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Abstract In this paper, we study the case of independent sums in multi-risk model. Assume

that there exist k types of variables. The ith are denoted by {Xij , j ≥ 1}, which are i.i.d.

with common density function fi(x) ∈ OR and finite mean, i = 1, . . . , k. We investigate local

large deviations for partial sums
∑k

i=1 Sni =
∑k

i=1

∑ni
j=1 Xij .
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1. Introduction

Mainstream research on precise large deviation probabilities has been concentrated on the
study of the asymptotic relation P (Sn − ESn > x) ∼ nF̄ (x), which holds uniformly for some
x-region Tn as n → ∞. Let Sn =

∑n
i=1 Xi, where Xi are a sequence of independent identically

distributed (i.i.d.) random variables (rv’s). Xi (i ≥ 1) have a common density function f(x) of
absolutely continuous distribution function (d.f.) F (x) = 1− F̄ (x) and a finite mean µ = EX1.
See [1–5] for more details. Furthermore, Wang and Wang [6] extended the results to multi-risk
model. Lu [7] studied lower and upper bounds of large deviation for sums of subexponential
claims in a multi-risk model. In addition, Lu [8] extended the results to long-tailed class and
studied lower bounds of large deviation for sums of long-tailed claims in a multi-risk model.
Recently, more and more researchers concentrate on the local precise large deviations, which is
about the large deviation probabilities P (x < Sn − ESn ≤ x + T ). Doney [9] investigated the
probabilities of large deviations for i.i.d. integer-valued rv’s. Yang et al. [10] studied the local
precise large deviation for i.i.d. rv’s supported on (−∞,∞) with some regularly varying density
f(x), see Yang et al. [10] for more details on the local precise large deviations.

Let A(n, x) and B(n, x) be two positive functions (n = 1, 2, . . . ;x ∈ R). We say A(n, x) .
B(n, x) holds uniformly for x ∈ 4 as n → ∞, if lim supn→∞ supx∈4A(n, x)/B(n, x) 6 1.
Furthermore, we denote A(n, x) ∼ B(n, x) uniformly for x ∈ 4 as n →∞, if lim supn→∞ supx∈4
|A(n, x)/B(n, x)− 1| = 0.
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A measurable function f : R → [0,∞) is O-regularly varying (f ∈ OR), if f(x) is positive
for sufficiently large x and lim supx→∞ f(xy)/f(x) < ∞ for every fixed y > 0, or equivalently,
for every fixed y ≥ 1, 0 < lim infx→∞ f(xy)/f(x) ≤ lim supx→∞ f(xy)/f(x) < ∞. A measurable
function f : R→ [0,∞) belongs to the class L, if f(x) is positive for sufficiently large x and for ev-
ery fixed y > 0, limx→∞ f(x+y)/f(x) = 1. A measurable function f : R→ [0,∞) belongs to the
class C, if f(x) is positive for sufficiently large x, limε↓0 lim infx→∞ inf(1−ε)x≤z≤(1+ε)x f(z)/f(x) =
limε↓0 lim supx→∞ sup(1−ε)x≤z≤(1+ε)x f(z)/f(x) = 1. We have the following inclusion relation-
ship: C ⊂ L ∩ OR. A measurable function f : R → [0,∞) is almost decreasing, if lim supx→∞
supu≥x f(u)/f(x) < ∞.

A distribution function F with support on (−∞,∞) belongs toD, if lim supx→∞ F̄ (xy)/F̄ (x)
< ∞, for any y ∈ (0, 1) (or equivalently, for y = 1/2). A distribution function F with support on
(−∞,∞) belongs to C, if limy↓1 lim infx→∞ F̄ (xy)/F̄ (x) = 1 or equivalently, limy↑1 lim supx→∞
F̄ (xy)/F̄ (x) = 1.

Set γ(y) := lim infx→∞ F̄ (xy)/F̄ (x) and γF := − limy→∞{log γ(y)/ log y}. In Tang [11], γF

is called the upper Matuszewska index of a d.f. F .

These results motivate our study. In this paper, we investigate the local large deviations
for

∑k
i=1 Sni

=
∑k

i=1

∑ni

j=1 Xij , where {Xij , j ≥ 1} are i.i.d. rv’s (i = 1, . . . , k). The rest of
the paper is organized as follows. In Section 2, we present some useful propositions. The main
results are given in Section 3. Finally, the proof of the main results are presented in Section 4.

