of boundary components of F . Thus M∗ contains n + 2 boundary components P 1, P 2, P 1

1 ∪P 1
2 ,

P 2
1 ∪ P 2

2 , . . . , Pn
1 ∪ Pn

2 . Let P j
i ∪ P j

3−i = P j
∗ for i = 1, 2, 1 ≤ j ≤ n.

Let M∗ = V ∪S W be a minimal Heegaard splitting of M∗. Then g(S) = g(M∗). Since Pi×I

is a trivial compression body, g(Pi × I) = g(Pi), i = 1, 2. By Lemma 2.2, g(S) ≤ g(P1) + g(P2),
then P 1, P 2, P 1

∗ , P 2
∗ , . . . , Pn

∗ cannot lie in one side of S; otherwise g(S) > g(P1) + g(P2), a
contradiction. Furthermore, if P 1 and P 2 lie in one side of S, then no other boundary component
of M∗ lies in the same side of S.

Since each side of S contains at least one boundary component of M∗, we have

2g(S) ≥ g(P 1) + g(P 2) + g(P 1
∗ ) + g(P 2

∗ ) + · · ·+ g(Pn
∗ ).

Note that

χ(P 1
∗ ) + χ(P 2

∗ ) + · · ·+ χ(Pn
∗ ) = χ(P1) + χ(P2)− 2χ(F ),

and g(Pi) = g(P i) for i = 1, 2, then g(S) ≥ (g(P1) + g(P2)). Therefore, g(M∗) = g(P1) + g(P2).
¤

Proposition 3.3 Let M∗ = (P 1× I)∪ F (P 2× I), where Pi (i = 1, 2) is a connected orientable

closed surface, and F is an incompressible pants on both P1×{0} and P2×{0}. Then g(M∗) =
g(P1) + g(P2).

Proof Let Pi × {0} = Pi, and Pi × {1} = P i, i = 1, 2. Since F is an incompressible pants on
both P1 and P2, then g(Pi) ≥ 2 for i = 1, 2.

By Propositions 3.1 and 3.2, if F is non-separating on at least one of P1 and P2 or complete
separating on both P1 and P2, g(M∗) = g(P1) + g(P2).

Now there are two cases.

Case 1 F is non-complete separating on one of P1 and P2, while complete separating on the
other.

In this case, without loss of generality, we suppose F is non-complete separating on P1, while
complete separating on P2. Let P1−intF = P 1

1 ∪P 2
1 , P2−intF = P 1

2 ∪P 2
2 ∪P 3

2 , ∂P 1
1 = ∂P 1

2 ∪∂P 2
2 ,

where each boundary component of P 1
1 is non-separating on P1. By the above assumptions, M∗

contains four boundary components P 1, P 2, P ∗ = P 1
1 ∪ P 1

2 ∪ P 2
2 and P ∗∗ = P 2

1 ∪ P 3
2 .

Let M∗ = V ∪S W be a minimal Heegaard splitting of M∗. Then g(S) = g(M∗). Thus as
above argument, if P 1 and P 2 lie in one side of S, then no other boundary component of M∗ lies
in the same side of S. No mater how the Heegaard surface S separates the boundary components
of M∗, by the definition of compression body, 2g(S) ≥ g(P 1) + g(P 2) + g(P ∗) + g(P ∗∗) always
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holds. Note that χ(P ∗) + χ(P ∗∗) = χ(P1) + χ(P2)− 2χ(F ), and χ(F ) = −1. Thus

g(P ∗) + g(P ∗∗) = g(P 1) + g(P 2)− 1,

therefore, g(S) ≥ g(P1) + g(P2)− 1/2.

Since the Heegaard genus is an integer, g(S) ≥ g(P1) + g(P2).

Since Pi × I is a trivial compression body, g(Pi × I) = g(Pi), i = 1, 2. By Lemma 2.2,
g(S) ≤ g(P1) + g(P2). Therefore g(M∗) = g(P1) + g(P2).

Case 2 F is non-separating on both P1 and P2.

Let P1 − intF = P 1
1 ∪ P 2

1 and P2 − intF = P 1
2 ∪ P 2

2 , where each boundary component of
P 1

1 is non-separating on P1, and each boundary component of P 1
2 is non-separating on P2.

Now there are two subcases.

Subcase 2.1 ∂P 1
1 = ∂P 1

2 .

In this case, M∗ contains four boundary components. By the proof of Case 1, g(M∗) =
g(P1) + g(P2).

Subcase 2.2 ∂P 1
1 6= ∂P 1

2 .

If ∂P 1
1 6= ∂P 1

2 , M∗ contains three boundary components. By the proof of Proposition 3.1,
g(M∗) = g(P1) + g(P2).

By the above argument, Proposition 3.3 holds. ¤

Remark 3.1 Proposition 3.3 cannot be generalized to an n-punctured 2-sphere for n ≥ 4.
Although g(M∗) = g(P1) + g(P2) holds if F is a four punctured 2-sphere and it is complete
separating on both P1 and P2.

4. The proofs of the main results

Proof of Theorems 1.1, 1.2 and 1.3 Let M = M1 ∪P 1 M∗ ∪P 2 M2, where M∗ = (P 1× I)∪
F (P 2×I), and Pi×{1} = P i, i = 1, 2. If F is a pants, by Proposition 3.3, g(M∗) = g(P1)+g(P2).
By Lemma 2.1, g(M) = g(M1)+g(M2)+g(M∗)−g(P1)+g(P2), therefore, g(M) = g(M1)+g(M2).
Hence Theorem 1.1 holds. By Propositions 3.1 and 3.2, and by a similar argument as above,
Theorems 1.2 and 1.3 hold. ¤

Proof of Theorem 1.4 Let M = M1 ∪P 1 M∗ ∪P 2 M2, where M∗ = (P 1× I)∪ F (P 2× I), and
Pi×{1} = P i, i = 1, 2. By Lemma 2.1, any minimal Heegaard splitting of M is the amalgamation
of Heegaard splittings of M1, M2 and M∗ along P 1 and P 2. It is easy to see that both P 1 and
P 2 are essential closed surfaces in M .

By the assumption of Theorem 1.4, M i (i = 1, 2) has a Heegaard splitting Vi ∪Si
Wi with

distance at least 2(g(M1) + g(M2)) + 1. By Lemma 2.3, M i contains no essential closed surface.
Then by Lemma 2.4, the length of any minimal Heegaard splitting of M is three if F is non-
separating on both P1 and P2. This completes the proof of Theorem 1.4. ¤
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