2. Preliminaries

In this section, we introduce some useful propositions which will be used in the proof of the
main results in our paper.

Proposition 2.1 ([12, Proposition 2.2.1]) Let f be positive. If f ∈ OR, then for every β < β(f),
there exist positive constants C1,β and C2,β , such that f(u)/f(x) ≥ C1,β(u/x)β for u ≥ x ≥ C2,β ,

where β(f) = limy→∞ log(lim infx→∞ f(xy)/f(x))/ log y.

Proposition 2.2 ([5, Lemma 2.1]) If F ∈ D is a distribution function with finite expectation,

1 ≤ γF < ∞, then for any ρ > γF , there exist positive constants x0 and B, such that for all

x ≥ y ≥ x0, F̄ (y)/F̄ (x) ≤ B(x/y)ρ.

Proposition 2.3 ([10, Lemma 4.3]) Let the function f(x) be a density function of some abso-

lutely continuous d.f. F (x). If f ∈ OR, then F ∈ C.

3. Main results

In this section, we give the main results using Propositions 2.1–2.3.

Theorem 3.1 For i = 1, . . . , k, let {Xij , j ≥ 1} be i.i.d. rv’s with common almost decreasing

density function fi(x) and finite expectations µi. Assume that E(X+
i )ri < ∞ for some ri > 1,

and fi(x), fj(x) (i 6= j, 1 ≤ i, j ≤ k) satisfy that lim supx→∞ fj(x)/fi(x) < ∞. Let γ and T be
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any fixed positive constants. If fi ∈ OR, then we have

k∑

i=1

L−fi
niTfi(x + µi) . P

(
x <

k∑

i=1

Sni −
k∑

i=1

niµi ≤ x + T
)

.
k∑

i=1

L+
fi

niTfi(x + µi)

holds uniformly for all x ≥ max{γn1, . . . , γnk} =: ∆(k) as ni →∞ (i = 1, . . . , k), where

L−fi
= lim

ε↓0
lim inf
x→∞

inf
(1−ε)x≤z≤(1+ε)x

fi(z)/fi(x), L+
fi

= lim
ε↓0

lim sup
x→∞

sup
(1−ε)x≤z≤(1+ε)x

fi(z)/fi(x).

With respect to Theorem 3.1, we have the following corollaries.

Corollary 3.2 If fi ∈ OR ∩ L (i = 1, 2, . . . , k) and all conditions of Theorem 3.1 are satisfied,

then

k∑

i=1

L−fi
ni(Fi(x+T )−Fi(x)) . P

(
x <

k∑

i=1

Sni−
k∑

i=1

niµi ≤ x+T

)
.

k∑

i=1

L+
fi

ni(Fi(x+T )−Fi(x))

holds uniformly for all x ≥ max{γn1, . . . , γnk} =: ∆(k) as ni →∞ (i = 1, . . . , k).

Proof Using the relation of fi ∈ OR ∩ L, we can easily get that fi(x + µi) ∼ fi(x). For any
fixed T ,

lim sup
x→∞

(Tfi(x)/(Fi(x + T )− Fi(x))) ≤
{

lim inf
x→∞

( inf
x≤u≤x+T

fi(u)/fi(x))
}−1

= 1,

lim inf
x→∞

(Tfi(x)/(Fi(x + T )− Fi(x))) ≥
{

lim sup
x→∞

( sup
x≤u≤x+T

fi(u)/fi(x))
}−1

= 1.

Combining Theorem 3.1 and the two inequalities, we get the desired result. ¤

Corollary 3.3 If all conditions of Theorem 3.1 are satisfied, in addition, fi ∈ C (i = 1, 2, . . . , k),
then

P

(
x <

k∑

i=1

Sni
−

k∑

i=1

niµi ≤ x + T

)
∼

k∑

i=1

ni(Fi(x + T )− Fi(x))

holds uniformly for all x ≥ max{γn1, . . . , γnk} =: ∆(k) as ni →∞ (i = 1, . . . , k).

Proof By fi ∈ C, we have L−fi
= L+

fi
= 1. Corollary 3.3 follows immediately from Corollary 3.2.

¤

4. Proof of Theorem 3.1

Now, we will give a proof of Theorem 3.1 in detail.
Proof Assume that µi = 0, i = 1, . . . , k. Denote v = v(x) = − log(

∑k
i=1 fi(x)). Due to

estimation (4.5) in Yang et al. [10] we have that xf1(x), xf2(x), . . . , xfk(x) vanish as x → +∞,
implying limx→+∞ v(x) = +∞. Thus, from the definition of OR and the fact that for any fixed
y > 0, (

∑k
i=1 fi(xy))/(

∑k
i=1 fi(x)) ≤ ∑k

i=1(fi(xy)/fi(x)), we can obtain that v(x) is slowly
varying.

Denote X̃i = XiI{Xi≤x/v4} (i = 1, . . . , k), X̃ij = XijI{Xij≤x/v4} (j = 1, 2, . . . , ni), and
S̃ni

=
∑ni

j=1 X̃ij (i = 1, . . . , k). Let η = η(n1, n2, . . . , nk, x) be the number of summands Xij (i =
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1, . . . , k; 1 ≤ j ≤ ni) in the sum
∑k

i=1 Sni
=

∑k
i=1

∑ni

j=1 Xij , such that Xij > x/v4, i.e.,
η =

∑k
i=1

∑ni

j=1 I{Xij>x/v4}. We have P (x <
∑k

i=1 Sni
≤ x + T ) = W0 + W1 + W2, Wi = P (x <∑k

i=1 Sni
≤ x + T, η = i), i = 0, 1 and W2 = P (x <

∑k
i=1 Sni

≤ x + T, η ≥ 2).

Estimation of W0. For any h > 0, we obtain that

W0 ≤ P

( k∑

i=1

S̃ni > x

)
≤ e−hx

k∏

i=1

(EehX̃i)ni . (1)

Using the inequality eu − 1 ≤ ueu (u ∈ R), for i = 1, . . . , k, we have that

EehX̃i = F̄i

( x

v4

)
+

∫ x
v4

−∞
ehufi(u)du

= 1 +
∫ x

v4

−∞
(ehu − 1)fi(u)du

≤ 1 +
∫ 0

−∞
(ehu − 1)fi(u)du +

∫ x
v4

0

huehufi(u)du.

For positive h and real u, |ehu−1−hu|
h ≤ |u| and, since µi is finite, µi

+ = EXiI{Xi≥0}, µi
− =

EXiI{Xi<0} (i = 1, . . . , k) are finite. Therefore, using the dominated convergence theorem, we
get

lim
h↓0

1
h

∫ 0

−∞
(ehu − 1)fi(u)du = lim

h↓0

∫ 0

−∞

ehu − 1− hu

h
fi(u)du + µi

− = µi
−, i = 1, . . . , k.

Hence, ∫ 0

−∞
(ehu − 1)fi(u)du = (1 + τi(h))hµi

−,

where τi(h) → 0 as h → 0, i = 1, . . . , k.

By the fact ∫ x
v4

0

huehufi(u)du ≤ he
hx
v4 µi

+, i = 1, . . . , k

and using 1 + x ≤ ex, we obtain that for h > 0,

W0

k∑
i=1

fi(x)
≤ e−hx+v

k∏

i=1

(1 + (1 + τi(h))hµi
− + he

hx
v4 µi

+)ni

≤ exp
{
− hx + v +

k∑

i=1

nih
[
(1 + τi(h))µi

− + e
hx
v4 µi

+

]}
.

The function v(x) is slowly varying, so v(x)/x vanishes as x → 0. Setting h = h(x) = 2v(x)/x,
we get

W0

k∑
i=1

fi(x)
≤ exp

{
− v(x) +

2v(x)
γ

k∑

i=1

[
(1 + τi(h))µi

− + e
2

v3 µi
+

]}

holds uniformly for x ≥ ∆(k).
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For i = 1, . . . , k, we have

lim
x→∞

(1 + τi(h))µi
− + e

2
v3 µi

+ = µi
− + µi

+ = 0,

and we get

lim
x→∞

W0

k∑
i=1

fi(x)
= 0. (2)

By the fact that W0∑k
i=1 L+

fi
niTfi(x)

≤ 1
min{n1,n2,...,nk}T ·

W0∑k
i=1 fi(x)

· (∑k
i=1

1
L+

fi

), we have

lim
n1,n2,...,nk→∞

sup
x≥∆(k)

W0

k∑
i=1

L+
fi

niTfi(x)
= 0. (3)

Next, we estimate W2. We show that W2 ≤
∑k

m=1 W2mm +
∑

1≤m<l≤k W2ml, where

W2mm = P
(
x <

k∑

i=1

Sni
≤ x + T, max

1≤j≤nm

Xmj >
x

v4
, max
l 6=m,1≤l≤k

max
1≤j≤nl

Xlj ≤ x

v4
, η ≥ 2

)
,

W2ml = P
(
x <

k∑

i=1

Sni ≤ x + T, max
1≤j≤nm

Xmj >
x

v4
, max
1≤j≤nl

Xlj >
x

v4

)
.

Since {Xmj , j ≥ 1} are i.i.d., applying the similar arguments in (5.8) in Yang et al. [10] gives

W2mm ≤
∑

1≤s<t≤nm

P (x <
k∑

i=1

Sni
≤ x + T,Xms >

x

v4
, Xmt >

x

v4
) ≤ n2

mT F̄m(
x

v4
) sup

u≥x/v4
fm(u).

Using Proposition 2.3, from fi ∈ OR, we get Fi ∈ C ⊂ D or equivalently, γFi
< ∞. Denote

q := max{−βi(fi), γFi
, i = 1, . . . , k} + 1 < ∞, by Proposition 2.2, for large x, we have that

F̄m(x/v4) = O(v4qF̄m(x)), m = 1, . . . , k. Since fm is almost decreasing and fm ∈ OR, we
obtain that supu≥x/v4 fm(u) = O(fm(x/v4)) = O(v4qfm(x)), m = 1, . . . , k.

By the arguments above, we obtain that for some positive constant C and large x,

W2mm∑k
i=1 niTfi(x)

≤ W2mm/nmTfm(x) ≤ Cnmv8qF̄m(x).

Thus, we have that

sup
x≥∆(k)

W2mm

k∑
i=1

niTfi(x)
≤ C

γ
sup

x≥∆(k)

v8q

xrm−1
sup

x≥∆(k)

xrm F̄m(x). (4)

As v = v(x) is slowly varying and rm > 1, we have v8q/xrm−1 → 0. On the other hand,
E(X+

m)rm < ∞ implies limx→∞ xrm F̄m(x) = 0. Hence, both supremums in (4) tend to zero as
n1, n2, . . . , nk → ∞. Then we have limn1,n2,...,nk→∞ supx≥∆(k)

W2mm∑k
i=1 niTfi(x)

= 0. Similarly, we

get that limn1,n2,...,nk→∞ supx≥∆(k)
W2ml∑k

i=1 niTfi(x)
= 0. Thus,

lim
n1,n2,...,nk→∞

sup
x≥∆(k)

W2∑k
i=1 niTfi(x)

= 0.
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From the fact that W2∑k
i=1 L+

fi
niTfi(x)

≤ 1
min{L+

f1
,L+

f2
,...,L+

fk
} ·

W2∑k
i=1 niTfi(x)

, we obtain that

lim
n1,n2,...,nk→∞

sup
x≥∆(k)

W2

k∑
i=1

L+
fi

niTfi(x)
= 0. (5)

Next, we consider the estimation of W1.

By the Strong Law of Large Number for i.i.d. rv’s, there exist k sequences of positive numbers
amnm , 1 ≤ m ≤ k such that amnm ↑ ∞, amnm/nm → 0, P (|Snm | > amnm) → 0 as nm →∞.

Since {Xmj , j ≥ 1} are i.i.d. rv’s, for any fixed ε ∈ (0, 1) we obtain that

W1 =
k∑

m=1

nmP
(
x <

k∑

i=1

Sni
≤ x + T,Xmnm

>
x

v4
, max
1≤j≤nm−1

Xmj ≤ x

v4
,

max
1≤l≤k,l 6=m

max
1≤j≤nl

Xlj ≤ x

v4

)

=
k∑

m=1

(W1m1 + W1m2 + W1m3),

where W1m1 = nm

∫ −amnm−1−
∑

1≤t≤k,t 6=m atnt

−∞ MP dQ, W1m2 = nm

∫ εx

−amnm−1−
∑

1≤t≤k,t 6=m atnt
MP dQ,

W1m3 = nm

∫∞
εx

MP dQ.

Here

Q := P (Snm−1 +
∑

1≤t≤k,t 6=m

Snt
≤ u, max

1≤j≤nm−1
Xmj ≤ x

v4
, max
1≤l≤k,l 6=m

max
1≤j≤nl

Xlj ≤ x

v4
)

MP := P (x− u < Xmnm
≤ x− u + T, Xmnm

>
x

v4
).

We start to consider W1m1. Obviously, as u ≤ −amnm−1−
∑

1≤t≤k,t 6=m

atnt
< 0, for sufficiently

large x, we have x− u > x > x
v4 . Thus, for large enough x, we get

W1m1 ≤ nm sup
z>x

P (z < Xmnm ≤ z + T )Q1 ≤ nmT sup
z>x

fm(u)Q1 ≤ nmTCfm(x)Q1.

here Q1 := P (Snm−1 +
∑

1≤t≤k,t 6=m Snt ≤ −amnm−1 −
∑

1≤t≤k,t 6=m atnt).

The last inequality and C follow from the definition of almost decreasing function. By
construction of the sequences amnm , we can obtain that W1 → 0 as ni →∞, i = 1, 2, . . . , k. So,
we have

lim
n1,n2,...,nk→∞

sup
x≥∆(k)

k∑
m=1

W1m1

k∑
m=1

L+
fm

nmTfm(x)
= 0. (6)

Now, we consider W1m3. W1m3 ≤ nmQ = nmP (S̃nm−1 +
∑

1≤t≤k,t 6=m S̃nt > εx). Using (1) and
(2), we have

lim
n1,n2,...,nk→∞

sup
x≥∆(k)

P (S̃nm−1 +
∑

1≤t≤k,t 6=m

S̃nt
> εx)

k∑
m=1

fm(εx)
= 0. (7)
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By the fact that

sup
x≥∆(k)

W1m3

k∑
m=1

nmTfm(x)

≤ 1
T

sup
x≥∆(k)

P (S̃nm−1 +
∑

1≤t≤k,t 6=m

S̃nt
> εx)

k∑
m=1

fm(εx)
sup

x≥∆(k)

(fm(εx)
fm(x)

+
∑

1≤s≤k,s 6=m

fs(εx)
fs(x)

fs(x)
fm(x)

)
,

According to Proposition 2.1, the fact lim supx→∞ fj(x)/fi(x) < ∞, 1 ≤ i, j ≤ k and (7), we get
that

lim
n1,n2,...,nk→∞

sup
x≥∆(k)

k∑
m=1

W1m3

k∑
m=1

L+
fm

nmTfm(x)
= 0. (8)

Next, we show

lim inf
n1,...,nk→∞

inf
x≥∆(k)

k∑
m=1

W1m2

k∑
m=1

L−fm
nmTfm(x)

≥ 1, (9)

lim sup
n1,...,nk→∞

sup
x≥∆(k)

k∑
m=1

W1m2

k∑
m=1

L+
fm

nmTfm(x)
≤ 1. (10)

Now we deal with the lower bound. Denote

A :=
{
− amnm−1 −

∑

1≤t≤k,t 6=m

atnt < Snm−1 +
∑

1≤t≤k,t 6=m

Snt ≤ εx,

max
1≤j≤nm−1

Xmj ≤ x

v4
, max
1≤l≤k,l 6=m

max
1≤j≤nl

Xlj ≤ x

v4

}
.

Since amnm/nm → 0 as nm → ∞, for any fixed 0 < ε < 1, and sufficiently large n1, . . . , nk, we
get amnm−1 ≤ εnm < εx

γ , amnm ≤ εnm < εx
γ . Thus, for large n1, . . . , nk and x ≥ ∆(k), we have

that in B = ((1− ε)x, x + amnm−1 +
∑

1≤t≤k,t 6=m atnt), W1m2 satisfies

W1m2 ≥ nmP (A) inf
u∈B

P (u < Xmnm ≤ u + T ), (11)

where

inf
u∈B

P (u < Xmnm ≤ u + T ) ≥ inf
(1−ε)x<u≤(1+ kε

γ )x

∫ u+T

u

fm(z)dz ≥ T inf
(1−ε̄)x≤u≤(1+ε̄)x

fm(u) (12)

with ε̄ = max{2ε, 2kε
γ }.

Besides that

P (A) ≥P
(
Snm−1 +

∑

1≤t≤k,t 6=m

Snt > −amnm−1 −
∑

1≤t≤k,t 6=m

atnt

)
− 1+

P
(

max
1≤j≤nm−1

Xmj ≤ x

v4
, max
1≤l≤k,l 6=m

max
1≤j≤nl

Xlj ≤ x

v4

)
−
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P
(
S̃nm−1 +

∑

1≤t≤k,t 6=m

S̃nt > εx
)
.

Here, by construction of the sequences amnm , we obtain that

lim
n1,n2,...,nk→∞

P
(
Snm−1 +

∑

1≤t≤k,t 6=m

Snt > −amnm−1 −
∑

1≤t≤k,t 6=m

atnt

)
= 1.

For x ≥ ∆(k) and sufficiently large n1, n2, . . . , nk, we have

P
(

max
1≤j≤nm−1

Xmj ≤ x

v4
, max
1≤l≤k,l 6=m

max
1≤j≤nl

Xlj ≤ x

v4

)
≥

k∏
m=1

(
1− F̄m(

x

v4
)
)nm

≥
k∏

m=1

(
1− x

γ
F̄m(

x

v4
)
)
≥

k∏
m=1

(
1− Cm

γ

v4q

xrm−1

)
.

Hence, we obtain that

lim
n1,n2,...,nk→∞

P
(

max
1≤j≤nm−1

Xmj ≤ x

v4
, max
1≤l≤k,l 6=m

max
1≤j≤nl

Xlj ≤ x

v4

)
= 1.

Obviously, using (7), we get that

lim
n1,n2,...,nk→∞

sup
x≥∆(k)

P (S̃nm−1 +
∑

1≤t≤k,t 6=m

S̃nt
> εx) = 0.

Then,

lim inf
n1,n2,...,nk→∞

inf
x≥∆(k)

P (A) = 1. (13)

Combining (11), (12) and (13), we get that for every ε ∈ (0, 1),

lim inf
n1,...,nk→∞

inf
x≥∆(k)

k∑
m=1

W1m2

k∑
m=1

L−fm
nmTfm(x)

≥ lim inf
x→∞

k∑
m=1

nmT inf
(1−ε̄)x≤u≤(1+ε̄)x

fm(u)

k∑
m=1

L−fm
nmTfm(x)

.

According to the definition of L−fm
, we obtain (9).

Next, for the upper bound, we have that

W1m2 ≤ nm sup
u∈B

P (u < Xmnm
≤ u + T ) ≤ nmT sup

(1−ε̄)x≤z≤(1+ε̄)x

fm(z).

From the argument above and the fact that f is almost decreasing, we have (10).

Combining (6), (8), (9) and (10), we get that

lim inf
n1,...,nk→∞

inf
x≥∆(k)

W1

k∑
m=1

L−fm
nmTfm(x)

≥ 1, lim sup
n1,...,nk→∞

sup
x≥∆(k)

W1

k∑
m=1

L+
fm

nmTfm(x)
≤ 1. (14)

Combining (3), (5) and (14) completes the proof in the case of µi = 0, i = 1, . . . , k.
Next, we deal with the case that µi 6= 0, i = 1, . . . , k. For any ε ∈ (0, 1), we have

lim sup
x→∞

sup
(1−ε)x≤z≤(1+ε)x

fi(z + µi)

fi(x + µi)
≤ lim sup

y→∞

sup
(1−2ε)y≤z′≤(1+2ε)y

fi(z
′
)

fi(y)
,
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lim inf
x→∞

inf
(1−ε)x≤z≤(1+ε)x

fi(z + µi)

fi(x + µi)
≥ lim inf

y→∞

inf
(1−2ε)y≤z′≤(1+2ε)y

fi(z
′
)

fi(y)
.

Obviously, using the relations above, we obtain the desired result. ¤
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